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“The Beautiful Game”

“The beautiful game of billiards opens up a rich field
for applications of the dynamics of rigid bodies.”

Lectures on
Theoretical Physics,
Arnold Sommerfeld

1937.
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Gaspard-Gustave de Coriolis

“Théorie mathématique des effets du jeu de billiard”.
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Ergodic Theory

Billiards has been used to examine
questions of ergodic theory.

In ergodic systems, all configurations
and momenta compatible with the total

energy are eventually explored.

Such questions lie at the heart
of statistical mechanics.
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George D. Birkhoff

Intro Billiards Ballyards Summary



Edmund Taylor Whittaker
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Idealizations

The ball is a point mass
moving at constant velocity.

Elastic impacts with the boundary,
or cushion, of the billiard table.

The energy is taken to be constant.

The path traced out by the moving ball
may form a closed periodic loop . . .

. . . or it may cover the table (or part) densely,
never returning to the starting conditions.
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Circular Billiards
The simplest billiard is circular.
Every trajectory makes a constant angle with
the boundary and tangent to a circle within it.

Every trajectory is either a polygon or is
everywhere dense in an annular region.
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Elliptic Billiards
The elliptical billiard problem is completely
resolved, thanks to Poncelet’s theorem.

There are periodic trajectories, or ones that are
dense in regions of two distinct topological types.
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Elliptical Billiards

We examine the orbits for an elliptical table.
The boundary is

x2

a2 +
y2

b2 = 1

In parametric form

x = a cos θ , y = b sin θ

The foci are at (f ,0) and (−f ,0).

Eccentricity e defined by e2 = 1− (b/a)2.
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Initial Conditions

We assume that the ball moves at unit speed.

Suppose a trajectory starts at a boundary point θ0

and moves at an angle ψ0 to the x-axis.

The initial values {θ0, ψ0} determine the motion.

The tangential component of velocity is unchanged at
impact, while the normal component reverses sign.

Each segment of the trajectory is tangent
to a conic confocal with the boundary.

This caustic may be an ellipse or hyperbola.
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Generic Motion: Box Orbits & Loop Orbits

Generic orbits. Left: Box orbit, Right: Loop orbit.
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The Homoclinic Orbit

Homoclinic orbits
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Discrete Mapping
The billiard problem is a Hamiltonian system.
Between impacts the equations are:

dq
dt

= p ,
dp
dt

= 0 .

The dynamics are specified by a discrete mapping.
Given the values (x , y ; m)n we can get (x , y ; m)n+1

xn+1 = −xn −
2a2mn(yn −mnxn)

m2
na2 + b2 ,

yn+1 = yn + mn(xn+1 − xn) ,

mn+1 =
2νn+1 − (1− ν2

n+1)mn

(1− ν2
n+1) + 2νn+1mn

,

where νn+1 = (a2yn+1)/(b2xn+1) is known when needed.
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Phase Portrait
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Constants of Motion

The kinetic energy

T = 1
2(ẋ2 + ẏ2)

is a constant of the motion.

For a circular table the Lagrangian is

L = 1
2(ṙ 2 + r 2ϑ̇2)− V (r) .

Since ϑ is ignorable, pϑ = ∂L/∂ϑ̇ = r 2ϑ̇ is conserved.

For an elliptical table, the angular momentum
about the centre is no longer conserved.
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Constants of Motion
We use elliptic coordinates (ξ, η):

x = f cosh ξ cos η , y = f sinh ξ sin η .

The components of the velocity v = (u, v) are:

ẋ = u = f sinh ξ cos η ξ̇ − f cosh ξ sin η η̇
ẏ = v = f cosh ξ sin η ξ̇ + f sinh ξ cos η η̇

The radii from the center and foci are

r0 = (x , y) = f (cosh ξ cos η, sinh ξ sin η)

r1 = (x − f , y) = f (cosh ξ cos η − 1, sinh ξ sin η)

r2 = (x + f , y) = f (cosh ξ cos η + 1, sinh ξ sin η)
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Elliptical Coordinates
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Constants of Motion

The angular momenta about the foci are

L1 = r1 × v and L2 = r2 × v

Then we have

L1 · L2 = L1L2 = f 4(cosh2 ξ−cos2 η)
[
(− sin2 η)ξ̇2+(sinh2 ξ)η̇2]

The quantity L1L2 does not change at an impact.

Moreover, L1 = r1 × v and L2 = r2 × v
are constant along each segment.

Therefore, L1L2 is a constant of the motion.
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Constant L1L2
For loop orbits, L1 and L2 are either both positive
or both negative, so L1L2 is positive.

For box orbits, which pass between the foci,
L1 and L2 are of opposite signs.

For the homoclinic orbit, passing through the foci,
one or other of these components vanishes.

Thus, L1L2 acts as a discriminant for the motion:

Orbit is


Box type if L1L2 < 0
Homoclinic if L1L2 = 0
Loop type if L1L2 > 0.

Intro Billiards Ballyards Summary



Outline

Introduction

Elliptical Billiards

Elliptical Ballyards

Summary

Intro Billiards Ballyards Summary



Circular Ballyard Table
For billiards, the potential well has a
step discontinuity at the boundary.

We can approximate this behaviour by a high-order
polynomial. But can we integrate this system?

For a circular table of radius a we take the potential
energy to be V (r) = V0(r/a)N where N is large.

The Lagrangian may be written

L = 1
2(ṙ 2 + r 2ϑ̇2)− V (r)

Since this is independent of ϑ,
pϑ is a constant of the motion.
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Elliptical Billiard Table

The kinetic energy in elliptic coordinates is:

T = 1
2 f 2(cosh2 ξ − cos2 η)(ξ̇2 + η̇2)

The Lagrangian then becomes

L = 1
2 f 2(cosh2 ξ − cos2 η)(ξ̇2 + η̇2)− V (ξ, η) .

We note the form of the kinetic energy:

T = [U1(q1) + U2(q2)](q̇2
1 + q̇2

2)

where (q1,q2) are the generalized coordinates.
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Liouville Integrable Systems

In 1848 Joseph Liouville identified
a broad class of integrable systems.

If the kinetic and potential energies take the form

T = [U1(q1) + U2(q2)] · [V1(q1)q̇2
1 + V2(q2)q̇2

2 ]

V =
W1(q1) +W2(q2)

U1(q1) + U2(q2)

the solution can be solved in quadratures
(see Whittaker, 1937).
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The Ballyard Potential

“Our” kinetic energy is

T = 1
2 f 2(cosh2 ξ − cos2 η)(ξ̇2 + η̇2) .

This is of Liouville form with

U1(ξ) = f 2 cosh2 ξ U2(η) = −f 2 cos2 η V1 ≡ V2 ≡ 1

If the potential energy function is of the form

V (ξ, η) =
W1(ξ) +W2(η)

U1(ξ) + U2(η)

the ballyard problem is of Liouville type.
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The Ballyard Potential

We seek a potential surface close to constant within
the ellipse and rising rapidly near the boundary.

We define the potential surfaces by setting

W1(ξ) = VN f 2 coshN ξ W2(η) = −VN f 2 cosN η

where N is an even integer.

The potential energy function is then

V (ξ, η) =
W1(ξ) +W2(η)

U1(ξ) + U2(η)
= VN

[
coshN ξ − cosN η

cosh2 ξ − cos2 η

]
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The Ballyard Potential: Special Cases
For N = 2 we have potential energy constant:

W = V2f 2(cosh2 ξ − cos2 η) , V ≡ V2

For N = 4, we have

W = V4f 2(cosh4 ξ − cos4 η) V = V4(cosh2 ξ + cos2 η)

The potential energy is proportional to x2 + y2

(the orbits are closed ellipses).

For N = 6, we have

W = V6f 2(cosh6 ξ − cos6 η)

V = V6(cosh4 ξ + cosh2 ξ cos2 η + cos4 η)
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The Ballyard Potential for N = 6
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The Ballyard Potential for N = 32
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Ballyard Potential Cross-sections

Ballyard approaches square potential-well as N →∞.
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Integrals
From the theory of Liouville systems, we have

1
2U

2ξ̇2 = EU1(ξ)−W1(ξ) + γ1
1
2U

2η̇2 = EU2(η)−W2(η) + γ2

where γ1 and γ2 are constants of integration,
and γ1 + γ2 = 0. We write γ = γ1.

We partition the energy as E = E1 + E2, where

E1 = 1
2U(ξ, η)ξ̇2 +

W1(ξ)

U(ξ, η)
and E2 = 1

2U(ξ, η)η̇2 +
W2(η)

U(ξ, η)

Then the constants of motion can be written

γ1 = UE1 − EU1 γ2 = UE2 − EU2 .

Note that E1 and E2 are not constants.
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The equations for ξ̇ and η̇ can be integrated:∫ ξ U1(ξ)dξ√
2[EU1(ξ)−W1(ξ) + γ1]

=

∫ t

dt∫ η U2(η)dη√
2[EU2(η)−W2(η) + γ2]

=

∫ t

dt

Analytical evaluation may or may not be possible.

For the case N = 6, we get:∫ ξ

ξ0

f 2 cosh2 ξ dξ√
2[Ef 2 cosh2 ξ − V6f 2 cosh6 ξ + γ]

= t − t0

∫ η

η0

−f 2 cos2 η dη√
2[−Ef 2 cos2(η) + V6f 2 cos6 η − γ]

= t − t0
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The Angular Momentum Integral

For the billiard dynamics, L1L2 is a constant.
We seek a corresponding integral for the ballyard.

In elliptical coordinates, we can write

L1L2 = f 2U(ξ, η)[sinh2 ξ η̇2 − sin2 η ξ̇2]

We use γ1 and γ2 to substitute for ξ̇2 and η̇2.
“After some manipulation”, we find that

L1L2 +
2f 2(sinh2 ξ W2 − sin2 η W1)

U
= −2(f 2E + γ) .

The right side is constant. Therefore, so is the left!
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Again

L1L2 +
2f 2(sinh2 ξ W2 − sin2 η W1)

U
= −2(f 2E + γ) .

If we define the quantity

Λ(ξ, η) =
2f 2[sinh2 ξ W2(η)− sin2 η W1(ξ)]

U(ξ, η)

then the top equation becomes

L ≡ [L1L2 + Λ] = −2(f 2E + γ) = constant

and L is an integral of the motion.
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L1L2 for a Box Orbit
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We easily show that, on the major axis (y = 0),

Λ(ξ, η) = Λ0 = −2f 2VN

This means that L1L2 = L− Λ is also constant there.

But L1L2 < 0 on the inter-focal segment −f < x < f
and L1L2 > 0 when x < −f or x > f .

Therefore, the orbits fall into boxes and loops.

If a trajectory passes through a focus
then L1L2 must vanish there.

It can cross the axis only through the foci.

This special case (L = Λ0) separates boxes and loops.
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Limiting Form of L

We note that, as N →∞,

W1 = O
(

cosh ξ
cosh ξB

)N

, W2 = O
(

1
cosh ξB

)N

.

Thus, for |ξ| < |ξB|, we have

lim
N→∞

L = L1L2 .

The integral L corresponds in this limit to the
quantity L1L2 conserved for motion on a billiard.
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Numerical Results

Numerical integrations confirm the dichotomy
between boxes and loops for the ballyard potentials.

A large number of numerical experiments were
performed with N = 6, and several for larger N.

For orbits passing through the foci, the equations
in (ξ, η) coordinates are singular.

A re-coding using cartesian coordinates enabled
numerical integrations along homoclinic orbits.
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Boxes and Loops for N = 6 Ballyard

Box orbit. Loop orbit.
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Homiclinic Orbit for N = 6 Ballyard

Homoclinic orbit
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Special Solutions for N = 6 Ballyard

Periodic box orbit. Pure elliptic orbit.
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A High-Order Ballyard
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Summary

We have reviewed motion on an elliptical billiard.

We have replaced the the flat-bedded, hard-edged
billiard by a smooth surface, a ballyard.

The ballyard Lagrangians are of Liouville type
and so are completely integrable.

A new constant of the motion (L) was found,
showing that the orbits split into boxes and loops.

The discriminant that determines the character of the
solution is the sign of L1L2 on the major axis.

Intro Billiards Ballyards Summary



Thank you
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