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Numerical Weather Prediction
Peter Lynch

1 Introduction

The development of computer models for numeri-
cal simulation and prediction of the atmosphere and
oceans is one of the great scientific triumphs of the
past fifty years. Today, numerical weather prediction
(NWP) plays a central and essential role in operational
weather forecasting, with forecasts now having accu-
racy at ranges beyond a week. There are several rea-
sons for this: enhancements in model resolution, better
numerical schemes, more realistic parametrizations of
physical processes, new observational data from satel-
lites, and more sophisticated methods of determining
the initial conditions. In this article we focus on the fun-
damental equations, the formulation of the numerical
algorithms, and the variational approach to data assim-
ilation. We present the mathematical principles of NWP
and illustrate the process by considering some specific
models and their application to practical forecasting.

2 The Basic Equations

The atmosphere is governed by the fundamental laws
of physics, expressed in terms of mathematical equa-
tions. They form a system of coupled nonlinear partial
differential equations (PDEs). These equations can be
used to predict the evolution of the atmosphere and to
simulate its long-term behavior.

The primary variables are the fluid velocity V (with
three components, u eastward, v northward, and w
upward), pressure p, density ρ, temperature T , and
humidity q. Using Newton’s laws of motion and the
principles of conservation of energy and mass, we can
obtain a system whose solution is well determined by
the initial conditions.

The central components of the system are the
navier–stokes equations [??] governing fluid
motion. We write them in vector form:

∂V
∂t

+ V ·∇V + 2Ω× V + 1
ρ
∇p = F + g.

The equations are relative to the rotating Earth and
Ω is the Earth’s angular velocity. In order, the terms
of this equation represent local acceleration, nonlin-
ear advection, Coriolis term, pressure gradient, friction,
and gravity. The friction term F is small in the free
atmosphere but is crucially important in the boundary
layer (roughly, the first 1 km above the Earth’s surface).

The apparent gravity g includes the centrifugal force,
which depends only on position.

The temperature, pressure, and density are linked
through the equation of state

p = RρT,
where R is the gas constant for dry air. In practice, a
slight elaboration of this is used that takes account of
moisture in the atmosphere.

Energy conservation is embodied in the first law of
thermodynamics,

cv
dT
dt

+ RT∇ · V = Q,
where cv is the specific heat at constant volume and
Q is the diabatic heating rate. Conservation of mass is
expressed in terms of the continuity equation:

dρ
dt

+ ρ∇ · V = 0.

Finally, conservation of water substance is expressed
by the equation

dq
dt

= S,
where q is the specific humidity and S represents all
sources and sinks of water vapor.

Once initial conditions, appropriate boundary con-
ditions, and external forcings, sources, and sinks are
given, the above system of seven (scalar) equations pro-
vides a complete description of the evolution of the
seven variables {u,v,w,p, ρ, T , q}.

For large-scale motions the vertical component of
velocity is very much smaller than the horizontal com-
ponents, and we can replace the vertical equation by
a balance between the vertical pressure gradient and
gravity. This yields the hydrostatic equation

∂p
∂z

+ gρ = 0.

Hydrostatic models were used for the first fifty years of
NWP but nonhydrostatic models are now coming into
widespread use.

3 The Emergence of NWP

The idea of calculating the changes in the weather by
numerical methods emerged around the turn of the
twentieth century. Cleveland Abbe, an American mete-
orologist, viewed weather forecasting as an application
of hydrodynamics and thermodynamics to the atmo-
sphere. He also identified a system of mathematical
equations, essentially those presented in §2 above, that
govern the evolution of the atmosphere. This idea was



2 Princeton Companion to Applied Mathematics Proof

developed in greater detail by the Norwegian Vilhelm
Bjerknes, whose stated goal was to make meteorology
an exact science: a true physics of the atmosphere.

3.1 Richardson’s Forecast

During World War I, Lewis Fry Richardson, an English
Quaker mathematician, calculated the changes in the
weather variables directly from the fundamental equa-
tions and presented his results in a book, Weather
Prediction by Numerical Process, in 1922. His predic-
tion of pressure changes was utterly unrealistic, being
two orders of magnitude too large. The primary cause
of this failure was the inaccuracy and imbalance of
the initial conditions. Despite the outlandish results,
Richardson’s methodology was unimpeachable, and is
essentially the approach we use today to integrate the
equations.

Richardson was several decades ahead of his time.
For computational weather forecasting to become a
practical reality, advances on a number of fronts were
required. First, an observing system for the tropo-
sphere, the lowest layer of the atmosphere, extending
to about 12 km, was established to serve the needs of
aviation; this also provided the initial data for weather
forecasting. Second, advances in numerical analysis led
to the design of stable and accurate algorithms for solv-
ing the PDEs. Third, progress in meteorological theory,
especially the development of the quasigeostrophic
equations and improved understanding of atmospheric
balance, provided a means to eliminate the spurious
high-frequency oscillations that had spoiled Richard-
son’s forecast. Finally, the invention of high-speed dig-
ital computers enabled the enormous computational
task of solving the equations to be undertaken.

3.2 The ENIAC Integrations

The first forecasts made using an automatic com-
puter were completed in 1950 on the ENIAC (Elec-
tronic Numerical Integrator and Computer), the first
programmable general-purpose computer. The fore-
casts used a highly simplified model, representing the
atmosphere as a single layer and assuming conserva-
tion of absolute vorticity expressed by the barotropic
vorticity equation,

d
dt
(ζ + f) = 0,

where ζ is the vorticity of the flow and f = 2Ω sinφ
is the Coriolis parameter, with Ω the angular velocity

of the Earth and φ the latitude. The Lagrangian time
derivative

d
dt
= ∂
∂t
+ V ·∇

includes the nonlinear advection by the flow. The equa-
tion was approximated by finite differences in space
and time with a grid size of 736 km (at the North Pole)
and a time step of three hours. The resulting forecasts,
while far from perfect, were realistic and provided a
powerful stimulus for further work.

Baroclinic, or multilevel, models that enabled realis-
tic representation of the vertical structure of the atmo-
sphere were soon developed. Moreover, the simplified
equations were replaced by more accurate primitive
equations, that is, the equations presented in §2 but
with the hydrostatic approximation. As these equations
simulate high-frequency gravity waves in addition to
the motions that are important for weather, the ini-
tial conditions must be carefully balanced. Techniques
for ensuring this were developed. Most notable among
these was the normal-mode initialization method: the
flow is resolved into normal modes and modified to
ensure that the tendencies, or rates of change, of
the gravity wave components vanish. This suppresses
spurious oscillations.

4 Solving the Equations

Analytical solution of the equations is impossible, so
approximate methods must be employed. We consider
methods of discretizing the spatial domain to reduce
the PDEs to an algebraic system, and of advancing the
solution in time.

4.1 Time-Stepping Schemes

LetQ denote a typical dependent variable, governed by
an equation of the form

dQ
dt

= F(Q).
We replace the continuous-time domain t by a sequence
of discrete times {0,Δt,2Δt, . . . , nΔt, . . . }, with the
solution at these times denoted by Qn = Q(nΔt).
If this solution is known up to time t = nΔt, the
right-hand term Fn = F(Qn) can be computed. The
time derivative is now approximated by a centered
difference

Qn+1 −Qn−1

2Δt
= Fn,

so the “forecast” value Qn+1 may be computed from
the old value Qn−1 and the tendency Fn:

Qn+1 = Qn−1 + 2ΔtFn.
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This is called the leapfrog scheme. The process of step-
ping forward from moment to moment is repeated a
large number of times, until the desired forecast range
is reached.

The leapfrog scheme is limited by a stability criterion
that restricts the size of the time step Δt. One way of
circumventing this is to use an implicit scheme such as

Qn+1 −Qn−1

2Δt
= Fn−1 + Fn+1

2
.

The time step is now unconstrained by stability, but the
scheme requires the solution of the equation

Qn+1 −ΔtFn+1 = Qn−1 +ΔtFn−1,

which is prohibitive unless F(Q) is a linear function.
Normally, implicit schemes are used only for particular
(linear) terms of the equations.

4.2 Spatial Finite Differencing

For the PDEs that govern atmospheric dynamics we
must replace continuous variations in space by discrete
variables. The primary way to do this is to substitute
finite-difference approximations for the spatial deriva-
tives. It then transpires that the stability depends on
the relative sizes of the space and time steps. A real-
istic solution is not guaranteed by reducing their sizes
independently.

We consider the simple one-dimensional wave equa-
tion

∂Q
∂t

+ c ∂Q
∂x

= 0,

where Q(x, t) depends on both x and t, and where the
advection speed c is constant. We consider the sinu-
soidal solution Q = Q0 exp[ik(x − ct)] of wavelength
L = 2π/k. We use centered difference approximations
in both space and time:

Qn+1
m −Qn−1

m
2Δt

+ c
(Qnm+1 −Qnm−1

2Δx

)
= 0,

where Qnm = Q(mΔx,nΔt). We seek a solution of the
formQnm = Q0 exp[ik(mΔx−CnΔt)]. For realC , this is
a wave-like solution. However, ifC is complex, this solu-
tion will behave exponentially, quite unlike the solution
of the continuous equation. Substituting Qnm into the
finite-difference equation, we find that

C = 1
kΔt

sin−1
[(
cΔt
Δx

)
sinkΔx

]
.

If the argument of the inverse sine is less than unity, C
is real. Otherwise, C is complex, and the solution will
grow with time. Thus, the condition for stability of the
solution is ∣∣∣∣cΔtΔx

∣∣∣∣ � 1.

This is the Courant–Friedrichs–Lewy criterion, discov-
Typesetter’s note: author
wondered whether the CFL
criterion is being discussed
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cross-reference could
therefore be added here.

ered in 1928. It imposes a strong constraint on the rel-
ative sizes of the space and time grids. The limitation
on stability can be circumvented by means of implicit
finite differencing. Then

C = 2
kΔt

tan−1
[(
cΔt
2Δx

)
sinkΔx

]
.

The numerical phase speed C is always real, so the
implicit scheme is unconditionally stable, but the cost
is that a linear system must be solved at each time step.

4.3 Spectral Method

In the spectral method, each field is expanded in a
series of spherical harmonics:

Q(λ,φ, t) =
∞∑
n=0

n∑
m=−n

Qmn (t)Ymn (λ,φ),

where the coefficients Qmn (t) depend only on time,
and where Ymn (λ,φ) are the spherical harmonics
Ymn (λ,φ) = exp(imλ)Pmn (φ) for longitude λ and lat-
itude φ. The coefficients Qmn of the harmonics provide
an alternative to specifying the field values Q(λ,φ)
in the spatial domain. When the model equations are
transformed to spectral space they become a coupled
set of equations (ordinary differential equations) for
the spectral coefficientsQmn . These are used to advance
the coefficients in time, after which the new physical
fields may be computed.

In practice, the series expansion must be truncated
at some point:

Q(λi,φj, t) =
N∑
n=0

n∑
m=−n

Qmn (t)Ymn (λi,φj).

This is called triangular truncation, and the value of N
indicates the resolution of the model. There is a compu-
tational grid, called the Gaussian grid, corresponding to
the spectral truncation.

5 Initial Conditions

Numerical weather prediction is an initial-value prob-
lem: to integrate the equations of motion we must spec-
ify the values of the dependent variables at an initial
time. The numerical process then generates the val-
ues of these variables at later times. The initial data
are ultimately derived from direct observations of the
atmosphere.

The optimal interpolation analysis method was, for
several decades, the most popular method of automatic
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analysis for NWP. This method optimizes the combina-
tion of information in the background (forecast) field
and in the observations, using the statistical proper-
ties of the forecast and observation errors to produce
an analysis that, in a precise statistical sense, is the best
possible analysis.

An alternative approach to data assimilation is to find
the analysis field that minimizes a cost function. This is
called variational assimilation and it is equivalent to the
statistical technique known as the maximum-likelihood
estimate, subject to the assumption of Gaussian errors.
When applied at a specific time, the method is called
three-dimensional variational assimilation, or 3D-Var
for short. When the time dimension is also taken into
account, we have 4D-Var.

5.1 Variational Assimilation

The cost function for 3D-Var may be defined as the sum
of two components:

J = JB + JO.

We represent the model state by a high-dimensional
vector X. The term

JB = 1
2 (X −XB)TB−1(X −XB)

represents the distance between the model state X and
the background field XB weighted by the background
error covariance matrix B. The term

JO = 1
2 (Y −HX)TR−1(Y −HX)

represents the distance between the analysis and the
observed values Y weighted by the observation error
covariance matrix R. The observation operator H is a
rectangular matrix that converts the background field
into first-guess values of the observations. More gener-
ally, the observation operator is nonlinear but, for ease
of description, we assume here that it is linear.

The minimum of J is attained at X = XA, where

∇XJ = 0.

that is, where the gradient of J with respect to each of
the analyzed values is zero. Computing this gradient,
we get

∇XJ = B−1(X −XB)+HTR−1(Y −HX).
Setting this to zero we can deduce the expression

X = XB +K(Y −HXB).

Thus, the analysis is obtained by adding to the back-
ground field a weighted sum of the difference between

observed and background values. The matrix K, the
gain matrix, is given by

K = BHT(R+HBHT)−1.

The analysis error covariance is then given by

A = (I −KH)B.
The minimum of the cost function is found using a

descent algorithm such as the conjugate gradient
method [??]; 3D-Var solves the minimization problem
directly, avoiding computation of the gain matrix.

The 3D-Var method has enabled the direct assimi-
lation of satellite radiance measurements. The error-
prone inversion process, whereby temperatures are
deduced from the radiances before assimilation, is thus
eliminated. Quality control of these data is also eas-
ier and more reliable. As a consequence, the accuracy
of forecasts has improved markedly since the intro-
duction of variational assimilation. The accuracy of
medium-range forecasts is now about equal for the two
hemispheres (see figure 1). This is due to better satel-
lite data assimilation. Satellite data are essential for
the Southern Hemisphere as conventional data are in
such short supply. The effort to extract useful informa-
tion from satellite soundings has been one of the great
research triumphs of NWP over the past forty years.

5.2 Inclusion of the Time Dimension

Whereas conventional meteorological observations are
made at the main synoptic hours, satellite data are
distributed continuously in time. To assimilate these
data, it is necessary to perform the analysis over a
time interval rather than for a single moment. This is
also more appropriate for observations that are dis-
tributed inhomogeneously in space. Four-dimensional
variational assimilation, or 4D-Var for short, uses all
the observations within an interval t0 � t � tN . The
cost function has a term JB measuring the distance to
the background field XB at the initial time t0, just as in
3D-Var. It also contains a summation of terms measur-
ing the distance to observations at each time step tn in
the interval [t0, tN]:

J = JB +
N∑
n=0

JO(tn),

where JB is defined as for 3D-Var and JO(tn) is given
by

JO(tn) = (Yn −HnXn)TR−1
n (Yn −HnXn).

The state vector Xn at time tn is generated by integra-
tion of the forecast model from time t0 to tn, written
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Figure 1 Anomaly correlation (%) of 500 hPa geopotential height: twelve-month running mean. For each pair of graphs,
the upper one is for the Northern Hemisphere and the lower for the Southern Hemisphere (©ECMWF).

Xn =Mn(X0). The vector Yn contains the observations

valid at time tn.

Just as the observation operator had to be linearized

to obtain a quadratic cost function, we linearize the

model operatorMn about the trajectory from the back-

ground field, obtaining what is called the tangent linear

model operator Mn. Then we find that 4D-Var is for-

mally similar to 3D-Var with the observation operator

H replaced by HnMn. Just as the minimization of J
in 3D-Var involved the transpose of H, the minimiza-

tion in 4D-Var involves the transpose of HnMn, which

is MT
nHT

n. The operator MT
n, the transpose of the tan-

gent linear model, is called the adjoint model. The con-

trol variable for the minimization of the cost function

is X0, the model state at time t0, and the sequence of

analyses Xn satisfies the model equations, that is, the

model is used as a strong constraint.

The 4D-Var method finds initial conditions X0 such

that the forecast best fits the observations within the

assimilation interval. This removes an inherent disad-

vantage of optimal interpolation and 3D-Var, where all

observations within a fixed time window (typically of

six hours) are assumed to be valid at the analysis time.

The introduction of 4D-Var at the European Centre

for Medium-Range Weather Forecasts (ECMWF) led to

a significant improvement in the quality of operational

medium-range forecasts.

6 Forecasting Models

Operational forecasting today is based on output from
a suite of computer models. Global models are used for
predictions of several days ahead, while shorter-range
forecasts are based on regional or limited-area models.

6.1 The ECMWF Global Model

As an example of a global model we consider the inte-
grated forecast system (IFS) of the ECMWF (which is
based in Reading, in the United Kingdom). The ECMWF
produces a wide range of global atmospheric and
marine forecasts and disseminates them on a regu-
lar schedule to its thirty-four member and cooperat-
ing states. The primary products are deterministic fore-
casts for the atmosphere out to ten days ahead, based
on a high-resolution model, and probabilistic forecasts,
extending to a month, made using a reduced resolution
and an ensemble of fifty-one model runs.

The basis of the NWP operations at the ECMWF is the
IFS. It uses a spectral representation of the meteorolog-
ical fields. The IFS system underwent major resolution
upgrades in 2006 and in 2010. Table 1 compares the
spatial resolutions of the three model cycles, indicating
the substantial improvements in model resolution in
recent years. The truncation of the deterministic model
is now T1279, that is, the spectral expansion is termi-
nated at total wave number 1279. This is equivalent to a
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Table 1 Upgrades to the ECMWF IFS in 2006 and 2010.
The spectral resolution is indicated by the triangular trun-
cation number, and the effective resolution of the associ-
ated Gaussian grid is indicated. The number of model lev-
els, or layers used to represent the vertical structure of the
atmosphere, is also given.

Before 2006 2006–9 After 2009

Spectral truncation T511 T799 T1279
Effective resolution 39 km 25 km 16 km
Model levels 60 91 137

spatial resolution of 16 km. The number of model levels
in the vertical has recently been increased to 137. The
new Gaussian grid for the IFS has about 2×106 points.
With 137 levels and five primary prognostic variables
at each point, about 1.2 × 109 numbers are required
to specify the atmospheric state at a given time. That
is, the model has about a billion degrees of freedom.
The computational task of making forecasts with such
high resolution is truly formidable. The ECMWF car-
ries out its operational program using a powerful and
complex computer system. At the heart of this system
is a Cray XC30 high-performance computer, compris-
ing some 160 000 processors, with a sustained perfor-
mance of over 200 teraflops (2 × 1014 floating-point
operations per second).

6.2 Mesoscale Modeling

Short-range forecasting requires detailed guidance that
is updated frequently. Many national meteorological
services run limited-area models with high resolution
to provide such forecast guidance. These models per-
mit a free choice of geographical area and spatial res-
olution, and forecasts can be run as frequently as
required. Limited-area models make available a com-
prehensive range of outputs, with a high time resolu-
tion. Nested grids with successively higher resolution
can be used to provide greater local detail.

The Weather Research and Forecasting Model is
a next-generation mesoscale NWP system developed
in a partnership involving American national agen-
cies (the National Centers for Environmental Pre-
diction and the National Center for Atmospheric
Research) and universities. It is designed to serve
both operational-forecasting and atmospheric-research
needs. The Weather Research and Forecasting Model
is suitable for a broad range of applications, from
meters to thousands of kilometers, and it is currently

in operational use at several national meteorological
services.1

6.3 Ensemble Prediction

The chaotic nature of atmospheric flow is now well-
understood. It imposes a limit on predictability, as
unavoidable errors in the initial state grow rapidly and
render the forecast useless after some days. As a result
of our increased understanding of the inherent diffi-
culties of making precise predictions, there has been
a paradigm shift in recent years from deterministic
to probabilistic prediction. A forecast is now consid-
ered incomplete without an accompanying error bar,
or quantitative indication of confidence.

The most successful way of producing a probabilistic
prediction is to run a series, or ensemble, of forecasts,
each starting from a slightly different initial state, and
each randomly perturbed during the forecast to simu-
late model errors. The ensemble of forecasts is used to
deduce probabilistic information about future changes
in the atmosphere. Since the early 1990s this system-
atic method of providing an a priori measure of forecast
accuracy has been operational at both the ECMWF and
at the National Centers for Environmental Prediction in
Washington. In the ECMWF’s ensemble prediction sys-
tem, an ensemble of fifty-one forecasts is performed,
each having a resolution half that of the determinis-
tic forecast. Probability forecasts for a wide range of
weather events are generated and disseminated for use
in the operational centers, and they have become the
key tools for medium-range prediction.

7 Verification of ECMWF Forecasts

Forecast accuracy has improved dramatically in recent
decades. This can be measured by the anomaly corre-
lation. The anomaly is the difference between a fore-
cast value and the corresponding climate value, and
the agreement between the forecast anomaly and the
observed anomaly is expressed as the anomaly correla-
tion. The higher this score the better; by general agree-
ment, values in excess of 60% imply skill in the forecast.
In figure 1, the twelve-month running mean anomaly
correlations (in percentages) of the three-, five-, seven-
, and ten-day 500 hPa height forecasts are shown for
the extratropical Northern Hemisphere and Southern
Hemisphere. The lines above each shaded region are
for the Northern Hemisphere and the lines below are

1. Full details of the system are available at www.wrf-model.org.
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for the Southern Hemisphere, with the shading showing
the difference in scores between the two.

The plots in figure 1 show a continuing improvement
in forecast accuracy, especially for the Southern Hemi-
sphere. By the turn of the millennium, the accuracy was
comparable for the two hemispheres. Predictive abil-
ity has improved steadily over the past thirty years,
and there is now accuracy out to eight days ahead.
This record is confirmed by a wealth of other data. Pre-
dictive skill has been increasing by about one day per
decade, and there are reasons to hope that this trend
will continue for several more decades.

8 Applications of NWP

NWP models are used for a wide range of applica-
tions. Perhaps the most important purpose is to pro-
vide timely warnings about weather extremes. Great
financial losses can be caused by gales, floods, and
other anomalous weather events. The warnings that
result from NWP guidance can greatly diminish losses
of both life and property. Transportation, energy con-
sumption, construction, tourism, and agriculture are
all sensitive to weather conditions. There are expecta-
tions from all these sectors of increasing accuracy and
detail in short-range forecasts, as decisions with heavy
financial implications must continually be made.

NWP models are used to generate special guidance
for the marine community. Predicted winds are used to
drive wave models, which predict sea and swell heights
and periods. Prediction of road ice is performed by
specially designed models that use forecasts of tem-
perature, humidity, precipitation, cloudiness, and other
parameters to estimate the conditions on the road sur-
face. Trajectories are easily derived from limited-area
models. These are vital for modeling pollution drift, for
nuclear fallout, smoke from forest fires, and so on. Avi-
ation benefits significantly from NWP guidance, which
provides warnings of hazards such as lightning, icing,
and clear-air turbulence.

9 The Future

Progress in NWP over the past sixty years can be accu-
rately described as revolutionary. Weather forecasts
are now consistently accurate and readily available.
Nevertheless, some formidable challenges remain. Sud-
den weather changes and extremes cause much human
hardship and damage to property. These rapid devel-
opments often involve intricate interactions between
dynamical and physical processes, both of which vary

on a range of timescales. The effective computational
coupling between the dynamical processes and the
physical parametrizations is a significant challenge.
Nowcasting is the process of predicting changes over
periods of a few hours. Guidance provided by current
numerical models occasionally falls short of what is
required to take effective action and avert disasters.
Greatest value is obtained by a systematic combina-
tion of NWP products with conventional observations,
radar imagery, satellite imagery, and other data. But
much remains to be done to develop optimal now-
casting systems, and we may be optimistic that future
developments will lead to great improvements in this
area.

At the opposite end of the timescale, the chaotic
nature of the atmosphere limits the validity of deter-
ministic forecasts. Interaction between the atmosphere
and the ocean becomes a dominant factor at longer
forecast ranges, as does coupling to sea ice. Also, a

Typesetter’s note:
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should improve long-range forecasts. Although good
progress in seasonal forecasting for the tropics has
been made, the production of useful long-range fore-
casts for temperate regions remains to be tackled by
future modelers. Another great challenge is the mod-
eling and prediction of climate change, a matter of
increasing importance and concern.
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