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ABSTRACT

The partitioning of a global windfield into rotational and divergent components is unique. These components
are orthogonal and imply a corresponding partitioning of the kinetic energy. For a limited domain the partitioning
is neither unique nor (necessarily) orthogonal and depends on the boundary conditions. Several simple boundary
conditions are examined and the resulting wind components derived. A natural partitioning into three mutually
orthogonal components, the rotational, divergent and harmonic components, is proposed. For a global domain
the harmonic component vanishes, reducing the partitioning to the usual form.

1. Introduction

A horizontal windfield on the globe can be parti-
tioned into rotational and divergent components in a
unique way. These components are orthogonal—the
areal integral of their product vanishes—and split the
kinetic energy into corresponding parts. This analysis
is a useful diagnostic technique which can provide
valuable insight into the dynamics of the flow. It is of
interest to investigate whether it can be applied when
the wind information is available over only part of the
globe.

In the case of wind data restricted to a limited area,
the partitioning depends on the boundary conditions
chosen for the streamfunction and velocity potential.

A nonvanishing windfield which is both nondivergent

and irrotational is possible, so the rotational and di-
vergent components are not uniquely defined. More-
over, they are not necessarily orthogonal. In section 2
we derive the wind components for several simple
boundary conditions and calculate the corresponding
kinetic energy components. The dependence of the
wind components on the boundary formulation is seen,
and the nonorthogonality results in a nonpositive-def-
inite cross-term in the expression for kinetic energy.
If wind components in a limited domain are to be
useful for diagnostic analysis, they must be defined in
an unambiguous way. A perspicuous partitioning into
three parts, the rotational, divergent and harmonic
components, is proposed in section 3. The rotational
and divergent parts are specified by assuming that the
corresponding stream function and velocity potential
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vanish on the boundary. They are orthogonal, and
minimize the rotational and divergent components of
kinetic energy. The residual wind, the harmonic com-
ponent, is both irrotational and nondivergent and may
be described by either a streamfunction or a velocity
potential (which are harmonic conjugates). The har-
monic component is orthogonal to the other two com-
ponents and gives a three-way splitting of wind and
kinetic energy. On a global domain the harmonic com-
ponent vanishes and the partitioning reduces to the
usual two-component form.

Two-component partitioning
a. Theory

We assume a horizontal windfield V given on a do-
main Q bounded by 8. The vorticity { and divergence
6 are defined by

t=k:-VXV, §=V-.V. (1)

By means of the Helmholtz theorem (Morse and Fesh-
bach 1953), the windfield may be expressed in terms
of a stream function ¢ and velocity potential X

V=V,+V,=Vx+kxVy. (2)

From (1) and (2) we immediately . obtain Poisson
equations for X and ¥

Vix =5, V¥ =1t (3a,b)

Boundary conditions on 9% are required to determine
the solutions. From (2), the wind components normal
and tangential to the boundary are

oy 9x
—_— + .
ds oOn

Vo=mn-V =— (4a)
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where s and n are tangent and normal unit vectors and
s and » are distances along and normal to the boundary
(measured anticlockwise and outward, respectively).

If the definitions (1) are integrated over Q and (4)
used, the following compatibility conditions result from
Gauss’ and Stokes’ theorems:

ff&da= V,,ds=f %ds
Q a0 a0 On

ff {da = Vyds=f %ds.
o an aa On

If Neumann boundary conditions are used for X or ¢,
they must be consistent with (5a) or (5b). .

In Lynch (1988, Appendix ) it was shown that either
X or ¥ could assume arbitrary values on dQ and that
consequently the irrotational and nondivergent com-
ponents of V are not uniquely defined. Sangster (1960)
proposed the following method of solution: [1] set Xz
= 0 (subscript B denotes the value on dQ) and solve
(3a) for x; [2] integrate (4a) around 9% to get ¥5; [3]
solve (3b) for ¢. Only the normal component of the
boundary wind is used.

Vi=s-V (4b)

(5a)

(5b)

TABLE 1. Eight variations of Sangster’s method for computing X
and y. The first boundary condition assumes a constant value or
gradient. The second is derived from (4a) or (4b). The first four
versions use the normal boundary wind, the last four use the tangential
component. Dirichlet and Neumann conditions are denoted by D
and N respectively. v, and v, are defined in (6a) and (6b).

First Type of
Version  boundary first and
number condition Second boundary condition second B.C.
'S ax .
1 x=0 =f(——V,,)ds DD
'S0 on
X 4
2 = Tn V= (ya— V,)ds ND
on
a .
3 V=0 —: =V, DN
W ax oy
4 == ey, 4+ 2
on_ 7 on Vot ds NN
5 xX=0 ﬂ =V DN
on
ax » _ [, 9
6 on- 7" 6n_(s 6s) NN
'S
= X = V, — —|d.
7m0 [(+- oo
'S
8 %=7s X=f(V:—'Y:)dS ND
on 'so
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We will consider eight variations of Sangster’s
method to derive the X and ¢ fields. The details of
these variations are collected in Table 1. The first four
versions use V, on 39, the last four use V;. For each
of these groups a simple boundary condition (the first
B.C.)is assumed for X or ¥ and this may be a Dirichlet
or Neumann condition. Either (3a) or (3b) is solved
using this condition on dQ. The Dirichlet conditions
may be homogeneous, but the Neumann conditions
must satisfy (5a) or (5b). The simplest way to ensure
this is to assume constant gradient conditions

ax 1

Zoy,==0 v, a0 6
on =7 ” ds on (6a)
or
W 1
Fey==9¢ Q b
an Ys=71 ” ds onﬂ (6b)

where L is the length of the boundary.

Once the first boundary condition is fixed and a
Poisson equation solved, the second condition is de-
rived from either (4a) (for versions 1 to 4) or (4b) (for
versions 5 to 8). For versions 3 to 6 Neumann con-
ditions follow immediately from (4a) or (4b). For the
remaining versions (4a) or (4b) is integrated from an
arbitrary point so on 9%, to give ¥(s) or X(s) on the
boundary. The remaining Poisson equation may then
be solved.

We define the kinetic energy (assuming density p

= 1) by
Ks”1V~Vda
Q2

and its divergent and rotational components by

KxEJ‘J‘%Vx'dea; K¢EJI%V¢‘dea~
Q Q

The kinetic energy may be expanded, using (2):
K=Kx+K¢,+ff Vx‘dea.
Q

If the domain  is limited, the cross-product term will
generally not vanish. Using (2) again and Stokes’ theo-
rem we may write it as

de« = ff Vx' V.,da
Q

I
8
<
2|
&

(7

I
|
e~
=
|&
&

This term may be positive or negative, and the kinetic
energy does not partition into divergent and rotational
components. For the odd-numbered versions in Table
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1 either X3 = 0 or Y = 0, the cross-term vanishes and
the partitioning of K is well defined.

A condition for minimizing the energy components
is easily derived (Pedersen 1971). If we consider a given
X field, it may be split into two parts X = X; + X, such
that

V2X1 = 6, X, = 0 ondQ

V%, =0, X,=2Xg ondQ

where X is the value assumed by X on Q. The diver-
gent kinetic energy also splits into two parts, Ky = K|
+ K;, where

K, = ff —l-VX1‘VX1da; K, = ff lVXZ'VXZda
o2 22

(by means of the divergence theorem the term involv-
ing VX, VX, is easily shown to vanish). Since both
parts are positive-definite and K| is independent of the
boundary values, K will be a minimum for Xz con-
stant, in which case K, = 0. In a similar way a constant
boundary condition for ¥ minimizes K. In either of
these cases, which include the odd-numbered versions
in Table 1, the partitioning of kinetic energy is mean-
ingful, since the cress-term K, vanishes.

Conditions for minimizing energy components may
also be derived using a variational formulation. For
example, using (2) we may write the divergent kinetic
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energy as the difference, in a 1east4square:; sense, be-
tween the total wind and the nondivergent component:

KX=IL%(V—V¢)2da.

If Y is chosen to minimize this functional, the resulting
Euler-Lagrange equation is (3b) and the natural
boundary condition is the Neumann condition

W _

on s
(Lanczos 1966). It follows from (4b) that X must be
constant on the boundary; taking this arbitrary constant
to be zero, we get solution version 5. An analogous
argument for minimizing K, leads to version 3. This
variational approach has been used by Davies-Jones
(1988) to obtain a stream function which is most like
a pressure field at a fixed level.

b. Numerical example ~

To illustrate the dependence of the wind components
on the boundary conditions for X and y, we calculate
these components for the eight simple boundary for-
mulations displayed in Table 1. The wind field is the
(uninitialized ) 500 hPa analysis for 0000 UTC, 22 No-
vember 1982. The region £, covering Western Europe,
the North Atlantic and Eastern Canada, can be seen
in Lynch (1988; Fig. 1). Data are given on a rotated

)Iw 3;&
{ — X —X % — X
N 1 |
%-O-Y---- QY@ Oy,
1 3
%, @l xls—u— —AE—U—AE—U— —xls @ )lt"
T -
Yoy v Y
i{xb % u e O 1
! I |
% \ll \VIC \|/ Wb
] = ]
hO %y O %
oo , [ ]
Y, \I/ L A AR I CLE \l/ Y
1{xh © ¥—u— —W—u—x—u—  —x O %,
1 t
@Y @O @Y |
0 xb _xn \,v_,xh —‘xb —_—
0 1 i M

FIG. 1. Discrete grid used for versions 1 to 4. The normal boundary windg are
encircled and outermost values of X and y are denoted by subscript 4. For versions
5 to 8 the relative positions of the ¥ and X boundaries are reversed and tangential

winds on the X-boundary are used.

?
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FiG. 2. Arialysis for 0000 UTC, 22 November 1982. (A) 500 hPa geopotential (gpm ). (B) wind direction and speed (m s™*).
(C), (D) eastward and northward wind components. (E), (F) vorticity and divergence (107¢s').

latitude/longitude grid (whose north pole is at the geo-
graphical position 30°N, 150°E), bounded by (Aw,
Ag) = (—40°, +38°) and (¢s, dn) = (—25°, +25°).
The grid spacing is A\ = A¢ = 2.0° and 40 X 26 points
cover the area.

The discrete grid used to solve the Poisson equations
for versions 1 to 4 is shown in Fig. 1. The X-boundary
is outside the y-boundary, and normal winds on the
latter are used. For versions 5 to 8 the relative positions

of the ¢ and X boundaries are reversed and tangential
winds on the X-boundary are used.

The 500 hPa geopotential and wind are shown in
Figs. 2A and B (for simplicity and clarity the fields are
plotted on a rectangle without background maps). The
dominant feature is a meandering westerly jetstream
crossing the region. Wind components # and v are
shown in Figs. 2C and 2D, and the corresponding vor-
ticity and divergence in Figs. 2E and 2F. The vorticity
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dominates, with a mean absolute value of 2.7 X 107>
s™!, but the divergence is significant with mean absolute
value 0f 9.9 X 1075 s~! and maxima concentrated along
the jetstream.

In Fig. 3 we show the stream function (left panels)
and velocity potential (right panels) for the first four
versions (which use V,, on dQ). The  fields are similar
for versions 1 and 2 (Figs. 3A and 3C) which assume
Xg = 0 and (dx/3dn)p = +v,, respectively (v, = 0.27 for
the given data). The X field is small in both cases. When
¥ = 0 (version 3) the ¢ field is radically altered, as is
the X field (Figs. 3E and 3F). There is no cross-bound-
ary rotational flow in this case, so the westerly jet must
project mainly onto the divergent component. In ver-
sion 4 (Figs. 3G and 3H) ¢ is similar to versions 1 and
2, except near the boundaries where it is forced to take
the specified normal gradient (8y/dn)z = «,. For the
given data vy, = 6.46, forcing changes in the north-
westerly flow at the eastern boundary, and elsewhere.
These changes are also reflected in the X field near the
boundaries.

The fields resulting from versions 5 to 8 were also
calculated. The X boundary was moved in one grid
step and the tangential wind component was used there.
These fields are not shown, since they do not differ
markedly from those already presented: version 5 gives
results very similar to version 1, version 6 is similar to
version 2, and so on,

The energy components were calculated for all eight
versions and are given in Table 2. The values were
normalized by the area and are in units m? s~2. The
total kinetic energy differs for the first and last four
versions, since the areas differ slightly. The rotational
component K, dominates and is fairly constant except
for versions 3 and 7, where Y5 = 0 reduces it consid-
erably. The divergent component is quite sensitive to
the boundary conditions. Most noteworthy is the cross-
term K, which is nonzero for the even-numbered ver-
sions (Neumann first B.C.) and assumes both negative
and positive values. Obviously, it has no physical
meaning as a kinetic energy component, and this may
be seen as a drawback to using these versions.

3. Three-component partitioning
a. Theory

We have seen that the partitioning into irrotational
and nondivergent components is not unique for a lim-
ited domain. In this section we show how to isolate the
harmonic component and simultaneously minimize
the divergent and rotational components of kinetic en-
ergy.

We define a minimal streamfunction ¥ and veloc1ty
potential X, both vanishing on 8%, by

VY =¢, Y=
VX = 8,

(8a)

Xg = 0. (8b)
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TABLE 2. Components of the kinetic energy resulting from a two
way splitting of the wind field by solution versions 1 to 8 (units m?
572, values normalized by total area).

Version Ky K, Kyy Kot
1 441 185.03 0.0 189.44
2 6.27 182.32 0.85 189.44
3 79.17 110.27 0.0 189.44
4 20.58 185.82 —16.96 189.44
5 4.10 188.12 0.0 192.22
6 4.71 194.85 -7.33 192.22
7 74.17 118.05 0.0 192.22
8 17.88 187.55 —-13.21 192.22

The resulting rotational and divergent kinetic energy
components take minimal values. With this convention
we can refer to the wind components

V,=kXVy, V,=Vx (9)
as the rotational and divergent components, avoiding
the circumlocutions “nondivergent” and “irrota-
tional.” The harmonic component Vo which is both
curl-free and divergence-free is defined by the residual

V0=V—V=V~(VX+V¢).

Since V, is both irrotational and solenoidal, it can be
expressed by either a stream function or a velocity po-
tential

Vo =k X Vi = VXo. (10)

Both ¥, and X, satisfy the Laplace equation. They are
harmonic conjugates, real and imaginary parts of the
complex potential w = Xp — iy, which satisfy the Cau-
chy-Riemann equations (Carrier et al. 1966)

VX() -k X Vl[/o =0
and form two orthogonal systems of isopleths:
VXO . V\bo =0

[these properties follow trivially by using (10) in the
expressions (Vo — V) and (V, X Vy)]. They are cal-
culated by specifying the normal or tangentlal com-
ponent of V, on dQ. If the normal component is used,
solution version 1 of Table 1 gives ¥, and version 3
gives Xq. If the tangential wind is used, version 5 gives
Yo and version 7 gives Xg.

Let the windfield be partitioned into three compo-
nents

V=Vo+V,+V, (11)

as defined above. The (minimal) divergent and rota-
tional kinetic energy are given by

Kngf%vx'vxda; Ie\bsff%v\l"v\l/da (12)
Q Q
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and the harmonic component is defined by

Kossff%Vo-Voda. (13)
Q

It is straightforward to show that the components of
(11) are pairwise orthogonal, so that no cross-terms
occur and the kinetic energy splits into three parts

K=K+ Ky + K,. (14)

(R) _,‘l_‘n (solid) Xg (deshed)

Y
~—— A
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S

~ s

cuge
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These components can be interpreted in a physically
meaningful way. If V, is combined with V,, the par-
titioning is the same as that obtained using versions 1
or 5 (i.e., those with X3 = 0). If V, is combined instead
with V,, the result is the same as that of versions 3 or
7 (with ¥ = 0).

If the domain Q extends to the entire sphere, both
Xo and ¥, must be constant, since no other harmonic
function is globally nonsingular ( Carrier et al. 1966).
Thus V, and K, vanish and the partitioning of the wind
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FIG. 4. (A) Harmonic streamfunction and velocity potential ( 10 m™? s~2). (B) harmonic wind field (m s™). )
(C), (D) rotational component: streamfunction and wind. (E), (F) divergent component: velocity potential and wind.
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and kinetic energy reduce to the usual two-component
form.

An alternative partitioning of the wind into three
components was described by Batchelor (1967, §2.4).
He defined a streamfunction and velocity potential in
terms of integrals involving the fundamental solution
1/r (in two dimensions it would be logr) of the Poisson
equation. This is appropriate for an unbounded do-
main, in which case 1/r is a Green’s function for the
problem (Morse and Feshbach 1953, Chap. 7). It is
not so natural for a bounded domain, where the
Green’s function depends on the form of the boundary
conditions. The rotational and divergent components
determined in this way are not in general orthogonal
and the kinetic energy cannot be partitioned into pos-
itive-definite components. The residual harmonic
component is determined by specifying the normal
boundary wind (Batchelor 1967, §2.7).

If we denote by G(r, ry) the Green’s function for
the Poisson equation (3a) which vanishes on 9%, the
general solution for Dirichlet conditions can be written
as the sum of an areal and a contour integral:

d
X(r) = fJ; 6(1’0)G(r3 ro)d'l'o + »{99 XB(S) :9_3— as.
(15)

A similar expression holds for y. This is the natural
analogue of Batchelor’s solution for a limited domain.
If Xg = 0, the solution given by the areal integral is
identical to that obtained by solution version 1 above.
Since Xz and Y are not determined by the data, some
such assumption must be introduced.

It is unclear whether the particular partitioning cho-
sen by Batchelor has any characteristics which make
it attractive for a limited area. The alternative proposed
in this section has the advantage that the components
are orthogonal, the splitting of kinetic energy is well
defined and the minimal rotational and divergent
components are isolated.

b. Numerical example

The windfield already considered was partitioned
into three components as described above. The result-
ing fields are plotted in Fig. 4. The harmonic stream
function y, and velocity potential X, are shown in Fig.
4A. The isopleths can be seen to form two orthogonal
families. The dominant structure of the harmonic wind
(Fig. 4B) is a fairly uniform westerly flow of strength
about 10 m s~!. There are smaller features associated
with strong cross-boundary flow in the original wind
(Fig. 2B). This normal flow cannot project onto the
rotational component because of the assumptlon Vs
= 0. The stream function ¢ is shown in Fig. 4C and
the rotational wind V, in Fig. 4D. The meandering
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TABLE 3. Components of the kinetic energy resulting from a three
way splitting of the wind field, in units m? s™2 (and as a percent of
the total).

V, on 8Q Vs on 3Q
Ko 74.76 (39.5%) 70.07 (36.5%)
IQ 110.27(58.2%) 118.05 (61.4%)
K, 4.41(2.3%) 4.10 (2.1%)
Kiotal 189.44 (100.0%) 192.22 (100.0%)

jetstream projects mainly onto V,p, its overall strength
lessened by the extraction of the harmonic corﬁponent
The y field is identical to that obtained in version 3
above (Fig. 3E). The velocity potentlal X, in Fig. 4E,
is the same as that calculated in version 1 (Fig. 3B).
The corresponding divergent wind V, is generally
weak, with maxima of about 10 m s™! at the jet core.

The results in Fig. 4 were obtained using the normal
boundary wind. The corresponding results using V; are
not shown, as they do not differ in any essential way
from those already discussed. However, the kinetic en-
ergy components for both cases are given in Table 3.
The rotational component X, dominates, but a sizeable
part (about 40% ) of the energy resides in the harmonic
component Kp. The divergent wind contains only
about 2% of the total. K, , and K, are respectively the
minimum values of rotational and divergent kinetic
energy. The quantltles (K‘, + Ky) and (K + Ko) rep-
resent their maximum possible values. The harmonic
component Kj is that part of the energy which cannot
be unambiguously designated as rotational or divergent
without knowledge of the global winds.

4. Summary

The partitioning of a global windfield into rotational
and divergent components is a useful diagnostic tech-
nique. For data on a limited domain these components
are not uniquely defined. Several possible boundary
conditions have been tried and the corresponding winds
and energy components calculated. Constant Neu-
mann conditions on either X or ¥ (even-numbered
versions in Table 1) result in a nonvanishing cross-
term K, in the kinetic energy, which is physically un-
satisfactory. Constant Dirichlet conditions (odd-num-
bered versions) are free from this drawback.

In middle and high latitudes the stream function
(deduced from global data) is highly correlated with
the geopotential field. This similarity can be reflected
in a two-way partitioning on a limited domain by min-
imizing the difference between the rotational and geo-
strophic winds (Davies-Jones 1988). In the tropics,
such an approach is inappropriate.

A partitioning into three components allows us to
minimize the rotational and divergent kinetic energy
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and to isolate that component of the flow which is both
irrotational and nondivergent. The rotational, diver-
gent and harmonic components are defined in an un-
ambiguous way. Such a partitioning may be advanta-
geous for diagnostic analysis of the wind on a limited
domain.

Acknowledgments. 1 would like to thank the follow-
ing for helpful comments: Charles Doswell, Robert
Davies-Jones, Jim Logue and the referees.

REFERENCES

)
Batchelor, G. K., 1967: An Introduction to Fluid Dynamics. Cam-
bridge University Press, 615 pp.

MONTHLY WEATHER REVIEW

VOLUMF 117

Carrier, G. F., M. Krook and C. E. Pearson, 1966: Functions of a
Complex Variable; Theory and Technique. McGraw-Hill, 438
pp.

Davies-Jones, R., 1988: On the formulation of surface geostrophic
stream function. Mon. Wea. Rev., 116, 1824-1826.

Lanczos, C., 1966: The Variational Principles of Mechanics. Uni-
versity of Toronto Press, 375 pp.

Lynch, P., 1988: Deducing the wind from vorticity and divergence.
Mon. Wea. Rev., 116, 86-93.

Morse, P. M., and H. Feshbach, 1953: Methods of Theoretical Physics.
McGraw-Hill, 997 pp.

Pedersen, K., 1971: Balanced systems of equations for the atmospheric
motion. Geofys. Publ., 28(2), 1-12.

Sangster, W. E., 1960: A method of representing the horizontal pres-
sure force without reduction of pressures to sea level, J. Meteor.,
17, 166-176.



