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Stepwise Precession of the Resonant Swinging Spring∗

Darryl D. Holm† and Peter Lynch‡

Abstract. The swinging spring, or elastic pendulum, has a 2:1:1 resonance arising at cubic order in its approxi-
mate Lagrangian. The corresponding modulation equations are the well-known three-wave equations
that also apply, for example, in laser-matter interaction in a cavity. We use Hamiltonian reduction
and pattern evocation techniques to derive a formula that describes the characteristic feature of this
system’s dynamics, namely, the stepwise precession of its azimuthal angle.
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1. Introduction.

1.1. Problem statement, approach, and summary of results. The elastic pendulum or
swinging spring is a simple mechanical system that exhibits complex dynamics. It consists
of a heavy mass suspended from a fixed point by a light spring which can stretch but not
bend, moving under gravity. We investigate the 2:1:1 resonance dynamics of this system in
three dimensions and study its characteristic feature—the regular stepwise precession of its
azimuthal angle.
When the Lagrangian is approximated to cubic order and averaged over the fast dynamics,

the resulting modulation equations have three independent constants of motion and are com-
pletely integrable. These modulation equations are identical to the three-wave equations for
resonant triad interactions in fluids and plasmas and in laser-matter interaction. We reduce
the system to a form amenable to analytical solution and show how the full solution may
be reconstructed. We examine the geometry of the solutions in phase-space and develop a
number of simple qualitative descriptions of the motion.
We compare solutions of the exact and modulation equations and show that they are

remarkably similar. A characteristic stepwise precession occurs as the motion cycles between
quasi-vertical and quasi-horizontal. That is, during each quasi-vertical phase, the azimuth of
the swing plane precesses by a constant angular increment. This stepwise azimuthal precession
occurs in bursts when the motion is nearly vertical. By transforming to nonuniformly rotating
coordinates and assuming a geometric constraint (essentially the method of pattern evocation),
we find a formula for the rotation of the swing plane. This formula gives a highly accurate
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description of the stepwise precession of the azimuthal angle of the motion. It is a striking
result that the stepwise precession can be described so accurately by assuming a geometric
constraint to hold, and this invites investigation on a deeper level.

We restrict our attention in this study to the pure 2:1:1 resonance. However, the analysis
may easily be generalized to allow for frequency ratios which are not precisely in resonance.
As the amplitude of the motion increases, energy exchange may be expected to occur for
increasingly larger detuning of the frequencies. Aničin, Davidović, and Babović [4] investigated
how the parameter range for energy exchange depends on the amplitude. Ultimately, the
assumptions underlying perturbation analysis break down, and chaotic behavior is found.
Georgiou [9] has studied the global geometric structure of the dynamics of the planar elastic
pendulum. The phenomenon of precession has been noticed in a number of other contexts
[26, 9].

1.2. History of the problem. The first comprehensive analysis of the elastic pendulum
appeared in [28]. These authors were inspired by the analogy between this system and the
Fermi resonance of a carbon-dioxide molecule. We make connections in this paper with other
physical systems of current interest. For example, we show that the modulation equations for
the averaged motion of the swinging spring may be transformed into the equations for three-
wave interactions that appear in analyzing fluid and plasma systems and in laser-matter
interaction. These three complex equations are also identical to the Maxwell–Schrödinger
envelope equations for the interaction between radiation and a two-level resonant medium
in a microwave cavity [11]. The three-wave equations also govern the envelope dynamics of
light-waves in an inhomogeneous material [8, 2, 3]. For the special case where the Hamiltonian
takes the value zero, the equations reduce to Euler’s equations for a freely rotating rigid body.
Finally, the equations are also equivalent to a complex (unforced and undamped) version of
the Lorenz [17] three-component model, which has been the subject of many studies [27].
Thus the simple spring pendulum, which was first studied to provide a classical analogue to
the quantum phenomenon of Fermi resonance, now provides a concrete mechanical system
which simulates a wide range of physical phenomena.

All of the previous studies of the spring pendulum known to us have considered motion in
two dimensions. To our knowledge, only Cayton [6] discussed three-dimensional solutions and
observed the curious rotation of the swing plane between successive cycles when the horizontal
energy is maximum. This particular aspect of the behavior of the swinging spring in three
dimensions is its most striking difference from two-dimensional motions. Suppose the system
is excited initially near its vertical oscillation mode. Since purely vertical motion is unstable,
horizontal motion soon develops. The horizontal oscillations grow to a maximum and then
subside again. An alternating cycle of quasi-vertical and quasi-horizontal oscillations recurs
indefinitely. Seen from above, during each horizontal excursion of several oscillations, the pro-
jected motion is approximately elliptical. Experimentally and numerically one observes that
between any two successive horizontal excursions the orientation of the projected ellipse ro-
tates by the same angle, thereby causing a stepwise precession of the swing plane. In principle,
the precession angle between successive horizontal excursions can be deduced from the com-
plete solution of the integrable envelope equations. We seek a simple approximate expression
for the precession of the swing plane in terms of the solution of the reduced dynamics.
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Figure 2.1. Schematic diagram of the elastic pendulum, or swinging spring. Cartesian coordinates centered
at the position of equilibrium are used.

Lynch [19] found a particular solution for the rate of precession of the swing plane by
using the method of multiple time scales in rotating coordinates and introducing a certain
angular solution Ansatz. We recover Lynch’s particular solution among a family of other
solutions for the swing plane precession rate. This family is obtained via the method of aver-
aged Lagrangians by seeking solutions of the modulation equations that satisfy a geometrical
constraint of being “instantaneously elliptical.” We apply the method of pattern evocation
in shape space [21, 22]. Using this process, one identifies patterns by viewing the dynamics
relative to rotating frames with certain critical angular velocities. Our numerical integrations
show that the solution resulting from this geometrical postulate estimates the precession of
the swing plane with surprisingly high accuracy.

2. Equations of motion. The physical system under investigation is an elastic pendulum,
or swinging spring, consisting of a heavy mass suspended from a fixed point by a light spring
which can stretch but not bend, moving under gravity, g. We assume an unstretched length
�0, a length � at equilibrium, a spring constant k, and a unit mass m = 1. The corresponding
Lagrangian, approximated to cubic order in the amplitudes, is

L =
1

2

(
ẋ2 + ẏ2 + ż2

)
− 1
2

(
ω2
R(x

2 + y2) + ω2
Zz

2
)
+
1

2
λ(x2 + y2)z ,(2.1)
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where x, y, and z are Cartesian coordinates centered at the point of equilibrium, ωR =
√
g/� is

the frequency of linear pendular motion, ωZ =
√
k/m is the frequency of its elastic oscillations,

and λ = �0ω
2
Z/�

2. The system is illustrated schematically in Figure 2.1. The Euler–Lagrange
equations of motion may be written

ẍ+ ω2
Rx = λxz ,(2.2)

ÿ + ω2
Ry = λyz ,(2.3)

z̈ + ω2
Zz =

1

2
λ(x2 + y2) .(2.4)

There are two constants of the motion, the total energy E and the angular momentum h given
by

E =
1

2

(
ẋ2 + ẏ2 + ż2

)
+
1

2

(
ω2
R(x

2 + y2) + ω2
Zz

2
)
− 1
2
λ(x2 + y2)z , h = (xẏ − yẋ) .

The system is not integrable. Its chaotic motions have been studied by many authors (see,
e.g., references in [20]). Previous studies have considered the two-dimensional case, for which
the angular momentum h vanishes.
We confine our attention to the resonant case ωZ = 2ωR and apply the averaged La-

grangian technique [30]. The solution of (2.2)–(2.4) is assumed to be of the form

x = �[a0(t) exp(iωRt)] ,(2.5)

y = �[b0(t) exp(iωRt)] ,(2.6)

z = �[c0(t) exp(2iωRt)] .(2.7)

(The zero-subscripts in a0, b0, and c0 are introduced to distinguish from the variables a, b, and
c in a rotating frame, introduced below.) The coefficients a0(t), b0(t), and c0(t) are assumed
to vary on a time scale which is much longer than the time scale of the oscillations, τ = 1/ωR.
The Lagrangian is averaged over time τ to give

〈L〉 = 1
2
ωR

[�{ȧ0a
∗
0 + ḃ0b

∗
0 + 2ċ0c

∗
0}+ �{κ(a2

0 + b
2
0)c

∗
0}
]
,

where κ = λ/(4ωR). We regard the quantities a0, b0, c0 as generalized coordinates. The
averaged Lagrangian equations of motion are then

iȧ0 = κa∗0c0 ,(2.8)

iḃ0 = κb∗0c0 ,(2.9)

iċ0 =
1

4
κ(a2

0 + b
2
0).(2.10)

Equations (2.8)–(2.10) are the complex versions of (68)–(73) in [19]. These were derived using
the method of multiple time-scale analysis, where the small parameter ε for the analysis was
the amplitude of the dependent variables so that terms quadratic in the unknowns were second
order whereas linear terms were first order in ε. Thus the averaged Lagrangian technique yields
results completely equivalent to the results using more standard averaging theory.
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We now transform variables as follows:

A =
1

2
κ(a0 + ib0) , B =

1

2
κ(a0 − ib0) , C = κc0 .

Consequently, the equations of motion take the form

iȦ = B∗C ,(2.11)

iḂ = CA∗ ,(2.12)

iĊ = AB .(2.13)

These three complex equations are well known as the three-wave interaction equations, which
govern quadratic wave resonance in fluids and plasmas.

The three-wave interaction equations (2.11)–(2.13) may be written in canonical form with
Hamiltonian H = �(ABC∗) and Poisson brackets {A,A∗} = {B,B∗} = {C,C∗} = −2i as

iȦ = i{A,H} = 2∂H/∂A∗ ,(2.14)

iḂ = i{B,H} = 2∂H/∂B∗ ,(2.15)

iĊ = i{C,H} = 2∂H/∂C∗ .(2.16)

These equations conserve the following three quantities:

H =
1

2
(ABC∗ +A∗B∗C) = �(ABC∗) ,(2.17)

N = |A|2 + |B|2 + 2|C|2 ,(2.18)

J = |A|2 − |B|2 .(2.19)

Thus the modulation equations for the swinging spring are transformed into the three-wave
equations, which are known to be completely integrable. See [2] for references to the three-
wave equations and an extensive elaboration of their properties as a paradigm for Hamiltonian
reduction.

The following positive-definite combinations of N and J are physically significant:

N+ ≡ 1
2
(N + J) = |A|2 + |C|2 , N− ≡ 1

2
(N − J) = |B|2 + |C|2 .

These combinations are known as the Manley–Rowe relations in the extensive literature about
three-wave interactions. The quantities H, N+, and N− provide three independent constants
of the motion.
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2.1. A brief history of the three-wave equations.
Fluids and plasmas. The three-wave equations model the nonlinear dynamics of the am-

plitudes of three waves in fluids or plasmas [5]. The equations result from a perturbation
analysis of the barotropic potential vorticity equation

∂

∂t
[∇2ψ − Fψ] +

(
∂ψ

∂x

∂∇2ψ

∂y
− ∂ψ

∂y

∂∇2ψ

∂x

)
+ β

∂ψ

∂x
= 0(2.20)

(see, e.g., [25] for theory and notation). This equation is equivalent to the Hasegawa–Mima
equation describing drift-waves in an inhomogeneous plasma in a magnetic field [10]. Longuet-
Higgins and Gill [16] examined the interactions between planetary Rossby waves in the atmo-
sphere and derived detailed conditions for three-wave resonance. The correspondence between
Rossby waves in the atmosphere and drift-waves in plasma has been thoroughly explored in
[15]. Resonant wave-triad interactions play an essential role in the generation of turbulence
and in determining the statistics of the power spectrum. Both energy and enstrophy are
conserved in fluid systems governed by the potential vorticity equation (2.20).

Laser-matter interaction. Equations (2.11)–(2.13) are also equivalent to the Maxwell–
Schrödinger envelope equations for the interaction between radiation and a two-level resonant
medium in a microwave cavity. Holm and Kovačič [11] show that perturbations of this system
lead to homoclinic chaos, but we shall not explore that issue here. Wersinger, Finn, and Ott
[29] used a forced and damped version of the three-wave equations to study instability satu-
ration by nonlinear mode coupling and found irregular solutions indicating the presence of a
strange attractor. See also [1, 12, 13, 24] for more detailed studies of the perturbed three-wave
system.

Nonlinear optics. The three-wave system also describes the dynamics of the envelopes of
light-waves interacting quadratically in nonlinear material. The system has been examined
in a series of recent papers [2, 3, 18] using a geometrical approach which allowed the re-
duced dynamics for the wave intensities to be represented as motion on a closed surface in
three dimensions—the three-wave surface. Information about the corresponding reconstruc-
tion phases was recovered using the theory of connections on principal bundles.
In the special case when H = 0, the system (2.11)–(2.13) reduces to three real equations.

Let
A = iX1 exp(iφ1) , B = iX2 exp(iφ2) , C = iX3 exp(i(φ1 + φ2)),

where X1, X2, and X3 are real and the phases φ1 and φ2 are constants. The modulation
equations become

Ẋ1 = −X2X3 , Ẋ2 = −X3X1 , Ẋ3 = +X1X2 .(2.21)

We note that these equations are rescaled versions of the Euler equations for the rotation of
a free rigid body. The dynamics in this special case is expressible as motion on R3, namely,

Ẋ =
1

8
∇J ×∇N = 1

4
∇N+ ×∇N− .(2.22)

Considering the constancy of J and N , we can describe a trajectory of the motion as an
intersection between a hyperbolic cylinder (J constant; see (2.19)) and an oblate spheroid (N
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constant; see (2.18)). Equation (2.22) provides an alternative description. Here we have used
the freedom in the R3 Poisson bracket exploited by [7] to represent the equations of motion
on the intersection of two orthogonal circular cylinders, the level surfaces of the Manley–Rowe
quantities, N+ and N−. The invariance of the trajectories means that while the level surfaces
of J and N differ from those of N+ and N−, their intersections are precisely the same. For
this particular value of H = 0, the motion may be further reduced by expressing it in the
coordinates lying on one of these two cylinders. See [14] for the corresponding transformation
of rigid body motion into pendular motion. See [2, 3, 7, 23] for discussions of geometric phases
in this situation.

2.2. Reduction of the system and reconstruction of the solution. To reduce the system
for H �= 0, we employ a further canonical transformation introduced in [11]. The goal is to
encapsulate complete information about the Hamiltonian in a single variable Z by using the
invariants of the motion. Once Z is found, the Manley–Rowe relations yield the remaining
variables. We set

A = |A| exp(iξ) ,(2.23)

B = |B| exp(iη) ,(2.24)

C = Z exp(i(ξ + η)) .(2.25)

This transformation is canonical—it preserves the symplectic form

dA ∧ dA∗ + dB ∧ dB∗ + dC ∧ dC∗ = dZ ∧ dZ∗ .

In these variables, the Hamiltonian is a function of only Z and Z∗:

H =
1

2
(Z + Z∗) ·

√
N+ − |Z|2 ·

√
N− − |Z|2 .

The Poisson bracket is {Z,Z∗} = −2i, and the canonical equations reduce to

iŻ = i{Z,H} = 2 ∂H
∂Z∗ .

This provides the slow dynamics of both the amplitude and phase of Z = |Z|eiζ .
The amplitude |Z| = |C| is obtained in closed form in terms of Jacobi elliptic functions as

the solution of

(
dQ
dτ

)2

=
[Q3 − 2Q2 + (1− J 2)Q+ 2E] ,(2.26)

where Q = 2|Z|2/N , J = J/N , E = −4H2/N3 and τ =
√
2Nt. This is equivalent to (75)

in [19]. (An explicit expression for the solution in terms of elliptic functions is given in that
paper.) Once |Z| is known, |A| and |B| follow immediately from the Manley–Rowe relations:

|A| =
√
N+ − |Z|2 , |B| =

√
N− − |Z|2 .
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Figure 3.1. C is the plane of critical points, A = 0 = B. The vertical axis is R =
√

|A|2 + |B|2. The
vertical plane contains heteroclinic semiellipses passing from c0 to −c0.

The phases ξ and η may now be determined. Using the three-wave equations (2.11)–(2.13)
together with (2.23)–(2.25), one finds

ξ̇ = − H

|A|2 , η̇ = − H

|B|2(2.27)

so that ξ and η can be obtained by quadratures. Finally, the phase ζ of Z is determined
unambiguously by

d|Z|2
dt
= −2H tan ζ and H = |A||B||Z| cos ζ .(2.28)

Hence we can now reconstruct the full solution as

A = |A| exp(iξ) , B = |B| exp(iη) , C = |Z| exp (i(ξ + η + ζ)) .
3. Phase portraits. Consider the plane C in phase-space defined by A = B = 0. This is

a plane of unstable equilibrium points, representing purely vertical oscillations of the spring.
The Hamiltonian vanishes identically on this plane, as does the angular momentum J . Each
point c0 in C has a heteroclinic orbit linking it to its antipodal point −c0. Thus the plane C of
critical points is connected to itself by heteroclinic orbits. In Figure 3.1, the horizontal plane
is C, and the vertical plane contains heteroclinic orbits from c0 to −c0. The vertical axis is
R =

√|A|2 + |B|2. Since N = R2 + 2|C|2 is constant, each heteroclinic orbit is a semiellipse.
Motion starting on one of these semiellipses will move toward an end-point, taking infinite
time to reach it.
In Figure 3.2 taken from [11], we present another view of the trajectories for J = 0. The

Hamiltonian is

H =
1

2
(Z + Z∗) ·

(
1

2
N − |Z|2

)
.
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1

2Z

Z

Figure 3.2. Phase portrait in the Z-plane for J = 0. The motion is confined within the circle |Z|2 = 1
2
N .

The segment of the imaginary axis within this circle is the homoclinic orbit.

Accessible points lie on or within the circle |Z|2 = N/2. For H = 0, the trajectory is the
segment of the imaginary axis within the circle. This is the homoclinic orbit. For H �= 0, we
solve for the imaginary part of Z = Z1 + iZ2,

Z2 = ±
√
−Z2

1 +
1

2
N − (H/Z1).

This allows us to plot the trajectories for the range of H for which real solutions exist. There
are two equilibrium points, at Z = ±√N/6, corresponding to solutions for which there is no
exchange of energy between the vertical and horizontal components. These are the cup-like
and cap-like solutions first discussed by Vitt and Gorelik [28].

3.1. Geometry of the motion for fixed J . The vertical amplitude is governed by (2.26),
which we write as

1

2

(
dQ
dτ

)2

+ V(Q) = E ,(3.1)

with the potential V(Q) given by

V(Q) = −1
2

[
Q3 − 2Q2 + (1− J 2)Q

]
.(3.2)

We note that V(Q) has three zeros: Q = 0, Q = 1−J , and Q = 1+ J . Equation (3.1) is an
energy equation for a particle of unit mass, with position Q and energy E , moving in a cubic
potential field V(Q). In Figure 3.3 we plot Q̇, given by (3.1), against Q for the cases J = 0
(left panel) and J = 0.25 (right panel), for a range of values of E . Each curve represents the
projection onto the reduced phase-space of the trajectory of the modulation envelope. The
centers are relative equilibria, corresponding to the elliptic-parabolic solutions of [19], which
are generalizations of the cup-like and cap-like solutions of [28]. The case when J = 0 includes
the homoclinic trajectory, for which H = 0.



THE SWINGING SPRING 53

0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
J=0.00

0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
J=0.25

Q
.

Q
.

Q Q

Figure 3.3. Plots of Q̇ versus Q for J = 0 and J = 0.25 for a range of values
E ∈ {−0.0635,−0.0529,−0.0423,−0.0317,−0.0212,−0.0106, 0}.
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Figure 3.4. Tricorn surface, upon which motion takes place when H = 0. The coordinates are J , Q, Q̇.
The motion takes place on the intersections of this surface with a plane of constant J (such planes are indicated
by the stripes). This surface has three singular points. The homoclinic point is marked H.P.

3.2. Geometry of the motion for H = 0. For arbitrary J , the H = 0 motions are on
a surface in the space with coordinates (Q, Q̇, J ). This surface is depicted in Figure 3.4. It
has three singular points (i.e., it is equivalent to a sphere with three pinches), and its shape
is similar to a tricorn hat. The motion takes place on an intersection of this surface with a
plane of constant J . There are three equilibrium solutions: that with J = 0 (marked H.P. in
Figure 3.4) is at the extremity of the homoclinic trajectory and corresponds to purely vertical
oscillatory motion; those with J = ±1 correspond to purely horizontal motion, clockwise or
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Figure 3.5. Surfaces of revolution about the Q-axis for J ∈ {0.0, 0.1, 0.2, 0.3}. The radius for given Q is
given by the square-root of the cubic −V(Q). For given J , the motion takes place on the intersection of the
corresponding surface with a plane of constant X.

anticlockwise, with the spring tracing out a cone. The purely vertical motion is unstable; the
conical motions are stable. (Perturbations about conical motion were investigated by Lynch
[19].) The dynamics on the tricorn is similar to the motion of a free rigid body. The three
singular points correspond to the steady states of rotation about the three principal axes.

3.3. Three-wave surfaces. There is another way to depict the motion in reduced phase-
space. Let us consider a reduced phase-space with x- and y-axes X = �{ABC∗} and Y =
�{ABC∗} and z-axis Q = 2|Z|2/N . We note that X ≡ H. It follows from (2.17)–(2.19) that

X2 + Y 2 = |A|2|B|2|C|2 = 1
4
|Z|2[(2|Z|2 −N)2 − J2] .

We define X = (2/N3/2)X and Y = (2/N3/2)Y and can write

X 2 + Y2 =
1

2

[
Q3 − 2Q2 + (1− J 2)Q

]
= −V(Q)(3.3)
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where V is as defined in (3.2). We note that X 2 = −E and Y2 = 1
2(dQ/dτ)2. Equation (3.3)

implies that the motion takes place on a surface of revolution about the Q-axis. The radius
for a given value of Q is the square-root of the cubic −V(Q). The physically assessable region
is 0 ≤ Q ≤ 1−|J |. Several such surfaces (for J ∈ {0.0, 0.1, 0.2, 0.3}) are shown in Figure 3.5.
Since X 2 = H2 = 4H2/N3, the motion for given J takes place on the intersection of the
corresponding surface of revolution with a plane of constant X .
We can relate the tricorn surface to the surface of revolution. The former is appropriate

for H = 0; the H �= 0 case is represented by trajectories inside this surface. If we slice the
tricorn surface in a plane of fixed J , we get a set of closed trajectories—the outside one for
H = 0 and the others for H �= 0. (The cases J = 0 and J = 0.25 are plotted in Figure 3.3.) If
we now distort the J -section into a cup-like surface, by taking H as a vertical coordinate and
plotting each trajectory at a height depending on its H value, we get half of a closed surface.
Each trajectory is selected by an H-plane section. Alteration of the sign of H corresponds to
reversal of time. Completing the surface by reflection in the plane H = 0 gives the surface
generated by rotating the root-cubic graph

√−V(Q) about the Q-axis, i.e., the surface given
by (3.3). These surfaces are what Alber et al. [2] call the three-wave surfaces. They foliate
the volume contained within the surface for J = 0.

4. The precession of the swing plane. The characteristic feature of the behavior of
the physical spring is its stepwise precession, which we shall now analyze. As the oscillations
change from horizontal to vertical and back again, it is observed that each successive horizontal
excursion departs in a different direction. The only reference to this phenomenon of which
we are aware, prior to Lynch [19], is Cayton [6]. Cayton briefly discussed three-dimensional
solutions and mentioned the precession of the swing plane but did not analyze its dynamics.
Surprisingly, the characteristic stepwise precession of the swinging spring has been largely
ignored, although it is immediately obvious upon observation of a physical elastic pendulum
with ωZ ≈ 2ωR. Indeed, this precession is almost impossible to suppress experimentally when
the initial motion is close to vertical.

4.1. Qualitative description. If the horizontal projection of the motion is an ellipse of high
eccentricity, the motion is approximately planar. We call the vertical plane through the major
axis of this ellipse the swing plane. When the initial oscillations are quasi-vertical, the motion
gradually develops into an essentially horizontal swinging motion. This horizontal swinging
does not persist but soon passes again into nearly vertical springing oscillations similar to the
initial motion. Subsequently, a horizontal swing again develops but now in a different direction.
The stepwise precession of this exchange between springing and swinging motion continues
indefinitely in the absence of dissipation and is the characteristic experimental feature of the
swinging spring. We shall seek an expression for the change in direction of the swing plane
from one horizontal excursion to the next.

A full knowledge of the solutions of the three equations of motion would of course suffice
to determine the swing plane at each moment in time. In [19] the equations were expressed
in rotating coordinates, and a particular solution for the slow rotation of the swing plane was
posited as a function of the vertical amplitude |C| by assuming a certain angular relation.
Following this assumption, the angle of the swing plane could be expressed as an integral
involving elliptic functions.
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4.2. Pattern evocation in shape space. We shall approach the precession problem using
pattern evocation in shape space. Pattern evocation seeks a relative equilibrium (in shape
space) in which a phase relationship between the variables (the shape) is preserved [21, 22].
We track the pattern by moving to a nonuniformly rotating frame in which the orientation of
the shape is fixed. This is a generalization of the idea of tracking a satellite orbit by evoking
constancy of the areal velocity required to conserve angular momentum.
Our particular geometric assumption is that the angle between the complex amplitudes a

and b remains constant in an appropriately rotating frame. Writing these amplitudes in vector
form as a = (|a| cosα, |a| sinα, 0), b = (|b| cosβ, |b| sinβ, 0) and taking k = (0, 0, 1) yield

J = −k · a × b = |ab| sin(α− β) , a · b = |ab| cos(α− β) .

Consequently, our geometric pattern evocation assumption that the phase difference α − β
remains constant immediately implies that |ab| is also constant. The conservation of angular
momentum J means that the area of the parallelogram formed by the vectors a and b is
constant. The requirement of constant α − β imposes an additional geometric constraint on
the possible shape of the orbits. For example, when α − β = π/2 (mod π), the orbits are
elliptical.

4.3. Modulation equations in rotating coordinates. We shall transform to rotating co-
ordinates and seek an expression for the (slow) rotation frequency Ω(t) that allows us to
estimate the stepwise precession of the swinging spring by imposing the pattern evocation
constraint that α− β remains constant.
In a rotating frame, the approximate Lagrangian (2.1) at cubic order in the coordinate

displacements becomes, with x = (x, y, z),

L =
1

2
|ẋ+Ω(t) ẑ × x|2 − 1

2

(
ω2
R(x

2 + y2) + ω2
Zz

2
)
+
1

2
λ(x2 + y2)z .(4.1)

Now x, y, and z are Cartesian coordinates centered at the point of equilibrium in the rotating
frame, ωR =

√
g/� is the frequency of linear pendular motion, ωZ =

√
k/m is the frequency

of its elastic oscillations, and λ = �0ω
2
Z/�

2. The corresponding Euler–Lagrange equations of
motion (2.2)–(2.4) may be written in rotating coordinates as

ẍ− Ω̇(t)y − 2Ω(t)ẏ + (ω2
R − Ω2(t)

)
x = λxz ,(4.2)

ÿ + Ω̇(t)x+ 2Ω(t)ẋ+
(
ω2
R − Ω2(t)

)
y = λyz ,(4.3)

z̈ + ω2
Zz =

1

2
λ(x2 + y2) .(4.4)

The vertical component of angular momentum is

h = ẑ · x × (ẋ+Ω(t) ẑ × x
)
= (xẏ − ẋy) + Ω(t)(x2 + y2)

and is a constant of the motion for these equations. However, upon Legendre-transforming,
one finds that the time-dependent Hamiltonian satisfies

Ḣ = − Ω̇(t)h .
Thus, perhaps not unexpectedly, exact conservation of energy breaks down, to the extent that
the rotation frequency is nonuniform.
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4.4. Averaged Lagrangian and modulation equations for slow rotation. The modulation
equations in axes rotating with angular velocity Ω(t) about the vertical are obtained in the
resonant case ωZ = 2ωR by applying the averaged Lagrangian technique [30]. Accordingly,
the solution of (4.2)–(4.4) is assumed to be of the form

x = �[a(t) exp(iωRt)] ,(4.5)

y = �[b(t) exp(iωRt)] ,(4.6)

z = �[c(t) exp(2iωRt)] .(4.7)

(Note that subscript zeros are dropped for these modulation amplitudes in the rotating frame.)
In these variables, the averaged Lagrangian corresponding to (4.1) may be written as

〈L〉 = 1
2
ωR[�{ȧa∗ + ḃb∗ + 2ċc∗}+ �{κ(a2 + b2)c∗}+ 2Ω�{ab∗}]

+
1

2
Ω� [a∗ḃ− ȧ∗b] +

1

4
Ω2
[
|a|2 + |b|2

]
.(4.8)

On assuming that the rotation frequency is sufficiently slow that Ω/ωR � 1, we shall neglect all
terms in the averaged Lagrangian (4.8) that are not multiplied by ωR. In this approximation
of slow rotation, the averaged Lagrangian is given by the simpler expression,

〈L〉 = 1
2
ωR[�{ȧa∗ + ḃb∗ + 2ċc∗}+ �{κ(a2 + b2)c∗}+ 2ΩJ ] .(4.9)

Here J = �{ab∗} is the angular momentum, a conserved quantity at this level of approximation
and formally identical to the expression in nonrotating coordinates. The Euler–Lagrange
modulation equations in this approximation may be written as

iȧ = κa∗c+ iΩb ,(4.10)

iḃ = κb∗c− iΩa ,(4.11)

iċ =
1

4
κ(a2 + b2) .(4.12)

We may also write these leading order equations in Hamiltonian form. When 〈H〉 is defined
by

〈H〉 = �{κ(a2 + b2)c∗}+ 2Ω�{ab∗} ,
with coordinates (a, b, c), conjugate momenta (a∗, b∗, 2c∗), and Poisson brackets defined by
{a, a∗} = {b, b∗} = 2{c, c∗} = −i, the modulation equations (4.10)–(4.12) are expressible in
canonical Hamiltonian form as

iȧ = i{a, 〈H〉} = ∂〈H〉
∂a∗

, iḃ = i{b, 〈H〉} = ∂〈H〉
∂b∗

, iċ = i{c, 〈H〉} = ∂〈H〉
∂ 2c∗

.

The three constants of the motion for these equations are

H0 =
1

2
κ[(a2 + b2)c∗ + (a∗2 + b∗2)c] = �{κ(a2 + b2)c∗} ,(4.13)

N = |a|2 + |b|2 + 4|c|2 ,(4.14)

J = (ab∗ − a∗b)/2i = �{ab∗} .(4.15)
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We now introduce the pattern evocation assumption that α − β is constant, which also
implies that |ab| is constant. Noting that

|ab|2 = (�{ab∗})2 + (�{ab∗})2

and that the second term is just J2 implies constancy of �{ab∗}. Using (4.10) and (4.11), it
follows that

d

dt
|ab|2 = −2�{ab∗}

[
2κ�{abc∗}+Ω(|a|2 − |b|2)

]
= 0 .(4.16)

Either factor may vanish so there appears to be two possibilities for the solution. We first
assume that the factor in square brackets in (4.16) vanishes. This implies

Ω = − 2κ�{abc
∗}

|a|2 − |b|2 = − 2κ|abc| sin(α+ β − γ)

|a|2 − |b|2(4.17)

(where c = |c|eiγ). The precession angle Θ = ∫ t0 Ω(t′)dt′ can be ascertained by integrating Ω
over the time interval of the motion. In the special case when α − β = π

2 (modπ), one finds
by using the constants of motion that

Ω =
2κJH0

(N − 4|c|2)2 − 4J2
.(4.18)

This case also corresponds to the vanishing of the first factor in (4.16) so that �{ab∗} = 0
and a and b are 90◦ out of phase. This was the Ansatz introduced by Lynch [19]. He showed
that, in this case, the rotation rate is given by (4.18). We now see that the result in [19] is a
special case of the general result (4.17). In this special case, Ω can be computed as soon as
|c| is known. We will examine this case numerically below.

4.5. The instantaneous ellipse. In order to define precisely the precession angle, we
introduce an ellipse which approximates the horizontal projection of the trajectory of the
pendulum. Recall that the full solution for the horizontal components is

x = �{a exp(iωRt)} = |a| cos(ωRt+ α) , y = �{b exp(iωRt)} = |b| cos(ωRt+ β) ,

where α and β are the phases of a and b. The amplitudes and phases are assumed to vary
slowly. If they are regarded as constant over a period τ = 1/ωR of the fast motion, these
equations describe a central ellipse,

Px2 + 2Qxy +Ry2 = S,(4.19)

where P = |b|2, Q = −|ab| cos(α − β), R = |a|2, and S = J2. The area of the ellipse is
easily calculated and is found to have the constant value πJ . Its orientation is determined by
eliminating the cross-term in (4.19). This is achieved as usual by rotating the axes through
an angle θ, given by

tan 2θ =
2Q

P −R
=
2|ab| cos(α− β)

|a|2 − |b|2 .(4.20)
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The semiaxes of the ellipse are given by

A1 =
J√

P cos2 θ +Q sin 2θ +R sin2 θ
, A2 =

J√
P sin2 θ −Q sin 2θ +R cos2 θ

.(4.21)

The area is πA1A2 = πJ , and the eccentricity can be calculated immediately. In the case of
unmodulated motion, such as the elliptic-parabolic modes described in [19], the instantaneous
ellipse corresponds to the trajectory, which is a precessing ellipse. In general, it is only an
approximation to the trajectory, but we may define the orientation or azimuth at any time
to be the angle θ given by (4.20). This angle will be compared to the precession angle Θ
calculated by integrating (4.18) and shown to give almost identical results.

5. Numerical results. We examine the results of numerical integrations of the modulation
equations (2.8)–(2.10) and compare them to the solutions of the exact equations (2.2)–(2.4).
It will be seen that the modulation equations provide an excellent description of the envelope
of the rapidly varying solution of the full equations. We then compare the stepwise precession
angle predicted by a formula based on constancy of the angle α − β with the numerical
simulation of this quantity and show that the two values track each other essentially exactly.
The parameter values chosen for all numerical integrations are m = 1kg, � = 1m, g =

π2ms−2, and k = 4π2 kg s−2 so that ωR = π, ωZ = 2π, and the resonance condition ωZ = 2ωR

holds. The linear rotational mode has period τR = 2 s, and the vertical mode has period
τZ = 1 s. The initial conditions are set as follows:

(x0, y0, z0) = (0.006, 0, 0.012), (ẋ0, ẏ0, ż0) = (0, 0.00489, 0) .

(The value of ẏ0 was chosen to tune the precession angle to be an even fraction of 180
◦,

making the amplitudes, though not the phases, periodic.) The corresponding initial values
for the modulation equations (2.8)–(2.10) are given by

α0 = arctan

( −ẋ0

ωRx0

)
, β0 = arctan

( −ẏ0

ωRy0

)
, γ0 = arctan

( −ż0
2ωRz0

)
,

|a0| =
(

x0

cosα0

)
, |b0| = −

(
ẏ0

ωR sinβ0

)
, |c0| =

(
z0
cos γ0

)
,

giving the values (|a0|, |b0|, |c0|) = (0.006, 0.002, 0.012) and (α0, β0, γ0) = (0,−π/2, 0). The
constants of the motion take the following values:

H = 4.03× 10−7 , J = 9.34× 10−6 , N = 6.14× 10−4 .

The integration was extended over a period of 1000 seconds (i.e., 1000 vertical oscillations). As
a check on numerical accuracy, the changes in these quantities, which should remain constant,
were calculated, with the following results:(

HFinal

HInitial

)
= 100.04% ,

(
JFinal

JInitial

)
= 99.997% ,

(
NFinal

NInitial

)
= 100.00% .

We now directly compare the solutions of the “exact” equations (2.2)–(2.4) and the “ap-
proximate” or modulation equations (2.8)–(2.10). Once the modulation equations have been
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Figure 5.1. Horizontal projection of the solution for an integration of 1000 seconds. Left: Solution of the
“exact” equations. Right: Solution of the “approximate” equations.
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Figure 5.2. Vertical amplitude of the solution for the first modulation cycle (first 167 seconds). Left:
Solution of the “exact” equations. Right: Solution of the “approximate” equations.

solved for the envelope amplitudes and phases, the full approximate solution is given by
(2.5)–(2.7). We first consider the horizontal projection of the solution for the 1000-second in-
tegration. This is the period required for the solution to precess through approximately 180◦.
In Figure 5.1 (left panel) we plot x versus y for the exact solution. In Figure 5.1 (right panel)
we plot the corresponding solution from the modulation equations. It is clear that there is
great similarity between the two solutions; indeed, the two plots are indistinguishable. The
precession angle between horizontal excursions is close to 30◦. (The value of ẏ0 was chosen
to ensure this.) The modulation period is approximately 167 seconds; thus the instantaneous
ellipse rotates through six cycles and 180◦ in 1000 seconds.
The vertical structure of the solution is displayed in Figure 5.2, where z for the exact

solution (left panel) and �{c0(t) exp(2iωRt)} for the approximate solution (right panel) are
seen to be virtually identical. For clarity, the solutions are plotted only for the first modulation
cycle of 167 seconds. The character of the solution—rapid oscillations with a slowly varying
amplitude envelope—is clear from the figure. The vertical amplitude is close to zero when
horizontal excursions are at their peak. This is confirmed in Figure 5.3 (left panel), where the
horizontal modulation amplitude S =

√|a|2 + |b|2 and vertical modulation amplitude C = |c|
are plotted against time.
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Figure 5.3. Left panel: Envelope amplitude of the approximate solution. S =
√

|a|2 + |b|2 (solid line) and
C = |c| (dashed line). Right panel: Square of the eccentricity (solid line) and angular velocity Ω (scaled by 50)
of the instantaneous ellipse (dashed line).

In Figure 5.3 (right panel) we plot the squared eccentricity e2 = (1 − A2
min/A

2
maj) of the

envelope of the horizontal projection of the approximate solution, where the semiaxes Amaj and
Amin are calculated from (4.21). The eccentricity is close to unity for most of the integration.
Horizontal excursions of the pendulum occur during this time. For short periods, when the
horizontal amplitude is minimum, the value of e drops significantly (solid line). During this
time, the angular velocity, calculated as the rate of change of the azimuth given by (4.20),
reaches a maximum (dashed line). Thus the precession occurs in bursts near the times when
the vertical amplitude is maximum and the horizontal amplitude is minimum.
The stepwise nature of the precession is clearly illustrated in Figure 5.4. The azimuthal

angle ϑ of the numerical solution of the exact equations may be calculated by fitting a central
conic to every three consecutive points on the trajectory. Assuming a solution of the form

P̃ x2 + 2Q̃xy + R̃y2 = 1

and requiring that the three points lie on this curve, we obtain three equations for the coef-
ficients (P̃ , Q̃, R̃). From these, the azimuth ϑ and the semiaxes are obtained from equations
analogous to (4.20) and (4.21). This is compared in Figure 5.4 to the corresponding value θ
resulting from integration of the modulation equations. It is noteworthy that ϑ and θ remain
quasi-constant for most of the modulation cycle, changing rapidly only over short intervals
around the times when C is maximum and S is minimum. The advances in phase are very
similar for the exact and approximate solutions. However, there are small differences: θ − ϑ
is also plotted in Figure 5.4 (dotted line). This sensitive quantity reaches its maximum value
of 4.35◦ at the end of the integration.
Comparing Figures 5.3 (left panel) and 5.4, it is clear that the azimuthal angle remains

close to a constant value during horizontal excursions (when S is large) and changes rapidly
when the vertical oscillation amplitude is close to a maximum and the energy of the hori-
zontal component is small. Thus the stepwise precession takes place in sudden bursts when
the motion of the system is quasi-vertical. The variations of the azimuth appear to occur
symmetrically about the times of vertical energy maxima.
The azimuthal change between successive horizontal excursions is very close to 30◦ for both
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Figure 5.4. Azimuth angle (in degrees) for the “exact” solution (ϑ, solid line) and the “approximate”
solution (θ, dashed line). The difference θ − ϑ is plotted as a dotted line. The azimuth Θ resulting from
integration of (4.18) (not plotted) is indistinguishable from the values θ of the approximate solution.

exact and approximate solutions. We also calculated the angle Θ resulting from an integration
of (4.18). The graphs of θ and Θ (not plotted) are indistinguishable. The maximum difference
|θ − Θ| was only 0.0063◦. This is remarkable: the value Θ derived from (4.18) involves
an assumption that α − β is constant in a particular rotating frame. The azimuth θ from
the modulation equations makes no such assumption, yet the two solutions are practically
identical. This confirms that the pattern evocation assumption which yields the result (4.18)
is sound.

Numerous other integrations of the exact and modulation equations were also carried out.
They confirm that the stepwise precession of the azimuthal angle is a distinct characteristic
of the swinging spring. This is also in complete agreement with simple experiments with a
physical pendulum, where the periodic exchange of energy between horizontal and vertical
and the precession of the swing plane between horizontal excursions are the main observable
properties of the motion.

The perturbation methods used in this study are valid only for small values of the system
energy. However, the numerical solution of the exact equations gives insight into the dynamics
for larger amplitudes. Although we do not consider chaotic motion here, the transition from
regular to chaotic motion of the planar elastic pendulum has been studied elsewhere (see [20]
and references therein).
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European J. Phys., 14 (1993), pp. 132–135.

[5] F. P. Bretherton, Resonant interactions between waves: The case of discrete oscillations, J. Fluid
Mech., 20 (1964), pp. 457–479.

[6] Th. E. Cayton, The laboratory spring-mass oscillator: An example of parametric instability, Amer. J.
Phys., 45 (1977), pp. 723–732.

[7] D. David and D. D. Holm, Multiple Lie-Poisson structures, reductions, and geometric phases for the
Maxwell-Bloch traveling-wave equations, J. Nonlinear Sci., 2 (1992), pp. 241–262.

[8] D. David, D. D. Holm, and M. Tratnick, Hamiltonian chaos in nonlinear optical polarization dynam-
ics, Phys. Rep., 187 (1990), pp. 281–367.

[9] I. T. Georgiou, On the global geometric structure of the dynamics of the elastic pendulum, Nonlinear
Dynam., 18 (1999), pp. 51–68.

[10] A. Hasegawa and K. Mima, Pseudo-three-dimensional turbulence in magnetized nonuniform plasmas,
Phys. Fluids, 21 (1977), pp. 87–92.
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