RESONANT ROSSBY
WAVE TRIADS AND
THE SWINGING SPRING

BY PETER LYNCH

A mathematical equivalence with a simple mechanical system sheds light

on the dynamics of resonant Rossby waves in the atmosphere.

ossby waves are solutions of simplified forms of

the equations governing the dynamics of the at-

mosphere and oceans. They serve as archetypes
for the sinuous large-scale motions of the midlatitude
troposphere. They are horizontal transverse waves
with large values of vorticity and with divergence that
is negligible by comparison. Their most characteris-
tic feature is that they move westward relative to the
zonal atmospheric flow. This strange lopsidedness, or
chirality, is a result of the earth’s rotation, which
breaks the symmetry of east-west reflection. The
Rossby wave was the topic chosen by Professor
George Platzman for his Symons Memorial Lecture
to the Royal Meteorological Society, and an exposi-
tory review has appeared (Platzman 1968). Several
interesting articles on Rossby have appeared recently
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in BAMS: in particular, see Phillips (1998) and Lewis
(1992). The dynamics of Rossby waves are discussed
in considerable depth in Pedlosky (1987).!

The full equations governing atmospheric dynam-
ics are overly complicated and include, in addition to
the meteorologically significant motions, physical
phenomena that have little import on the weather.
Thus, the full spectrum of sound waves is embraced
within the set of solutions. Gravity waves are another
class of solutions of the full system, which, for many
purposes, can be regarded as a noisy nuisance. One
of the key advances enabling the application of quan-
titative methods to weather forecasting was the devel-
opment of simplified systems of equations, from
which irrelevant or unimportant solutions were elimi-
nated or filtered out. And one of the outstanding con-
tributions to this development was the seminal paper
of Charney (1948).

Charney (Fig. 1) introduced scale analysis to ex-
amine and compare the relative sizes of the various
terms in the equations of motion. He recognized that
the dominant motion is approximately hydrostatic,
geostrophic, adiabatic, and horizonal; that the grav-

! A more detailed historical discussion is contained in the Web
supplement to this paper (http://dx.doi.org/10.1 | 75/BAMS-84-
5-Lynch).
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ity waves are of secondary importance; and that only
the vortical waves—the rotational waves with large
vorticity and small divergence—are of importance for
modeling and prediction of large-scale weather phe-
nomena. By elimination of divergence and systematic
use of the geostrophic relationship, he reduced the
system to a single equation for a single variable, the
potential vorticity. The conservation of quasigeo-
strophic potential vorticity is the fundamental prin-
ciple governing large-scale atmospheric dynamics.
The historical development of quasigeostrophic
theory has been described by Phillips (1990). For bio-
graphical information on

beta-plane approximation mentioned above. Under
the assumptions of quasigeostrophic theory, the dy-
namics reduce to an equation expressing the conser-
vation of potential vorticity. It is a single partial dif-
ferential equation for the streamfunction,

dy VY dy aV'y
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Charney, and his most important
publications, see Lindzen et al.
(1990).

The simplest context for the
study of Rossby waves is a shal-
low layer of incompressible fluid
on a rotating earth. The geom-
etry is greatly simplified by ig-
noring the effect of sphericity
except for one crucial respect: we
allow for the change in the verti-
cal component of the earth’s ro-
tation with latitude. This is called
the beta-plane approximation: it
was introduced by Rossby et al. in
their ground-breaking paper of
1939 in which the Rossby wave
formula first appeared. Rossby
had the intuitive genius to isolate
the factors that were essential for
the existence of these waves, and to elucidate their dy-
namics by studying them in a model of maximum
simplicity. A fuller discussion of the development of
Rossby wave theory is presented in Platzman’s (1968)
Symons Lecture, (loc. cit.), and also in a recent sci-
entific history of tides (Cartwright 1999).

CONSERVATION OF POTENTIAL VOR-
TICITY. In this expository paper, mathematical de-
tails are omitted. However, the key equations are in-
cluded here to facilitate and clarify the discussion. The
notation is generally consistent with meteorological
convention. A more complete mathematical presen-
tation may be found in the expanded version of the
paper (electronic supplement available online at
http://dx.doi.org/10.1 175/BAMS-84-5-Lynch; hereaf-
ter ES).

We shall consider a shallow layer of incompress-
ible fluid on a rotating planet. We can remove the
complications of spherical geometry by means of the
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Fic. |. Jule Charney (1917-81), from
the cover of Eos, 57, Aug 1976 (copy-
right Nora Rosenbaum).

The variation with latitude of the
planetary vorticity due to the
earth’s rotation, the fSterm, is the
crucial factor for the existence of
Rossby wave solutions. The pa-
rameter Fis equal to 1/L %, where
L, is the Rossby radius of defor-
mation.

It is easy to find linear wave-
like solutions of (1). Such solu-
tions exist provided that the fre-
quency o satisfies a simple
dispersion relationship:

kB

o=- —,
K*+0*+F @)

This is the celebrated Rossby
wave formula. In fact, Rossby as-
sumed conservation of absolute
vorticity and obtained a simpler
form of the dispersion relationship. He also allowed
for a mean zonal velocity that Doppler shifts the wave
solution. A detailed discussion of these solutions is
presented in Pedlosky (1987). We note only that for
these waves the zonal phase speed is always negative,
which means that they always travel toward the west.
As long as we neglect the nonlinear terms, we can su-
perimpose a number of Rossby wave solutions with
differing wavenumbers and frequencies. Each com-
ponent will travel at a different rate, and each will
evolve independently of its fellow travelers.
Nonlinear effects vanish for a single Rossby wave,
because the isolines of vorticity are parallel to the
streamlines, so that the gradient of vorticity is perpen-
dicular to the velocity and the advection, the term in
(1) enclosed in braces, vanishes. However, if more
than one component is present, the velocity of one
component advects the vorticity of another, and the
components are no longer independent but interact
through the nonlinear term in (1). Suppose, we start



with just two components. They will interact with
each other to produce a third component whose
wavenumber and frequency are the sums of their
wavenumbers and frequencies. The third component
will in turn interact with the first two, producing fur-
ther components. In this sense, a pure Rossby wave
is an unstable solution; inevitable small perturbations
will have projections onto other components, and
these will interact nonlinearly with the primary wave
to produce still further components. Eventually, the
solution will be transformed out of all recognition.

It is remarkable that Rossby waves have been “re-
discovered” in a completely different physical con-
text—that of instabilities in a magnetically confined
plasma. Hasegawa and Mima (1977) investigated
wave motions of an inhomogeneous plasma and de-
rived an equation, which is mathematically identical
to (1). Their wave solutions, called drift waves, are dy-
namically equivalent to Rossby waves. The quantity
corresponding to the variation of the ambient vortic-
ity in a fluid (the beta parameter) is the variation of
the background plasma density. The correspondence
between Rossby waves in the atmosphere and drift
waves in plasmas has been thoroughly explored by
Horton and Hasegawa (1994).

When considering the meteorological origins of
(1), plasma physicists have adopted the name
Charney’s equation (e.g., Horton and Hasegawa 1994)
or the Charney-Obukhov equation (e.g., Nezlin and
Snezhkin 1993). In the plasma context it is called the
Hasegawa-Mima equation (Hasegawa and Mima
1977). Charney (1948) was first to present a system-
atic derivation based on scale analysis and to clarify
the precise conditions for its validity. Obukhov (1949)
derived an equation of essentially the same form [he
omitted the beta term in his analysis, but was aware
of its importance for planetary-scale motions; see
Phillips et al. (1960)]. However, the equation was
known before the publications of Charney and
Obukhov and was used by other workers, most nota-
bly by Rossby. Thus, we feel it is inappropriate to fol-
low the practice in plasma physics, so we will continue
to refer to (1) by its “dynamical” title, the quasigeo-
strophic barotropic potential vorticity equation.

A more appropriate equation to bear Charney’s
name is the three-dimensional quasigeostrophic
quasi-potential vorticity equation. This was first de-
rived by Charney (1948), and was presented later in
a more elegant formulation by Charney and Stern
(1962). It may be written as
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[See Pedlosky (1987) for a derivation, discussion, and
applications of this equation.] Charney contributed
substantially to our understanding of atmospheric
dynamics by showing that for synoptic-scale three-
dimensional motions, the vertical velocity, which en-
ables the stretching of planetary vorticity filaments,
can be eliminated by means of the thermodynamic
equation, which leads to Eq. (3), a single equation for
a single unknown, the quasigeostrophic potential
vorticity.

RESONANT ROSSBY WAVE TRIADS. There
is a case of special interest in which two wave com-
ponents produce a third wave, such that its interac-
tion with each of them generates the other. In this case
the nonlinear interaction is essentially confined to
three components that exchange energy but do not
produce any further waves. These three waves are
called a resonant triad. But not just any three waves
will do; they must satisfy restrictive conditions on
their wavenumbers and frequencies. The
wavenumbers in each spatial direction must sum to
zero, so must the frequencies of the three components.
This guarantees that each pair of components inter-
acts nonlinearly to produce a total phase correspond-
ing to that of the third component, ensuring that
strong interaction between the waves occurs.

To study the dynamics of Rossby wave triads,
Pedlosky (1987) used a two-timing perturbation ap-
proach: he assumed that each component comprised
a sinusoidal oscillation with an amplitude, the enve-
lope amplitude, which varied slowly compared to
variations due to the movement of the wave. We re-
fer the interested reader to Pedlosky’s excellent text
for a full exposition. The Rossby wave combination
satisfies the complicated partial differential equation
(1). The three amplitudes of a resonant triad satisfy a
drastically simplified system of three ordinary differ-
ential equations. We assume that the wave compo-
nents are ordered so that the third component has an
intermediate horizontal scale. This is consistent with
arrangement in order of increasing frequency. After
some mathematical transformations (for details, see
ES) we obtain three equations governing the ampli-
tudes A, of the components:
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A =-AJA,,
A, =-AA, @)
AR =+A/A,,

where dots denote time derivatives and asterisks de-
note complex conjugates. These are the modulation
equations, that is, the equations for the envelope am-
plitudes. They are in the canonical form of the sys-
tem known as the three-wave equations (see, e.g.,
Holm and Lynch 2002).

With periodic boundary conditions, the solutions
of the barotropic potential vorticity equation (1) con-
serve not only the total energy, but also the potential
enstrophy, the square of the relative potential vortic-
ity. The conservation of these two quantities has a
profound influence on the character of the flow. For
a wave triad, the conservation of energy and
enstrophy has special significance. If the energy of the
wave with intermediate scale (the third component)
grows, both the smaller and larger waves must lose
energy. Similarly, the largest and smallest components
grow together at the expense of the intermediate one.
Thus, it is impossible for energy to be transferred only
to larger or smaller scales. These conditions put strong
constraints on the distribution of energy in the atmo-
sphere and are the primary reason why there is a pre-
ponderance of energy at large scales.

The triad solutions are based on an assumption of
small amplitudes, so that the effects of nonlinearity
act like perturbations of a predominantly linear wave
evolution. For larger amplitudes, further components
are generated by nonlinear interactions, which en-
ables a flux of energy to the largest scales. The very
nature of the flow changes completely as the energy
increases: mathematically, the equations are no longer
integrable and physically the motion is no longer
regular but becomes chaotic.

The conservation of energy and potential
enstrophy are properties not only of resonant triads,
but of the solutions of the complete equation (1) and,
indeed, of its three-dimensional generalization,
Charney’s equation (3). The consequences for the
energy spectrum of these constraints were investi-
gated by Fjortoft (1953) in the context of a
nonrotating, nondivergent barotropic fluid. He
showed that if a fraction of the energy flows into
smaller scales, then a greater fraction must flow into
larger scales. Platzman (1962) investigated the ana-
lytical dynamics of the spectral vorticity equation for
nondivergent motions on the sphere. He showed that,
with three components, concurrent energy changes
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in the components of smallest and largest scale are of
the same sign, and opposite in sign to that of the com-
ponent of intermediate scale. He pointed out that this
“spectral blocking” is a direct consequence of the ex-
istence of two spectral invariants. Following the work
of Kraichnan (1967), Fjertoft’s results were greatly
extended by Charney (1971), in a paper titled Geo-
strophic Turbulence. Charney showed that an energy
cascade to small scales was also precluded for three-
dimensional quasigeostrophic flow, and he deduced
a minus three power law for the energy spectrum.

Let us consider an initial distribution of energy
concentrated near a particular wavenumber. As the
flow evolves, the energy spectrum of the motion will
broaden. But the enstrophy constraint requires that
the mean wavenumber of the spectrum and the mean
frequency must decrease. In other words, the spatial
and temporal scales of the motion must increase with
time. At the same time, the enstropy is transferred to
smaller scales. This is in marked contrast to the char-
acter of fully three-dimensional turbulence, where the
energy cascades to smaller scales until frictional
mechanisms begin to act.

NUMERICAL EXAMPLE OF TRIAD RESO-
NANCE. In this section, numerical solutions of the
barotropic potential vorticity equation (1) will be pre-
sented. The initial conditions correspond to a super-
position of three Rossby wave components satistying
the conditions for resonance. We shall see that the
solutions display the characteristics of a resonant
triad, with a periodic interchange of energy between
the modes. We first note an important property of the
three-wave equations (4): if the amplitudes are scaled
by a constant value and the time is contracted by a
similar factor, the form of the equations is unchanged.
Thus, the period of the modulation envelop will vary
inversely with its amplitude. However, this scaling
property will be inherited by the full equation (1) only
as long as the modulation equations faithfully reflect
the envelope dynamics of the full solution. This is the
case as long as the perturbation procedure is valid, and
this in turn requires that the nonlinear term in (1) is
relatively small compared to the other terms. So, the
scale invariance should be observed for small-ampli-
tude waves, but may be expected to break down for
larger-sized waves.

The parameters chosen for the numerical experi-
ments are given in ES. The means of defining the
wavenumbers and frequencies so that the conditions
for resonance are obtained are discussed in Pedlosky
(1987). The wavenumbers of the three components
are given in Table 1of ES. The three-wave components



are plotted in Fig. 2, together
with the initial streamfunction,
which is a linear combination of
them. For illustration, the waves
are scaled to have unit ampli-
tude. We refer to wave 3 as the
primary component, because it
predominates at the initial time,
and to the other components as
secondary waves.

Equation (1) is solved by an
elementary numerical tech-
nique: the quantity whose time
derivative occurs in the equation
is stepped forward using a leap-
frog scheme, and the stream-
function is deduced by solving a
Helmbholtz equation with peri-
odic boundary conditions at
each time step. The numerical
scheme is designed to conserve
both energy and enstrophy.

To illustrate resonance in its
pure form, we choose the ampli-
tude to be very small. According
to the discussion above, this im-
plies a very long interaction
time. We show in Fig. 3 the evo-
lution of the coefficients of the
three components, obtained by
calculating the Fourier trans-
form of the streamfunction at
each time step. The periodic ex-
change of energy between the
components is clear. Waves 1
and 2 grow and decay together,
in antiphase with the third, or
primary, wave. The modulation
period is about 800 days,* with
six cycles over the 4800-day du-
ration of the integration.

In Fig. 4, we see the stream-
function valid at three different
times. At the initial time the
streamfunction is dominated by
the primary component, wave 3.
At the final time, the solution
looks very similar to that at the
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Fic. 2. Components of a resonant Rossby wave triad and the initial field con-
structed from them. All fields are scaled to have unit amplitude.
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FiG. 3. Variation with time (days) of the amplitudes of the three compo-
nents of the streamfunction.

2 Choosing a more realistic amplitude drastically reduces the  initial time (allowing for phase shifts due to the wave
modulation period, as seen in the section titled “Precessionand ~ motion). The system has gone through six full cycles

Predictability of Triads.”

at this time. One-quarter of the way through the in-
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Fic. 4. Streamfunction at 3 times during an integration of duration 4800
days. Left-hand panels show a perspective view and right-hand panels show
a plan view.

tegration (center panels) there is clearly a substantial
contribution from the other waves, consistent with the
values of the coefficients at this time (see Fig. 3). We
remark here that while the amplitudes are clearly
periodic, the phases need not return to their original
values at the end of each modulation cycle.

THE SWINGING SPRING. The elastic pendulum
or swinging spring is a simple mechanical system with
highly complex dynamics. It comprises a heavy mass
suspended from a fixed point by a light spring, which
can stretch but not bend, moving under gravity. The
equations of motion are easy to write down but, in
general, impossible to solve analytically. For finite
amplitudes, the motion of the system exhibits chaos,
and predictability is severely limited. For small am-
plitudes, perturbation techniques are valid, the sys-
tem is integrable, and approximate analytical solu-
tions can be found.

The linear normal modes of the system are of two
distinct types, a vertical or springing oscillation, in
which elasticity is the restoring force, and quasi-hori-
zontal swinging oscillations, in which the system acts
like a pendulum. When the frequencies of the spring-
ing and swinging modes are in the ratio 2:1, an inter-
esting nonlinear resonance phenomenon occurs in
which energy is transferred periodically back and
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t=0 forth between the springing and
swinging motions. The reso-
nance phenomenon was first
examined by Vitt and Gorelik
(1933), who were inspired by
the analogy between this system
and the Fermi resonance of a
carbon dioxide molecule.

Lynch (2002b) considered
the swinging spring as a simple
model of balance in the atmo-
sphere, assuming the frequency
of the elastic oscillations to be
much greater than that of the
pendular motions. He drew an
analogy between the elastic and
pendular modes of the spring
and the gravity and Rossby
modes of oscillation in the at-
mosphere. He showed that the
X dynamics of several phenomena
could be illustrated by the sys-
tem, for example, the nonlinear
interplay between low-fre-
quency Rossby waves and high-
frequency gravity waves, the
normal mode initialization of data to prevent spuri-
ous oscillations, the filtering of the equations to elimi-
nate the high-frequency solutions, the existence and
structure of a slow manifold, and the onset of chaos.
There are numerous references in Lynch (2002b) to
earlier work on the elastic pendulum.

In Lynch (2002a), the resonance of the spring was
studied. Asymptotic solutions were obtained, and an
expression was derived for the precession of the swing
plane. This was later generalized by Holm and Lynch
(2002) who used Hamiltonian reduction and pattern
evocation techniques to derive a formula for the
stepwise precession of the azimuthal angle. Holm and
Lynch discovered that the perturbation equations
describing the motion of the swinging spring could
be reduced to the three-wave equations; this is the key
result leading to the present work. The relevance of
the three-wave equations in a broad range of physi-
cal contexts was discussed by these authors.

t=T/4

t=T

EQUATIONS OF THE SPRING. The mechani-
cal system is illustrated schematically in Fig. 5. The
equations of motion are formulated in terms of Car-
tesian coordinates x, y, and z, centered at the point of
equilibrium. Expressions for the kinetic and poten-
tial energy are easily derived; the difference between
them is the Lagrangian. The Lagrange equations of



motion may then be written in the usual way (see, e.g.,
Synge and Griffith 1959); they provide three equations
for the three variables, x, y, and z. If we assume that
the amplitude of the motion is small, the solutions
may written in the form of pure sinusoidal oscilla-
tions. In this linear limit, there is no interaction be-
tween the oscillations in each direction. In general,
there are two constants of the motion, the energy and
the angular momentum about the vertical. Because the
system has 3 degrees of freedom and only two invari-
ants, it is not integrable. We must employ perturba-
tion techniques to obtain an approximate solution.

We confine attention to the resonant case where
the frequency of the vertical or elastic oscillations is
twice that of the horizontal or pendular motion. The
averaged Lagrangian technique is applied (see Holm
and Lynch 2002, for details); the solution is assumed
to be a rapidly varying sinusoidal oscillation with a
slowly varying amplitude (we made the same assump-
tion for the Rossby wave triad). If the Lagrangian is
averaged over the period of the rapid oscillations, ap-
proximate equations for the slowly varying envelop
amplitudes can be derived. After some transforma-
tions (the details of which may be found in ES), the
equations take the following form:

2
i

Z

A =-AJA,,
A, =—-AA, 5)
A, =+AA,.

But these are exactly the same as (4). Thus, the modu-
lation equations for the swinging spring are trans-
formed into the three-wave equations, mathematically
identical to the equations obtained above for resonant
Rossby triads. The three-wave equations conserve
three quantities: H, the Hamiltonian of the system; N,
the energy of the oscillations; and J, the angular mo-
mentum (see Holm and Lynch 2002). There are thus
three independent constants of the motion.

The three-wave equations model the nonlinear
dynamics of the amplitudes of three waves in fluids
or plasmas. Resonant wave-triad interactions play an
essential role in the generation of turbulence and in
determining the statistics of the power spectrum. We
have seen that energy and enstrophy are conserved for
a Rossby wave triad. Equation (5) is also equivalent
to the Maxwell-Schrodinger envelope equations for
the interaction between radiation and a two-level
resonant medium in a microwave cavity. The three-
wave system describes the dynamics of the envelopes
of light waves interacting quadratically in nonlinear
material, and of triplets of phonons, vibrations in crys-
tal lattices. Using a geometrical approach, the reduced
dynamics for the wave intensities may be represented
as motion on a closed surface in three dimensions—
the three-wave surface (see Holm and Lynch 2002, for
a fuller discussion of the three-wave system, and for
further references).

For the special case where the Hamiltonian takes
the value zero, the system (5) reduces to three real
equations equivalent to Euler’s equations for the ro-
tation of a free rigid body rotating about its center of
gravity (Synge and Griffith 1959). Thus, the simple
spring pendulum, which was first studied to provide
a classical analog to the quantum phenomenon of
Fermi resonance, provides a concrete mechanical sys-
tem, which simulates a wide range of physical phe-
nomena, in particular, the phenomenon of interest
here, the resonance of Rossby wave triads.

PRECESSION OF THE SWING PLANE. There
is a particular feature of the behavior of the physical
spring, which is fascinating to watch. When started
with almost vertical springing motion, the movement

gradually develops into an essentially horizontal
swinging motion. This does not persist, but is soon
replaced by springy oscillations similar to the initial

Fic. 5. The swinging spring: Cartesian coordinates are
used, with the origin at the point of stable equilibrium
of the bob.
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motion. Again a horizontal swing develops, but now
in a different direction. This variation between
springy and swingy motion continues indefinitely.
The change in direction of the swing plane from one
horizontal excursion to the next is difficult to predict;
the plane of swing precesses in a manner that is quite
sensitive to the initial conditions.’

NUMERICAL EXAMPLE OF SPRING PRE-
CESSION. To illustrate the nature of the modulated
motion, we present the results of some numerical in-
tegrations of the spring equations. The parameter
values are chosen so that the linear swinging mode has
a period of 2 s, and the springing mode has half this
period. The parameters and initial conditions may be
found in ES. In Fig. 6 we plot the solutions x, y, and z
obtained by integrating the equations numerically.
Also plotted (lower-right-hand panel) are the com-
ponents of energy, showing the periodic exchange be-
tween the horizontal and vertical components.
During the integration time of 150 s there are six hori-
zontal excursions, so the modulation period is about
25s.

* ATJava Applet illustrating the precession of the swinging spring
may be found online at www.maths.tcd.ie/~plynch/
SwingingSpring/SS_Home_Page.html.

Energy

The stepwise precession of the swinging spring will
now be illustrated. In Holm and Lynch (2002) the
concept of an instantaneous ellipse was introduced: at
any time, the spring trajectory can be approximated
by a central ellipse, and the rotation of its major axis
represents the precession of the amplitude envelope.
In Fig. 7 (upper panel) we plot the azimuthal angle
(in degrees) and magnitude of the major axis of the
ellipse (scaled to have a maximum value of 180). The
stepwise precession is clearly seen. In the lower panel,
we plot the horizontal projection of the position of the
bob and obtain a star-shaped pattern. The precession
angle between horizontal excursions is 30° (the ini-
tial values were tweaked to tune the precession angle
to an even fraction of 360°). Thus, the major axis
passes through 180° in 150 s.

PRECESSION AND PREDICTABILITY OF
TRIADS. Analogies between physical systems are a
powerful means of gaining understanding of abstruse
and complex phenomena from more familiar and
simple systems. When the equations describing the
systems are identical, more concrete conclusions can
be reached. Because the same equations apply to both
the spring and triad systems, the stepwise precession
of the spring must have a counterpart for triad inter-
actions. Expressions for the axes and azimuth of the
instantaneous ellipse in terms of the amplitudes of the
spring were given in Holm and
Lynch (2002). In terms of the
variables of the three-wave
equations, they are even sim-
pler. The semiaxis major A_ - is
the sum of the amplitudes of the
e two lowest-frequency triad
L components, and the azimuthal
angle @ is half of the difference
of their phases (see ES for de-
100 tails). The initial conditions for
the spring, which were used to
generate the solution shown in
Fig. 7, were transformed to ob-
tain corresponding initial con-
ditions for (1). The initial field
was then scaled to ensure that
the small-amplitude approxi-
mation was accurate (the ampli-
tude of the primary component
was set to 0.4 m).

The coefficients of the com-

FiG. 6. Solutions x, y, and z obtained by integrating the equations of motion
of the spring. Also plotted (lower-right-hand panel) are the components of
energy (yellow: horizontal; green: vertical; cyan: total).

612 | BAMS MAY 2003

ponents were saved and the ele-
ments of the instantaneous el-
lipse were calculated. The time
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FiG. 7. (top) Azimuth & (yellow) and horizontal energy
(cyan) of spring solution; (bottom) horizontal projec-
tion of spring solution, y vs x.

variation of @is similar to that found for the spring
(cf. Figs. 7 and 8), exhibiting a characteristic stepwise
precession. Figure 8 (lower panel) shows a polar plot
of A versus 6. We immediately see the starlike pat-
tern, similar to that found for the spring (Fig. 7). The
precession angle, the change in azimuth between suc-
cessive maxima of A_ , is again about 30°. This is re-
markable, and illustrates the value of the analogy.
Phase precession for Rossby wave triads has not been
noted before and is an example of the insight coming
from the mathematical equivalence of the two sys-
tems.

The precession has implications for the predict-
ability of atmospheric motion. A flow dominated by
a single Rossby wave may be unstable and, if so, will
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Azimuth; Energy in Waves 1 and 2

2000 2500 3000 3500 4000 4500

Fic. 8. (top) Azimuth 6§ of instantaneous ellipse (see
text) and energy of waves | and 2. (bottom) Polar
plot of Amj vs 6. The starlike pattern is similar to
that found for the spring (Fig. 7).

be rapidly distorted due to inevitable perturbations.
Triad resonance is the primary mechanism for this
breakdown. However, the resulting pattern is highly
sensitive to details of minute perturbations, which are
impossible to determine accurately. Drastically differ-
ent patterns can result from states, which are initially
very similar. To investigate this sensitivity for realis-
tic amplitudes, we consider a primary wave of ampli-
tude 60 m and secondary waves whose amplitude is
1% of this value, and integrate (1) over a period of 4
days. Figure 9 shows the initial and final fields for two
integrations; the initial fields differ only in the sign
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of the perturbation. Considering the upper panels of
Fig. 9 as two weather “analyses,” we would have to
regard them as practically identical (the perturbation
amplitude is only 1% of that of the primary wave). Yet,
the resulting “forecasts” in the two lower panels dif-
fer drastically. The center point is marked by a yel-
low plus sign. In one case (lower-left-hand panel), it
is close to a high pressure center (red); in the other
(lower-right-hand panel) it is close to a low (blue).
Thus, the forecasts from almost identical initial con-
ditions diverge significantly within a matter of a few
days. Because the three-wave equations are integrable,
this sensitivity cannot be described in the usual terms
of chaos (the solutions of these equations are regular).
We, therefore, have a chaoslike phenomenon in an
integrable system. Thus, predictability may be se-
verely limited even in systems that are not chaotic.
The task of forecasting Rossby wave breakdown
may be compared to that of trying to predict the emer-
gence of a growing perturbation in a baroclinically
unstable flow. Because the location of the perturba-
tion is unknown, the phase of the developing
baroclinic wave cannot be anticipated before it has
grown to a detectable amplitude. In the case of the
unstable Rossby wave, although accurate knowledge
of the primary wave phase is available, it is of no help

t=0

=T

t=0

=T

in estimating the phases of the growing perturbations
that soon dominate the flow. The forecaster’s task is
even harder than might have been imagined.

For realistic Rossby waves, the small-amplitude
approximation is invalid, and we would expect the
flow to become chaotic. The nature of the transition
from the integrable solutions of the three-wave equa-
tions to irregular chaotic flow is worthy of attention.
We do not undertake a detailed study but show a
single example in Fig. 10. The component amplitudes
are scaled by 2.5 relative to those upon which Fig. 3
is based. But now something interesting happens:
large and small peaks alternate, suggesting that the
period for energy exchange between the wave com-
ponents has doubled. This period-doubling bifurca-
tion is a well-known path to chaos (Ott 1993), and this
preliminary evidence should encourage a more de-
tailed investigation to confirm if the period-doubling
mechanism is at work here.

SUMMARY AND DISCUSSION. We have con-
sidered the interactions between resonant triads of
Rossby waves by integrating the barotropic potential
vorticity equation from appropriately chosen initial
conditions. The behavior for a small amplitude is con-
sistent with that predicted by a perturbation analysis:
the total energy of the triad is
constant, but the energy is ex-
changed on a slow timescale be-
tween the components. The
perturbation analysis leads to
the three-wave equations, an
integrable system. These same
equations govern the small-am-
plitude dynamics of an elastic
pendulum or swinging spring.
This equivalence allows us to
deduce properties, not other-
wise evident, of atmospheric
flow from the behavior of the

"

0.5

N 0

0 2 4 6 0 2

mechanical system. In particu-
lar, we have seen that the
stepwise precession found for
the spring is also a characteris-
tic of triad interactions.

When a single wave, the pri-
mary wave, dominates the initial
conditions, the subsequent de-
velopment is found to depend
sensitively on the details of the

4 6

Fic. 9. Initial and final fields for two 4-day integrations of Eq. (1). The initial
fields (top panels) differ only in the sign of the perturbation. The resulting
forecasts are shown in the two lower panels. The center of the domain is
marked by a yellow cross.
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perturbation. Because in gen-
eral, these details are unobserv-
able, accurate prediction of the
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10. Evolution of the coefficients of the three com-

ponents for initial conditions scaled by 2.5, relative to
those in Fig. 3. The periodic exchange of energy be-
tween the components indicates a period-doubling
route to chaos.

flow is difficult or impossible.* The question of the
extent to which these findings apply to more complex
situations, such as atmospheric flow, depends on how
spherical and baroclinic effects influence the dynam-
ics. For flow on the sphere, a single large-scale Rossby
wave may be stable, because it may not be possible to
find a resonant triad such that the scale of this pri-
mary wave is intermediate between those of the other
two components. Evidence from elsewhere suggests
that the largest-scale Rossby waves are indeed stable
(Lorenz 1972; Hoskins 1973).

The MATLAB code for solving the barotropic
potential vorticity equation is available online at
www.maths.tcd.ie/~plynch/Rossby_Wave_Triads/
triad.html and the code to integrate the swinging
spring equations may be found at www.maths.tcd.ie/
~plynch/Rossby_Wave_Triads/spring.html. These
programs may be used to pursue the study of the
equivalence between the two systems. For example,
two-dimensional planar motion of the spring corre-
sponds to triad interactions for which the two second-
ary wave envelopes are locked in phase and propor-
tional in amplitude. The elliptic—parabolic modes of
the spring discussed by Lynch (2002a) must also have
counterparts for triad dynamics. The transition to tur-
bulence for triad motions merits a more detailed study.

* This situation corresponds to spring oscillations, which are ini-
tially quasi-vertical. It is virtually impossible to predict the di-
rection of the first horizontal excursion.

AMERICAN METEOROLOGICAL SOCIETY

Finally, we mention that the implications of the
spring dynamics are much wider than discussed
above. For example, drift waves in magnetic confine-
ment devices, such as tokamaks, are believed to domi-
nate the turbulent transport of energy. They are also
relevant for the dynamics of the ionosphere and mag-
netosphere. The three-wave equations are central to
the small-amplitude dynamics of these systems.
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