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T E L L U S

On resonant Rossby–Haurwitz triads
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A B S T R A C T
The dynamics of non-divergent flow on a rotating sphere are described by the conservation of absolute vorticity. The
analytical study of the non-linear barotropic vorticity equation is greatly facilitated by the expansion of the solution in
spherical harmonics and truncation at low order. The normal modes are the well-known Rossby–Haurwitz (RH) waves,
which represent the natural oscillations of the system. Triads of RH waves, which satisfy conditions for resonance, are
of critical importance for the distribution of energy in the atmosphere.

We show how non-linear interactions of resonant RH triads may result in dynamic instability of large-scale com-
ponents. We also demonstrate a mathematical equivalence between the equations for an orographically forced triad
and a simple mechanical system, the forced-damped swinging spring. This equivalence yields insight concerning the
bounded response to a constant forcing in the absence of damping. An examination of triad interactions in atmospheric
reanalysis data would be of great interest.

1. Introduction

It is well known that the dynamical behaviour of planetary waves
in the atmosphere is modelled by the barotropic vorticity equa-
tion (BVE; Rossby et al., 1939; Haurwitz, 1940). Charney et al.
(1950) integrated the BVE to produce the earliest numerical
weather predictions. They used a finite difference approximation
to the equation. Silberman (1954) devised a numerical solution
method in which the streamfunction is expanded in spherical
surface harmonics. The non-linear terms introduced interaction
coefficients between the components. A more efficient spectral
technique, the transform method, was later devised by Eliasen
et al. (1970) and Orszag (1970).

Highly truncated versions of the spectral BVE have been anal-
ysed to gain understanding of atmospheric phenomena. Lorenz
(1960) introduced what he called the ‘maximum simplification’
of the system, reducing it to three non-linear ODEs. This enabled
him to study the energy exchanges between the zonal mean flow
and wave-like disturbances and to advance conjectures about
the mechanism of the index cycle. He recommended using such
‘systematically imperfect’ systems of equations as a means of
gaining understanding of atmospheric phenomena.

In a series of papers, Platzman undertook a systematic study
of the truncated spectral vorticity equation (Platzman, 1960;
Platzman, 1962). From the work of Fjørtoft (1953), it is known

∗Correspondence.
e-mail: Peter.Lynch@ucd.ie
DOI: 10.1111/j.1600-0870.2009.00395.x

that a three-component system is the lowest order system capable
of exhibiting energy exchanges. (For background theory of three-
wave resonance, see Craik, 1985). Platzman (1962) showed
that a three-component system has periodic solutions: the equa-
tions are integrable, and omitting singular cases, the solutions
are expressible in terms of Jacobi elliptic functions. Interac-
tions are particularly effective when the component parameters
are related by ‘resonance conditions’. These ensure that the
phase relationships between the components are constant over a
large number of periods, so that energy exchanges are facilitated.
Platzman (1962) did not explicitly consider this resonant case.

The non-linear interactions between different scales play a
critical role in establishing the statistical energy spectrum of the
atmosphere (Newell et al., 2001; Chen et al., 2005). The role of
non-linear interactions of RH modes was considered by Reznik
et al. (1993). They concluded that interactions for which the
resonance conditions are approximately satisfied, can generate
an intensive redistribution of energy amongst the scales much
smaller than the Earth’s radius.

Resonant triads are also crucial in determining the dynami-
cal stability of planetary waves (Lorenz, 1972; Hoskins, 1973).
Gill (1974) showed the role of resonant triads in initiating insta-
bilities. Baines (1976) showed that planetary waves with total
wavenumber greater than two are unstable for sufficiently large
amplitude. He also explicitly identified a number of resonant
Rossby–Haurwitz (RH) triads (see his Table 3). Hoskins (1973)
found that RH mode (4,5) was stable. However, his integrations
were on a quadrant and only modes whose zonal wavenumbers
are multiples of four were admissible. A numerical study of
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mode RH(4,5) by Thuburn and Li (2000) showed it to be unsta-
ble, with a near-resonant triad interaction as the likely mecha-
nism. We provide numerical evidence that strongly supports this
hypothesis.

Burzlaff et al. (2008) showed that at the second order of
a perturbation approximation, zonal flow can be generated by
triad interactions. This mechanism provides a channel for energy
exchange between mean and eddy motions in the atmosphere.
The phenomenon of vacillation in the stratospheric flow was
first examined by Holton and Mass (1976). They found that
for wave forcing beyond a critical amplitude, the response to
a steady forcing is not steady, but the mean zonal flow and
eddy components oscillate quasi-periodically. Such oscillatory
response to steady forcing is consistent with forced resonant
triads, as we will see in Section 4.

In this paper, we first review the spectral analysis of the BVE
and the normal mode solutions of the equation (Section 2). We
then derive the equations for resonant RH triad solutions (Sec-
tion 3). We present numerical evidence that the instability of
RH mode (4,5) can be accounted for in terms of a resonant
triad interaction. Miles (1985) studied resonantly forced Rossby
waves using the quasi-geostrophic potential vorticity equation,
including Ekman damping, and found resonant triad solutions.
In Section 4, we revisit the problem of a forced planetary wave
in the context of the BVE and find a periodic response involv-
ing a resonant triad. We introduce forcing and damping terms
that represent the interaction of orography with the flow and the
effects of energy dissipation by various mechanisms. We show
by a numerical example that a constant forcing by orography
can result in a periodic response in the absence of damping. To
understand the mechanism of this periodic response to constant
forcing, we digress in Section 5 to consider a simple mechan-
ical system, the forced-damped swinging spring. The envelope
equations for this system are found to be mathematically identi-
cal to the equations derived in Section 4 for the orographically
forced system. We see how the forcing of the spring increases
or decreases the energy of the system depending on the relative
phase. The pulsation from the vertical to horizontal modes and
back again results in a reversal of the phase, so that the overall
solution exhibits periodicity. Thus, the isomorphism between the
systems yields insight into the atmospheric dynamics. We con-
clude (in Section 6) with some remarks on possible extensions
of this work.

2. Normal modes of the BVE

We consider a shallow layer of incompressible fluid on a rotat-
ing sphere, assuming the horizontal velocity to be non-divergent.
The radius of the sphere is a, the rotation rate is �, and longi-
tude/latitude coordinates (λ, φ) will be used. The dynamics of
the fluid are governed by conservation of absolute vorticity

d

dt
(ζ + f ) = 0, (1)

where f = 2� sin φ is the planetary vorticity, ζ = k · ∇ × V is
the vorticity of the flow and the time derivative is

d

dt
= ∂

∂t
+ u

a cos φ

∂

∂λ
+ v

a

∂

∂φ
.

Introducing a stream-function ψ such that V = k × ∇ψ and
ζ = ∇2ψ and defining μ = sin φ, the equation may be written

∂ζ

∂t
+ 2�

a2

∂ψ

∂λ
+ 1

a2

∂(ψ, ζ )

∂(λ,μ)
= 0 [BVE] (2)

This is the non-divergent BVE. The non-linear advection is rep-
resented by the Jacobian term. Temporarily omitting this, it is
immediately found that (2) has solutions of the form

ψ = ψ0Y
m
n (λ,μ) exp(−iσ t) = ψ0P

m
n (μ) exp[i(mλ − σ t)], (3)

where ψ 0 is the constant amplitude and the frequency σ is given
by the dispersion formula

σ = σm
n ≡ − 2�m

n(n + 1)
. (4)

Here, m is the zonal wavenumber, n is the total wavenumber
(both are integers) and Ym

n (λ, μ) are the spherical harmon-
ics, which are eigenfunctions of the Laplacian operator on the
sphere:

∇2Y m
n = −n(n + 1)

a2
Y m

n . (4)

A comprehensive classical treatise on spherical harmonics is
available (Hobson, 1931). The most important properties of the
surface harmonics are presented in Machenhauer (1979). Orszag
(1974) provides an excellent summary of the advantages and
disadvantages of the spectral method. We assume the functions
to be normalized so that

1

4π

∫∫
(Y m1

n1
)∗Y m2

n2
dλ dμ = δm1

m2
δn1
n2

. (5)

Solutions (3) are called Rossby–Haurwitz waves, or RH waves
(Rossby et al., 1939; Haurwitz, 1940). It is remarkable that,
for a single RH wave, the non-linear Jacobian term vanishes
identically, so that such a wave is a solution of the non-linear
eq. (2). This is not generally true for a combination of such
waves: the velocity of one component will advect the vorticity of
another, so that the waves interact and their amplitudes change.1

The spherical harmonics form an orthonormal basis on the
sphere: any sufficiently smooth function may be expressed as
a sum of such components. Thus, the stream function has an
expansion

ψ(λ,μ, t) =
∞∑

n=0

n∑
m=−n

ψm
n (t)Y m

n (λ,μ) . (5)

1 Craig (1945) and Neamtan (1946) found that combinations of RH
waves with different zonal wavenumbers m but the same total wavenum-
ber n were solutions of the non-linear equation. All components have
the same angular phase-speed σ/m = −2�/n(n + 1).
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The vorticity has a similar expansion, with coefficients ζm
n =

(−n(n + 1)/a2)ψm
n . The coefficients ψm

n and ζm
n are normally

functions of time. For brevity, we define a vector wavenumber
γ = (m, n) and denote its conjugate by γ̄ = (−m, n). We can
then write the expansions

ψ =
∑

γ

ψγ (t)Yγ (λ,μ) exp(−iσγ t) (6)

and

ζ =
∑

γ

ζγ (t)Yγ (λ,μ) exp(−iσγ t), (7)

with ψγ = −a2κ γ ζ γ , where κ γ = 1/(n(n + 1)). For a pure RH
wave, or a collection of non-interacting waves, the coefficients
ψγ and ζ γ are constants. The variation of these factors represents
the amplitude and phase changes induced by nonlinear interac-
tion between the components. If the non-linear interactions are
weak, the coefficients will vary slowly with time compared to
the modal factors exp(−iσ γ t).

Flows governed by the BVE conserve the total energy and
total enstrophy, defined by

E = 1

4πa2

∫∫
1
2 V · Vdλ dμ = − 1

4πa2

∫∫
1
2 ψζ dλ dμ,

S = 1

4πa2

∫∫
1
2 ζ 2 dλ dμ = − 1

4πa2

∫∫
1
2 ∇ψ ·∇ζ dλ dμ.

In terms of the spectral coefficients, the constrained quantities
may be written

E = 1
2

∑
γ

κγ |ζγ |2 , S = 1
2

∑
γ

|ζγ |2 .

The constancy of energy and enstrophy profoundly influences
the energetics of solutions of the BVE. As will be shown below
(see eq. 17), analogues of these quantities are conserved for
truncated solutions of the equation.

If the expansions (6) are substituted into the BVE (2), and
the orthogonality condition (5) used, we obtain equations for the
evolution of the spectral coefficients in time:

dζγ

dt
= 1

2 i
∑
α,β

Iγβαζβζα exp(−iσ t) , (8)

where σ = σ α + σ β − σ γ and the ‘interaction coefficients’ are
given by

Iγβα = (κβ − κα)Kγβα .

The ‘coupling integrals’ Kγβα vanish unless mα + mβ = mγ ;
this follows from the separability of the spherical harmonics and
the orthogonality of the exponential components for different m.
In case mα + mβ = mγ , they are given by

Kγβα = 1
2

∫ +1

−1
Pγ

(
mβPβ

dPα

dμ
− mαPα

dPβ

dμ

)
dμ .

Equation (8) is completely equivalent to (2.8) in Platzman
(1962), although he writes the equation in a slightly different

(non-redundant) form. Silberman (1954), who first applied the
spectral approach to solution of the vorticity equation, derived
explicit formulae for the interaction coefficients. Using the prop-
erties of the spherical harmonics, it may be shown that the in-
teraction coefficients vanish in most cases. For non-vanishing
interaction, the following ‘selection rules’ must be satisfied:

mα + mβ = mγ ,

m2
α + m2

β �= 0,

nγ nβnα �= 0,

nα �= nβ,

nα + nβ + nγ is odd,

(nβ − |mβ |)2 + (nα − |mα|)2 �= 0,

|nα − nβ | < nγ < nα + nβ,

(mβ, nβ ) �= (−mγ , nγ ) and (mα, nα) �= (−mγ , nγ ).
(9)

Further discussion of these rules may be found in Platzman
(1962). Ellsaesser (1966) gives a detailed derivation of the selec-
tion rules and their implications. It is obvious that the following
symmetries hold:

Iγαβ = Iγβα and Kγαβ = −Kγβα . (10)

and the following ‘redundancy rules’ are easily proved by inte-
gration by parts:

Kαβ̄γ = Kγβα and Kβγ ᾱ = Kγβα , (11)

where ᾱ = (−m, n) when α = (m, n).

3. Resonant Rossby–Haurwitz triads

We now investigate solutions that are severely truncated, com-
prising only a small number of non-vanishing components. Of
course, non-linear interactions between these may generate fur-
ther components, so that the simple structure may not persist.
However, under certain circumstances, the interactions are so
weak that the simple low-order structure persists for a long time.
We consider the case where there are just three non-vanishing
spectral components. Actually, since the fields are assumed real,
the complex conjugate components must also be present. Thus,
we assume the streamfunction is of the form

ψ = �{
ψαYα exp(−iσαt)

+ψβYβ exp(−iσβt) + ψγ Yγ exp(−iσγ t)
}
. (12)

Without loss of generality, we assume that 0 ≤ mα ≤ mβ ≤ mγ .
For non-vanishing interactions, we then require mα + mβ = mγ .
The selection rules (9) then imply that the only non-vanishing
interaction coefficients are as follows:

Iγβα = Iγαβ, Iβᾱγ = Iβγ ᾱ, Iαβ̄γ = Iαγ β̄ .

Then, using the symmetries (10) and redundancy rules (11), we
find that all the coefficients can be expressed in terms of a single
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one, together with the quantities κα , κβ and κ γ . The spectral
equations may then be written

iζ̇α = −(κβ − κγ )Kζ ∗
β ζγ exp(+iσ t),

iζ̇β = −(κγ − κα)Kζγ ζ ∗
α exp(+iσ t),

iζ̇γ = +(κα − κβ )Kζαζβ exp(−iσ t), (13)

where K = Kγβα and σ = σ α + σ β − σ γ . These are equivalent
to the system derived in section 8 of Platzman (1962) (see also
Pedlosky, 1987, section 3.26). In general, the right-hand sides
of these equations vary rapidly in time, due to the factors eiσt .
Indeed, if the equations are averaged over a time τ = 2π/σ

and the variations of the spectral amplitudes during this time are
negligible, the right-hand sides vanish, except in the special case
where σ = 0. This is the case of ‘resonance’, and in this case,
there is a possiblity of strong interchange of energy between the
modes.2

In the sequel, we consider exclusively the resonant case. The
condition for resonance, σ = 0, may be written

mακα + mβκβ = mγ κγ .

This, together with the selection condition mα + mβ = mγ ,
implies that either κα ≥ κ γ ≥ κβ or κα ≤ κ γ ≤ κβ . For defi-
niteness, let us assume κα ≥ κ γ ≥ κβ . The cases where equality
holds are easily disposed of: when all κ-factors are equal, all
ζ -coefficients are constants. When two are equal, say κ γ = κβ ,
then the third coefficient, ζ α is constant, and ζ β and ζ γ vary
sinusoidally. Let us therefore consider the generic case,

κα > κγ > κβ . (14)

Thus, nα < nγ < nβ , so that the component ζ γ is of a scale
intermediate between the two components that are interacting to
modify it (Fjørtoft, 1953). The eqs. (13) may then be written

iζ̇α = kαζ
∗
β ζγ ,

iζ̇β = kβζγ ζ ∗
α ,

iζ̇γ = kγ ζαζβ, (15)

where, assuming K > 0, the coefficients

kα = (κγ − κβ )K , kβ = (κα − κγ )K , kγ = (κα − κβ )K

are all positive and kα + kβ = kγ . If K < 0, we reverse the
signs of the definitions to make the ks positive. The energy and
enstrophy of the triad may be written

E = 1

2
(κα|ζα|2 + κβ |ζβ |2 + κγ |ζγ |2),

S = 1

2
(|ζα|2 + |ζβ |2 + |ζγ |2) .

We now introduce the transformation

ηα = √
kβkγ ζα , ηβ = √

kγ kα ζβ , ηγ = √
kαkβ ζγ ,

2 A table of low-order resonant triads (for n ≤ 20) is given in Burzlaff
et al. (2008).

to recast eqs. (15) in the standard form of the ‘three-wave equa-
tions’:

iη̇α = η∗
βηγ ,

iη̇β = ηγ η∗
α,

iη̇γ = ηαηβ. (16)

There are two conservation laws for (16), corresponding to the
energy and enstrophy of the full system. The ‘Manley–Rowe’
quantities are defined as

N1 = |ηα|2 + |ηγ |2,
N2 = |ηβ |2 + |ηγ |2,
J = |ηα|2 − |ηβ |2. (17)

It is immediate from (16) that these are all constants of the
motion, any two of them being independent. The system (16)
may be shown to be the canonical equations arising from the
Hamiltonian H = �{ηαηβη∗

γ } (Holm and Lynch, 2002; Lynch
and Houghton, 2004).

3.1. Numerical example

To illustrate the role of resonant triads in instability of RH waves,
we integrate the BVE on the sphere using a grid-point model with
61 × 31 points (6◦ resolution) and a 3-hour time step. The initial
conditions are dominated by mode RH(4,5), with the remaining
modes having amplitudes up to 5% of its amplitude and random
phases. This is the mode that Hoskins (1973) suggested was
stable, but that Thuburn and Li (2000) found to be unstable. The
triad (4, 5), (1, 3), (3, 7) comes close to satisfying the frequency
criterion for resonance. The respective frequencies (normalized
by 2�) are

σ 4
5 = −0.13333, σ 1

3 = −0.08333, σ 3
7 = −0.05357,

so that σ 4
5 ≈ σ 1

3 + σ 3
7. The initial amplitude of the streamfunction

component ψ4
5 corresponded to a height amplitude of 100 m. In

Fig. 1, we show the evolution of the component amplitudes over
a period of 80 d. The triad members are indicated in the figure.
For the first half of the integration, the predominating energy
exchange is from RH(4,5) to mode RH(1,3), with less energy
flowing to RH(3,7) and to other modes. During the second half
of the integration, the bulk of the energy returns to RH(4,5).
When the integration is continued, the distribution of energy
becomes more chaotic (not shown) as many other modes enter
the picture. It is clear from these results that triad resonance is
crucially involved in the breakdown of the primary RH mode.

4. Forcing and damping

We consider the consequences of including forcing by orography
and damping toward a reference state with potential vorticity
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Fig. 1. Evolution of component amplitudes over an 80-day period.
Mode RH(4,5) is initially dominant. Modes RH(1,3) and RH(3,7),
which form a near-resonant triad with RH(4,5), are also indicated.

f /H. The barotropic potential vorticity equation may be written

d

dt

(
ζ + f

H − h0

)
= −ν

(
ζ + f

H − h0
− f

H

)
, (18)

where H is the (constant) height of the upper surface, h0 is the
elevation of the orography and ν is the damping coefficient.
We remark that variation of the upper surface may be accom-
modated, but at the expense of complicating the mathematical
analysis: the eigensolutions become spheroidal wave functions
rather than the simpler spherical harmonics (Longuet-Higgins,
1968).

The flow is separated into a super-rotation ū = a cos φ ω̄,
with constant ω̄, and a perturbation (u, v). Assuming that the
orography is small, h0  H, we can write (18) in the form(

∂

∂t
+ ω̄

∂

∂λ

)
ζ + 2�

a2

∂ψ

∂λ
+ 1

a2

∂(ψ, ζ )

∂(λ,μ)
− ω̄f

H

∂h0

∂λ

= −ν

(
ζ − f h0

H

)
. (19)

This is the generalization of (2) for the forced-damped case. We
have omitted non-linear terms involving h0, assuming them to
be small.

The linear normal modes have streamfunctions with spherical
harmonic structure and eigenfrequencies

σm
n = ω̄ − (2� + ω̄)m

n(n + 1)
. (20)

If ω̄ is such that σm
n vanishes for some (m, n), the orographic

forcing leads to a solution that initially grows linearly with time,
until equilibrated by the damping. In the absence of damping, this
mode grows without limit. However, as the amplitude increases,
non-linear interactions transfer energy to other modes, and it

is possible to have a bounded response to constant orographic
forcing. This is the case we study below.

We now seek a solution of (19) in the form of a resonant triad
(12), with σ α + σ β = σ γ . Assuming that the solution is of small
amplitude ε, we expand the streamfunction as

ψ = εψ1 + ε2ψ2 + ε3ψ3 + · · · .
With the assumption that the linear forcing term does not enter
at O(ε), we find that the non-linear term involving J(ψ , fh0/H)
does not enter at O(ε2), justifying its omission from (19). We
also assume that the damping coefficient ν is O(ε). We per-
form a multiple-timescale perturbation analysis, similar to that
in (section 3.26 Pedlosky, 1987) but including the forcing and
damping. We assume that the orography (actually, fh0) has the
same spatial structure Y γ (λ, φ) as the γ -term in (12), and that
the mean flow is such as to render this component stationary:

ω̄ = (2� + ω̄)mγ

nγ (nγ + 1)
or ω̄ = 2�mγ κγ

1 − mγ κγ

.

Thus, the γ -term resonates with the orography. At order ε, the
equations are linear and unforced; so, the three components
evolve independently. At order ε2, the forcing, damping and non-
linearity enter, and the equations at this level of approximation
are

ζ̇α = −(κβ − κγ )Kζ ∗
β ζ ∗

γ − νζα,

ζ̇β = −(κγ − κα)Kζ ∗
γ ζ ∗

α − νζβ,

ζ̇γ = +(κα − κβ )Kζ ∗
α ζ ∗

β − νζγ + F/
√

kαkβ,

where the coefficient F is a constant proportional to the mag-
nitude of the orographic forcing. Introducing a transformation
as in Section 3, we arrive at the ‘forced-damped three-wave
equations’:

iη̇α = η∗
βηγ − iνηα,

iη̇β = ηγ η∗
α − iνηβ,

iη̇γ = ηαηβ − iνηγ + iF. (21)

Defining the quantities N = N 1 + N 2 and J as in (17) and H =
�{ηαηβη∗

γ } as before, we find that they are no longer conserved
quantities but obey the evolution equations

J̇ = −2νJ ,

Ṅ = −2νN + 2�{F ∗ηγ } ,

Ḣ = −3νH + 2�{F ∗ηαηβ} . (22)

Note that the energy quantity N may increase or decrease in
response to the forcing F, depending on the phase relationship
between F and ηγ .

4.1. Numerical example

We integrated the BVE (2) with orographic forcing of a single
spectral component, RH(3,9). The mean flow ω̄ is set so that this
mode is stationary. Mode RH(3,9) forms a resonant triad with
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Fig. 2. Component response to orographic forcing of mode RH(3,9).
Modes RH(1,6) and RH(2,14), which form a resonant triad with
RH(3,9) are also indicated (heavy lines).

RH(1,6) and RH(2,14). Initially, all modes have very small am-
plitudes, representing background noise. In Fig. 2, we show the
component amplitudes for weak orographic forcing (mountain
height just 1 m). Initially, the directly forced mode, RH(3,9),
grows linearly with time. When it reaches a substantial ampli-
tude, non-linear interactions lead to growth of other modes. At
380 d, mode RH(1,6) dominates, with substantial energy also in
mode RH(2,14), and the primary mode has collapsed. However,
it grows rapidly again and oscillates in amplitude thereafter. De-
spite the absence of damping, the response to a constant forcing
is bounded; extended integrations confirm this. We will see that
this behaviour can be understood in the context of a simple me-
chanical model, the dynamics of which are described by (21).

5. Forced-damped swinging spring

Lynch (2003) showed that free Rossby wave triads in the atmo-
sphere could be modelled by an elastic pendulum or swinging
spring. At a certain level of approximation, the equations of the
two systems are mathematically isomorphic. Thus, behaviour
such as the precession of successive horizontal excursions of the
spring indicated similar behaviour in the atmosphere. We extend
this correspondence here to include forcing and damping.

We consider a swinging spring whose point of suspension
oscillates vertically with the period of the elastic oscillations
(Fig. 3). We assume an unstretched spring length �0, length �

at equilibrium, spring constant k and unit mass m = 1. The
Lagrangian, approximated to cubic order in the amplitudes, is

L = 1

2
[ẋ2 + ẏ2 + (ż2 + 2żζ̇ + ζ̇ 2)]

− 1

2
[ω2

R(x2 + y2) + ω2
Zz2] − 1

2 λ(x2 + y2)z . (23)

X

Y

Z

Fig. 3. The swinging spring: the point of suspension is forced
periodically in a vertical direction.

where x, y and z are Cartesian coordinates centred at the point of
equilibrium; ζ (t) = �{ζ0 exp(iωZt)} is the displacement of the
point of suspension; ωR = (g/�)1/2 is the frequency of linear
pendular motion; ωZ = (k/m)1/2 is the frequency of its elastic
oscillations and λ = �0ω

2
Z/�2. If damping is introduced through

a Rayleigh dissipation function

F = 1
2 ν(ẋ2 + ẏ2 + ż2) ,

(e.g. José and Saletan, 1998), Lagrange’s equations are

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
+ ∂F

∂q̇
= 0 , (24)

where q = (x, y, z). The motion of the suspension point introduces
an inhomogeneous term −ζ̈ into the z-equation. We employ the
average Lagrangian technique to obtain an approximate solution.
Details may be found in Holm and Lynch (2002) and Lynch and
Houghton (2004). We confine attention to the resonant case
ωZ = 2ωR . The solution is assumed to be of the form

x = �{a(t) exp(iωRt)} ,

y = �{b(t) exp(iωRt)} ,

z = �{c(t) exp(iωZt)} .

The coefficients a, b and c are assumed to vary on a timescale
much longer than the timescale of the oscillations τ = 2π/ωR .
If the Lagrangian and the dissipation function are averaged over
time τ , the Lagrange equations for the modulation amplitudes
are

iȧ = −μa∗c − iνa, (25)

iḃ = −μb∗c − iνb, (26)
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iċ = − 1
4 μ(a2 + b2) − iνc + 1

2 ωZζ0 . (27)

where μ = λ/4ωR . Defining new variables by

α = 1
2 μ(a + ib) , β = 1

2 μ(a − ib) , γ = μc,

the equations for the envelope dynamics become

iα̇ = β∗γ − iνα,

iβ̇ = γα∗ − iνβ,

iγ̇ = αβ − iνγ + iF ,

(28)

where F = − 1
2 iμωZζ0 represents the external forcing. This sys-

tem is mathematically isomorphic to the system (21) for a forced-
damped resonant Rossby triad.

One consequence of (22) is that, with damping but no forcing,
the quantity

�ϕ = tan−1

[√
N

8

J

H

]
,

which represents the ‘precession angle’, is constant (Lynch and
Houghton, 2004). This is surprising, considering that the angular
momentum J decays exponentialy to zero.

5.1. Numerical example

We integrated the system (28) over 30 time units, with unit forc-
ing F = 1 and no damping, from the following initial conditions:

α0 = (+0.0005, 0.0000) ,

β0 = (−0.0005, 0.0005) ,

γ0 = (+0.0000, 0.0000).

The amplitudes of the components (real and imaginary parts)
are shown in Fig. 4. Only the components �{α}, �{β} and
�{γ } have substantial amplitudes. These are shown in the fig-
ure. We see that, initially, the forced component, γ , grows lin-
early. As it gains energy, there is a sudden surge of energy into
the other two components, α and β. This is the ‘pulsation’ phe-
nomenon (Lynch and Houghton, 2004). However, these compo-
nents quickly reach their peak, and the energy flows back to the
primary mode, ‘but now its phase is reversed’. As a result, the
effect of the forcing is to remove energy from the system, so
the forced mode decreases linearly back to its initial zero value.
This cycle of alternate forcing and pulsing is then repeated in-
definitely. We see that the qualitative features of the response to
orographic forcing found in Section 4 (Fig. 2), at least for the
initial growth and pulsation, can be explained by the interplay
between the forced response and non-linear triad interaction. In
particular, we see how a constant resonant forcing can result in
a bounded response, even in the absence of damping.
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Fig. 4. Amplitudes of α, β and γ . The components �{α}, �{β} and
�{γ } are shown bold. The remaining amplitudes remain small. The
resonant forcing is constant, and there is no damping.

6. Concluding remarks

The dynamics of non-linear interactions between wave compo-
nents of a barotropic fluid on the sphere have been reviewed.
We have presented new evidence that the resonant triad mech-
anism can explain the instability of large-scale RH waves. We
have shown that the equations governing triad interactions are
mathematically equivalent to the envelop equations for a simple
mechanical system, the forced-damped swinging spring. This
equivalence, not previously discussed in the literature, enables
us to analyse triad interactions in the simplest possible context.
In particular, the surprising behaviour of a forced triad, in which
a constant forcing can lead to a periodic response even in the
absence of damping, can be understood in terms of the behaviour
of the mechanical system.

Triad interactions are also important in establishing and
maintaining the atmospheric energy spectrum. Such interac-
tions can account for quasi-periodic variations of long timescale
(Kartashova and L’vov, 2007). An examination of the spectral
characteristics of reanalysis data such as ERA40, with a focus
on the variation of triad amplitudes, would be of great interest in
clarifying the role of this mechanism in atmospheric dynamics.
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