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Abstract.
We consider two types of trajectories found in a wide range of mechanical

systems, viz. box orbits and loop orbits. We elucidate the dynamics of these
orbits in the simple context of a perturbed harmonic oscillator in two dimensions.
We then examine the small-amplitude motion of a rigid body, the rock’n’roller,
a sphere with eccentric distribution of mass. The equations of motion are
expressed in quaternionic form and a complete analytical solution is obtained.
Both types of orbit, boxes and loops, are found, the particular form depending
on the initial conditions. We interpret the motion in terms of epi-elliptic orbits.
The phenomenon of recession, or reversal of precession, is associated with box
orbits. The small-amplitude solutions for the symmetric case, or Routh sphere,
are expressed explicitly in terms of epicycles; there is no recession in this case.

1. Introduction: Box Orbits and Loop Orbits

1.1. Libration and rotation

The simple pendulum, with one degree of freedom, provides a valuable model for a
wide range of physical phenomena. The pendulum is constrained to move in a plane,
and has two essentially different modes of behaviour. In libration, the bob oscillates
about the suspension point, and the angular momentum reverses sign periodically. In
rotation the bob moves in a circle with the angular momentum varying periodically but
remaining always of one sign. In many systems with more than one degree of freedom
there are analogues of these two distinct behaviour patterns. In §2 we investigate
this distinction for a perturbed simple harmonic oscillator in two dimensions. In §3
we investigate the dynamics of the rock’n’roller and derive a complete solution for
small amplitude motions in terms of quaternions. The dynamics in the case of small
asymmetry, ε = (I2−I1)/I1 � 1, are examined in §4. The special case of a symmetric
body, the Routh Sphere (ε = 0), is considered in §5 and the solutions are expressed
explicitly in terms of epicycles. Concluding remarks are made in §6.
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Figure 1. Two orbits in a logarithmic gravitational potential. Left: a box
orbit. Right: a loop orbit. Both have equal energy and the character of the orbit
is determined by the initial conditions. Figure taken from [3, pg. 174], where
further details may be found.

1.2. Stelar motion in a globular cluster

In stellar systems such as triaxial globular clusters, which do not have symmetry
about any of the three axes, two distinct types of orbit are found. Since the force is
not central, the angular momentum is not conserved. If we consider motions in the
symmetry plane perpendicular to one axis, with differing frequencies about the other
two directions, we can distinguish two possibilities. In a box orbit, a star oscillates
independently about the two axes as it moves along its orbit. As a result of this
motion, it fills in a simply connected region of space that includes the centre and that,
for small amplitude, approximates a rectangle. The star is free to come arbitrarily
close to the centre of the system. If the frequencies with respect to the axes are
rationally related, the orbit will be closed. It will then resemble a Lissajous curve.
The angular momentum takes both positive and negative values. In a loop orbit, the
angular momentum about a perpendicular to the orbital plane remains of one sign.
The orbit fills a region limited by two approximately elliptic curves, and is bounded
away from the centre. We illustrate the two orbit types in Fig 1, taken from [3,
pg. 174].

1.3. Motions of the rock’n’roller

The dynamics of a variety of rolling spherical bodies with non-uniform distribution
of mass have been studied extensively for more than a century. We refer to such
bodies as loaded spheres. We can realize a loaded sphere as a massive triaxial ellipsoid
embedded eccentrically in a massless sphere (Fig. 2). The three moments of inertia
about the centre of mass are I1 ≤ I2 ≤ I3, the distance between the centres of mass and
symmetry is a ≥ 0, and the angle between the principal axis corresponding to I3 and
the line joining the centres of mass and symmetry is denoted δ (Figure 3). Loaded
spheres were investigated by Chaplygin [7], who obtained solutions in a number of
particular cases. These bodies have been discussed in several recent publications
[6, 9, 10, 14, 15, 16]. Earlier literature is reviewed by [12] and a modern treatment of
the dynamics of the loaded sphere is contained in [13].

If the centre of mass and the geometric centre coincide, we call the body the
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Figure 2. The loaded sphere. In this model, all the mass is contained in the
triaxial ellipsoid (shaded), with moments of inertia I1 ≤ I2 ≤ I3 along the
principal axes at the centre of mass O. The outer sphere (white) is considered
massless. The distance between the centre of mass O and the centre of symmetry
C is a ≥ 0, and the angle between the principal axis corresponding to I3 and the
line joining the centres of mass and symmetry is denoted δ (for a = 0, the angle
δ is undefined). For the rock’n’roller, δ = 0.

.

Chaplygin Sphere (CS; See Fig. 3). Chaplygin [8] analysed this case in detail, giving
a fairly complete solution. In general, the geometric centre does not lie on an inertial
axis. When it does, we call the body the rock’n’roller (RnR). If, in addition, the two
moments of inertia transverse to this axis are equal, I1 = I2 < I3, the body is called
the Routh Sphere [21]. The case when both these conditions are met — centre of
mass at the centre of sphere and I1 = I2 — has been called Bobylev’s Sphere [4, 10].
Clearly, Bobylev’s Sphere is a special case of both the Routh Sphere and the Chaplygin
Sphere. The relationship between the various bodies is shown in Fig. 3.

The dynamics of the rock’n’roller were considered in [19]. The orientation of the
body is given by the Euler angles φ, θ, and ψ. In the case of the Routh Sphere
(I1 = I2 < I3), there are two simple motions: pure rocking in which θ varies
periodically with φ and ψ constant (mod π); and pure rolling with θ constant and φ
and ψ varying steadily. The general motion combines these two modes of oscillation.
The azimuthal angle φ at which the polar angle θ takes its maximum values increases
or decreases regularly and monotonically. This process is called precession. When the
symmetry I1 = I2 is broken, we get the rock’n’roller, and there is a wider range of
possible motions. The direction of precession changes intermittently. In [19] we used
the term recession to describe this reversal of precession. For a given energy level,
recession may or may not occur, depending upon the initial conditions. In Fig. 4 we
show the projection of the trajectory of the rock’n’roller onto the θ–φ-plane (θ radial,
φ azimuthal in plot) for two solutions differing only in their initial conditions. In
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Figure 3. A hierarchy of eccentric spherical bodies. The moments of inertia are
I1 ≤ I2 ≤ I3, the distance between the centres of mass and symmetry is a ≥ 0,
and the angle between the principal axis corresponding to I3 and the line joining
the centres of mass and symmetry is denoted δ (for a = 0, δ is undefined).

LS: Loaded sphere: I1 < I2 < I3, a > 0, centre of sphere not on a principal
axis (δ 6= 0). RnR: rock’n’roller: I1 < I2 < I3, a > 0, principal axis through
centre of sphere (δ = 0). RS: Routh Sphere: I1 = I2 < I3, a > 0, δ = 0. CS:
Chaplygin Sphere: I1 < I2 < I3, a = 0. BS: Bobylev Sphere: I1 = I2 < I3,
a = 0.

.

the left panel, the direction of precession reverses periodically. Clearly, the angular
momentum about the vertical takes both positive and negative values. This trajectory
has recession, and is an example of a box orbit. In the right panel, the trajectory
circulates always in one direction about the centre. While the angular momentum
about the vertical is not constant, it is of constant sign. There is no recession; this is
an example of a loop orbit.

2. Perturbed Simple Harmonic Oscillator

Many dynamical features of complex physical systems are exhibited clearly in a very
simple system, the perturbed simple harmonic oscillator (SHO). The unperturbed
system is the two-dimensional SHO with equal frequencies, having the Lagrangian

L0 = 1
2 (ẋ2 + ẏ2)− 1

2ω
2
0(x2 + y2) = 1

2 (ṙ2 + r2θ̇2)− 1
2ω

2
0r

2 ,

where the notation is conventional. The generic solution of this system represents
motion in an ellipse centered on the origin. This analytical solution will serve as the
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(A) Box Orbit (B) Loop Orbit 

Figure 4. Projection of the trajectory of the rock’n’roller in the θ–φ-plane
(θ radial, φ azimuthal) with ε = 0.1 for two solutions differing only in their
initial conditions. Panel A: θ(0) = π/16, φ(0) = π/4, ψ(0) = π/8 and
ω1(0) = ω2(0) = ω3(0) = 0. Panel B: all parameters as before except ω3(0) = 0.5

basis of a perturbation analysis. The full system that we will study has a Lagrangian

L = L0 − δy2 − εr4 ,
where δ � ω2

0 and ε � 1. The δ-term represents a breaking of the 1 : 1 resonance of
the system L0. The ε-term represents a radially symmetric stiffening of the restoring
force, which results in nonlinear equations of motion.

For δ > 0 and ε = 0, the Hamiltonian is separable:

H = Hx +Hy = 1
2 [ẋ2 + ω2

0x
2] + 1

2 [ẏ2 + (ω2
0 + 2δ)y2] ,

and both components are constant. An analytical solution is immediately found:

x = x0 cosω0(t− t1) (1)

y = y0 cos(1 + δ′)ω0(t− t2) (2)

where δ′ =
√

1 + 2δ/ω2
0 − 1 ≈ δ/ω2

0 . The generic orbit densely fills a rectangular
region in the x–y-plane. If δ′ is rational, the orbit is a Lissajous figure and the motion
is periodic.

The time evolution of the angular momentum J = xẏ − yẋ is described by

J̇ = −2δxy

and clearly J is not conserved, taking both positive and negative values.
For δ = 0 and ε > 0, the restoring force is central and the angular momentum J

is conserved. The equation for the radial component is

r̈ + ω2
0r + 4εr3 − 2J2

r3
= 0

and an analytical solution for r in terms of elliptic integrals may easily be found.
Since the force is central, the angular momentum is conserved. The azimuthal angle θ
follows from integrating the expression for the constant angular momentum, J = r2θ̇.

When both δ and ε are non-zero, an analytical solution is not so easily found, but
numerical integrations produce solutions of both the box orbit and loop orbit types
(Fig. 5). To analyse the system, we apply the average Lagrangian technique [23]. The
solution is assumed to be of the form

x(t) = <{A(t) exp(iω0t)} y(t) = <{B(t) exp(iω0t)}
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y vs x

y vs x

Figure 5. Box and Loop orbits for the perturbed SHO. In both cases, λ =
2εU/δ = 2.236. All other parameters are equal except the initial position
and velocity. Left panel: x(0) ∝ cos(0.05), y(0) ∝ sin(0.05). Right panel:
x(0) ∝ cos(0.5), y(0) ∝ sin(0.5).

where the amplitudes A(t) and B(t) are assumed to be slowly varying compared to
the exponential terms. Averaging over the period 2π/ω0 of the fast motion we get

〈L〉 = 1
4

[
iω0(A ˙̄A− ȦĀ+B ˙̄B − ḂB̄)− δBB̄

− ε( 3
2 |A|

4 + 2|A|2|B|2 + 3
2 |B|

4 + <{AB̄}2)
]

(overbars denote complex conjugates). Introducing the modulus and phase of A and
B

A = |A| exp(iα) B = |B| exp(iβ)

the average Lagrangian becomes

〈L〉 = 1
2ω0(|A|2α̇+ |B|2β̇)

− 1
4δ|B|

2 − 1
8ε[3|A|

4 + 4|A|2|B|2 + 3|B|4 + 2|A|2|B|2 cos(α− β)]

We define new coordinates:

U = |A|2 + |B|2 , V = |A|2 − |B|2 , ψ = α+ β , φ = α− β
Then the Euler-Lagrange equations imply that U is a constant of the motion. It
represents to lowest order the value of the total energy

E0 = 〈 12 (ẋ2 + ẏ2) + 1
2ω

2
0(x2 + y2) 〉 = 1

2ω
2
0U .

Constancy of U also follows, as the angle ψ is an ignorable coordinate (〈L〉 is
independent of ψ). The equations for V and φ are

dV

dt
=

(
1

2ω0

)
ε(U2 − V 2) sin 2φ (3)

dφ

dt
=

(
1

2ω0

)
[ε(1− cos 2φ)V − δ] (4)

We can derive an equation for the average angular momentum,

〈J〉 = ω0={AB̄} = 1
2ω0

√
U2 − V 2 sinφ .
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Figure 6. Phase portraits of the perturbed SHO. Left panel: λ = 0.5 (only box
orbits exist). Right panel: λ = 2.0 (both box and loop orbits exist). Horizontal
axis φ, range [0, 2π]; vertical axis W , range [−1,+1].

This shows that 〈J〉 will change sign if φ passes through any of the values nπ. We
will see that for box orbits φ is unbounded whereas for loop orbits it is confined to an
interval within (nπ, (n+ 1)π) so that the angular momentum does not change sign.

Defining a new variable W = V/U , whose physical range is the interval [−1, 1],
and re-scaling time by τ = (δ/2ω0)t, (3) and (4) become

dW

dτ
= λ(1−W 2) sinφ cosφ (5)

dφ

dτ
= λW sin2 φ− 1 (6)

where λ = 2εU/δ is a non-dimensional parameter. It is straightforward to show that
(5) and (6) are the canonical equations arising from the Hamiltonian

h = 1
2λ(1−W 2) sin2 φ+W .

Equations (5) and (6) have equilibrium points when dφ/dτ = dW/dτ = 0.
For λ < 1 there are no such points. For λ > 1 there are equilibrium points at
(φ,W ) = (π/2, 1/λ) and (φ,W ) = (3π/2, 1/λ) which are elliptic points or centres.
There are also four equilibrium points on the boundary W = 1, where sin2 φ = |1/λ|.
These are hyperbolic or saddle points. The phase portraits in the φ–W -plane are
shown in Fig. 6 (left panel: λ = 0.5; right panel: λ = 2.0). The two saddle points with
(sinφ,W ) = (+1/

√
λ, 1) are joined by heteroclinic orbits, as are the two points with

(sinφ,W ) = (−1/
√
λ, 1). These heteroclinic orbits separate the possible motions into

two species. Below (or outside) the separatrices, the variable φ decreases continually,
and the angular momentum 〈J〉 = 1

2ω0

√
U2 − V 2 sinφ changes sign periodically.

These trajectories correspond to box orbits. Above (or within) the separatrices, the
trajectories surround the centres and the variable φ is confined to an interval within
(nπ, (n + 1)π). Thus the angular momentum is of a single sign. Such trajectories
correspond to loop orbits.

The value λ = 1 is a bifurcation point for the system (5)–(6). The line W = 1
corresponds to B ≡ 0 and represents an oscillation along the x-axis. Likewise, the
line W = −1 corresponds to A ≡ 0 and represents an oscillation along the y-axis. For
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λ < 1 both these motions are stable. For λ > 1 the former is unstable while the latter
is stable.

3. Equations of Motion of the rock’n’roller

The rock’n’roller and its symmetric counterpart, the Routh Sphere, were briefly
described in §1.3. Here we present the general equations for the motion of the
rock’n’roller and also the simplified equations for small amplitude motions.

3.1. Euler angle equations for finite amplitude motion

The equations of motion in terms of Euler angles are given in [19]:

Σθ̇ = ω , Kω̇ = Pω (7)

where

θ̇ =

 θ̇
φ̇
ψ̇

 , ω̇ =

 ω̇1

ω̇2

ω̇3

 ,

the matrices Σ and K are

Σ =

 χ sσ 0
−σ sχ 0
0 c 1

 K =

 I1 + f2 + s2χ2 −s2σχ −fsσ
−s2σχ I2 + f2 + s2σ2 −fsχ
−fsσ −fsχ I3 + s2


and the vector Pω is

Pω =

 −(g + ω2
1 + ω2

2)asχ+ (I2 − I3 − af)ω2ω3

(g + ω2
1 + ω2

2)asσ + (I3 − I1 + af)ω1ω3

(I1 − I2)ω1ω2 + as(−χω1 + σω2)ω3

 ,

where s = sin θ, c = cos θ, f = c − a, χ = cosψ and σ = sinψ. Unit mass and
radius are assumed and a is the distance from the geometric centre to the centre of
mass. Note that neither K nor Pω depends explicitly on φ. Thus φ is an ignorable
coordinate in the system (7).

To study the fundamental oscillations of the system, we consider motions near
the stable equilibrium point θ = 0. An attempt to linearize (7) directly, assuming
θ to be small, do not lead to a tractable system: the singularities of φ̇ and ψ̇ when
θ = 0 thwart our endeavours. Thus we are led to seek a system of coordinates that
circumvents these singularities and yields simple linear equations for small θ. The unit
quaternions provide a suitable system.

3.2. Quaternionic equations for small amplitude motion

The Euler angles relate the orientation of the body frame to that of the space frame.
This relationship may also be expressed in terms of Euler’s symmetric parameters, or
the Euler-Rodrigues parameters [1, 24], defined by

γ = cos 1
2θ cos 1

2 (φ+ ψ) ξ = sin 1
2θ cos 1

2 (φ− ψ)

ζ = cos 1
2θ sin 1

2 (φ+ ψ) η = sin 1
2θ sin 1

2 (φ− ψ)

(the notation here differs slightly from [24]; see Appendix A). These parameters satisfy
the relationship γ2 + ζ2 + ξ2 + η2 = 1. They are the components of a unit quaternion
q = γ + ξi + ηj + ζk.
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Expressions for the angular rates of change follow in a straightforward manner:

θ̇ =
(ξξ̇ + ηη̇)− (γγ̇ + ζζ̇)√

(ξ2 + η2)(γ2 + ζ2)

φ̇ =

(
γζ̇ − ζγ̇
γ2 + ζ2

)
+

(
ξη̇ − ηξ̇
ξ2 + η2

)

ψ̇ =

(
γζ̇ − ζγ̇
γ2 + ζ2

)
−

(
ξη̇ − ηξ̇
ξ2 + η2

)
Moreover,

s = 2
√

(γ2 + ζ2)(ξ2 + η2) c = (γ2 + ζ2)− (ξ2 + η2)

χ =
γξ + ζη√

(γ2 + ζ2)(ξ2 + η2)
σ =

ζξ − γη√
(γ2 + ζ2)(ξ2 + η2)

sφ =
γη + ζξ√

(γ2 + ζ2)(ξ2 + η2)
cφ =

γξ − ζη√
(γ2 + ζ2)(ξ2 + η2)

where sφ = sinφ and cφ = cosφ. The components of angular velocity are

ω1 = 2[γξ̇ − ξγ̇ + ζη̇ − ηζ̇]

ω2 = 2[γη̇ − ηγ̇ + ξζ̇ − ζξ̇] (8)

ω3 = 2[γζ̇ − ζγ̇ + ηξ̇ − ξη̇]

At first order in small θ we may write the Euler-Rodrigues parameters as

γ = cos 1
2 (φ+ ψ) = O(1) ξ = 1

2θ cos 1
2 (φ− ψ) = O(θ)

ζ = sin 1
2 (φ+ ψ) = O(1) η = 1

2θ sin 1
2 (φ− ψ) = O(θ)

Moreover, at this order of approximation,

ω1 = O(θ) ω2 = O(θ) ω3 = 2(γζ̇ − ζγ̇) = O(1)

The third equation of (7) reduces to ω̇3 = O(θ2), so we can take ω3 to be constant.
The order-one quaternion elements, γ and ζ, are easily found: combining

γγ̇ + ζζ̇ = 0 and γζ̇ − ζγ̇ = 1
2ω3

we see that γ̇ = − 1
2ω3ζ and ζ̇ = + 1

2ω3γ, which are immediately solved to yield

γ = cos 1
2ω3(t− t00) , ζ = sin 1

2ω3(t− t00) (9)

Here we have used γ2 + ζ2 = 1. We choose the time origin such that t00 = 0. The
remaining two equations of (7) may now be written

γξ̈ + ζη̈ − κ21ω3(ζξ̇ − γη̇) + Ω2
1(γξ + ζη) = 0 (10)

ζξ̈ − γη̈ + κ12ω3(γξ̇ + ζη̇) + Ω2
2(ζξ − γη) = 0 (11)

where the constant parameters in the coefficients are

κ12 =
I3 − I1 + af0
I2 + f20

Ω2
10 =

ga

I1 + f20
Ω2

1 = Ω2
10 + 1

2 (κ21 + 1
2 )ω2

3

κ21 =
I3 − I2 + af0
I1 + f20

Ω2
20 =

ga

I2 + f20
Ω2

2 = Ω2
20 + 1

2 (κ12 + 1
2 )ω2

3
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with f0 = (1 − a). These equations may be transformed, by a simple rotation, to a
system with constant coefficients. We define(

µ
ν

)
=

[
γ ζ
−ζ γ

](
ξ
η

)
. (12)

The following relationships are straightforward to derive:

ω1 = 2(µ̇− ω3ν) θ̇ = 2(µµ̇+ νν̇)/
√
µ2 + ν2

ω2 = 2(ν̇ + ω3µ) φ̇ = ω3 + (µν̇ − νµ̇)/(µ2 + ν2)

ω3 = 2(γζ̇ − ζγ̇) ψ̇ = − (µν̇ − νµ̇)/(µ2 + ν2)

Equations (10) and (11) may now be written

µ̈− 2k2ν̇ + Ω̃2
1µ = 0 (13)

ν̈ + 2k1µ̇+ Ω̃2
2ν = 0 (14)

where

k1 = 1
2 (1− κ12)ω3 , Ω̃2

1 = Ω2
10 + κ21ω

2
3

k2 = 1
2 (1− κ21)ω3 , Ω̃2

2 = Ω2
20 + κ12ω

2
3 .

If we seek a solution of (13)–(14) in the form

µ = µ0 cosβ(t− t0) and ν = ν0 sinβ(t− t0)

the system may be written[
Ω̃2

1 − β2 −2k2β
−2k1β Ω̃2

2 − β2

](
µ0

ν0

)
=

(
0
0

)
(15)

The determinant is a biquadratic in β with four real roots, occurring in positive and
negative pairs. We denote the positive eigenvalues by β1 and β2 and assume that
0 ≤ β1 ≤ β2. The eigenvectors are (1, λ1)T and (1, λ2)T, with

λ1 =
Ω̃2

1 − β2
1

2k2β1
=

2k1β1

Ω̃2
2 − β2

1

, λ2 =
Ω̃2

1 − β2
2

2k2β2
=

2k1β2

Ω̃2
2 − β2

2

(16)

and we can write the general solution of (13)–(14) as

µ = µ1 cosβ1(t− t1) + µ2 cosβ2(t− t2) (17)

ν = λ1µ1 sinβ1(t− t1) + λ2µ2 sinβ2(t− t2) (18)

The equations (13)–(14) are now completely solved. The solution (17)–(18) is
determined by the initial conditions {µ1, µ2, t1, t2}. These are equivalent to conditions
{µ(0), µ̇(0), ν(0), ν̇(0)}. Solutions of (10)–(11) follow immediately by means of (9) and
(12).

3.3. Lagrangian and Hamiltonian

Equations (13)–(14) may be derived from the Lagrangian

L = 1
2 (k1µ̇

2 + k2ν̇
2)− 1

2 (k1Ω̃2
1µ

2 + k2Ω̃2
2ν

2) + k1k2(µν̇ − νµ̇) (19)

The generalized momenta are pµ = k1(µ̇ − k2ν) and pν = k2(ν̇ + k2µ) and the
Hamiltonian, obtained from the Legendre transformation, is

H = 1
2

(
p2µ
k1

+
p2ν
k2

)
− [k1µpν − k2νpµ] (20)

+ 1
2 [k1(k1k2 + Ω̃2

1)µ2 + k2(k1k2 + Ω̃2
2)ν2]
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The numerical value of the Hamiltonian is equal to the (constant) energy

Eµ+ν = 1
2 (k1µ̇

2 + k2ν̇
2) + 1

2 (k1Ω̃2
1µ

2 + k2Ω̃2
2ν

2)

An additional constant of the motion can be found from the solutions (17)–(18)
for µ and ν and their time derivatives for µ̇ and ν̇. We can solve the four expressions
for the sines and cosines in terms of {µ, ν, µ̇, ν̇}. These can then be combined to yield
the following constants:

K1 ≡
(
λ2µ̇+ β2ν

β1λ2 − β2λ1

)2

+

(
ν̇ − β2λ2µ
β1λ1 − β2λ2

)2

= µ2
1 , (21)

K2 ≡
(
λ1µ̇+ β1ν

β1λ2 − β2λ1

)2

+

(
ν̇ − β1λ1µ
β1λ1 − β2λ2

)2

= µ2
2 . (22)

Numerical tests confirm that K1 and K2 remain constant. They may be combined
linearly to form Eµ+ν and an additional independent constant.

4. Epi-elliptic solution for small asymmetry (ε = (I2 − I1)/I1 � 1)

For the symmetric case, ε = 0 and the matrix in (15) takes the simple form[
A −B
−B A

]
so that the eigenvectors are multiples of (1, 1)T and (1,−1)T. For ε 6= 0, this is no
longer the case. The eigenvalues are perturbed to β1 = β0

1 + δβ1 and β2 = β0
2 + δβ2,

where β0
1 and β0

2 are the values for ε = 0. The eigenvectors are (1, λ1)T and (1, λ2)T

and, for small asymmetry (ε� 1), we have λ1 ≈ +1 and λ2 ≈ −1.
The complete solution of the rock’n’roller equations for small amplitude motion

is

γ = cos 1
2ω3t (23)

ζ = sin 1
2ω3t (24)

µ = µ1 cosβ1(t− t1) + µ2 cosβ2(t− t2) (25)

ν = λ1µ1 sinβ1(t− t1) + λ2µ2 sinβ2(t− t2) (26)

The projection in the γ–ζ-plane, given by (23)–(24), is a rotation with frequency 1
2ω3.

The solution (25)–(26) has two components, each having a trajectory that is elliptic
(for the Routh Sphere, ε = 0, they are both circular). The first component is

µ = µ1 cos[β1(t− t1)] , ν = µ1λ1 sin[β1(t− t1)] ,

elliptical motion with frequency β1 and semi-axes µ1 and µ1λ1, counterclockwise if
λ1 > 0 (recall that λ1 = 1 in the limiting case ε = 0). The second component is

µ = µ2 cos[β2(t− t2)] , ν = µ2λ2 sin[β2(t− t2)] ,

elliptical motion with frequency β2 and semi-axes µ2 and µ2λ2, clockwise if λ2 < 0
(and λ2 = −1 in the limiting case ε = 0). The overall character of the trajectory is
thus determined by the relative magnitudes and signs of the parameters {λ1, λ2} and
the initial conditions {µ1, µ2}.

In Fig 7 we illustrate two characteristic solutions in the µ–ν-plane. In both cases,
β1 = 1/π and β2 = 1. In the left panel, µ2 < µ1 and also µ2λ2 < µ1λ1, the orbit
circulates about the centre, sometimes curving towards it and sometimes curving away.
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Figure 7. Rock’n’roller: the trajectories in the µ–ν-plane are epi-ellipses. Left:
µ1 = 1, µ2 = 0.5, λ1 = 0.75, λ2 = −0.75. Right: µ1 = 1, µ2 = 1.6, λ1 = 0.75,
λ2 = −0.75. In both cases, β1 = 1 and β2 = 1/π.

We call this a centrifugal orbit. The representative point is bounded away from the
centre. For the solution in the right panel, µ2 > µ1 and also µ2λ2 > µ1λ1. The orbit
circulates about the centre, µ = ν = 0, always curving towards it. We call this a
centripetal orbit.

It is clear on geometric grounds that if (|µ1| − |µ2|) and (|λ1µ1| − |λ2µ2|) are of
the same sign, the trajectory cannot reach the centre, µ = ν = 0. Thus, the criterion
for recession may be written

(|µ1| − |µ2|) · (|λ1µ1| − |λ2µ2|) < 0 (27)

(see Appendix B). In this case, the orbit may approach arbitrarily close to the centre,
and the angular momentum about the centre may change sign.

4.1. Special case: central orbits with ω3 = 0

The case ω3 = 0 is especially simple: (µ, ν) = (ξ, η) ≈ ( 1
2θ cosφ, 12θ sinφ), so the

trajectories in the µ–ν-plane are structurally identical to those on a polar θ–φ plot
(with θ radial and φ azimuthal). Equations (13)–(14) take a particularly simple form

µ̈+ Ω2
10µ and ν̈ + Ω2

20ν

and the solution may be written immediately:

µ = µ0 cos Ω10(t− t1) (28)

ν = ν0 sin Ω20(t− t2) (29)

which is mathematically equivalent to the solution (1)–(2) of the simple harmonic
oscillator. Clearly, µ0 6= 0 and ν0 = 0 yields pure rocking motion in one principal
direction, while µ0 = 0 and ν0 6= 0 yields pure rocking in another. The case of a
central orbit, µ0 = ν0 is of particular interest. The angular momentum quantity
K = (µν̇ − νµ̇) + k(µ2 + ν2) (which we shall see to be constant when ε = 0) is easily
shown to have two components

K = µ2
0Ω̄ cos(2Ω′t− ρ) + µ2

0Ω′ cos(2Ω̄t− σ)

where Ω̄ = 1
2 (Ω10 + Ω20) and Ω′ = 1

2 (Ω10 − Ω20). The first component is of large
amplitude and low frequency, the second is of small amplitude and high frequency.
Generically, the trajectory of the solution densely fills a square region in the µ–ν-plane.
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5. The Routh Sphere (I1 = I2): complete solution for small amplitude

Let us now consider the solution for the Routh Sphere, the symmetric case with I1 = I2
or ε = 0, so that κ12 = κ21 = κ, k1 = k2 = k and Ω̃2

1 = Ω̃2
2 = Ω̃2. Then the (positive)

eigenvalues for the system (15) are

β1,2 = ∓k +
√
k2 + Ω̃2

where k = 1
2 (1 − κ)ω3, and the eigenvectors are (1, 1)T and (1,−1)T. The general

solution is

µ = µ1 cosβ1(t− t1) + µ2 cosβ2(t− t2) (30)

ν = µ1 sinβ1(t− t1)− µ2 sinβ2(t− t2) (31)

It follows immediately that

µ2 + ν2 = µ2
1 + µ2

2 + 2µ1µ2 cos[(β1 + β2)t− b12] (32)

µν̇ − νµ̇ = µ2
1β1 − µ2

2β2 + µ1µ2(β1 − β2) cos[(β1 + β2)t− b12]

µµ̇+ νν̇ = − µ1µ2(β1 + β2) sin[(β1 + β2)t− b12]

where b12 = β1t1 + β2t2 is a fixed phase. When the third of these quantities, namely
µµ̇+ νν̇, vanishes, θ̇ = 0 and θ reaches an extremum. This occurs when

(β1 + β2)t− b12 = nπ or t = t0n ≡
nπ + b12
β1 + β2

The cosine factors then take the value (−1)n. We find that

φ̇2n = ω3 +
µ1β1 − µ2β2
µ1 + µ2

φ̇2n+1 = ω3 +
µ1β1 + µ2β2
µ1 − µ2

Note that both φ̇2n and φ̇2n+1 are independent of n. If they are of the same sign,
the azimuthal angle φ changes monotonically with time. If not, the body executes a
reverse loop in each cycle. However, there is no recession in either case; this would
require φ̇n to be a function of n.

The absence of recession also follows immediately from (32). This implies that the
distance from the origin of the µ–ν-plane varies between

∣∣|µ1| − |µ2|
∣∣ and |µ1|+ |µ2|.

So, unless |µ1| = |µ2|, the accessible region is annular, and the angular momentum
about µ = ν = 0 cannot change sign.

It is straightforward to show that the equations of the Routh Sphere have two
constants, the energy quantity

Eµ+ν = 1
2 (µ̇2 + ν̇2) + 1

2 Ω̃2(µ2 + ν2)

and a quantity relating to angular momentum,

K = (µν̇ − νµ̇) + k(µ2 + ν2)

This quantity may be written in terms of the initial conditions

K =
√
k2 + Ω̃2(µ2

1 − µ2
2) (33)

This is interesting, as it allows us to characterise the solution in terms of the relative
sizes of µ1 and µ2.
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Figure 8. Routh Sphere: the trajectories in the µ–ν-plane are epicycles. The
three distinct cases are illustrated: left panel µ1 < µ2 (centripetal orbit in µ–
ν-plane); centre panel µ1 = µ2 (central orbit); right panel µ1 > µ2 (centrifugal
orbit in µ–ν-plane). The frequencies are β1 = 0.3 (counterclockwise) and β2 = 1.0
(clockwise).

We recall from [19] that the Routh Sphere has two constants in addition to the
energy, Jellett’s constant and Routh’s constant:

QJ = I1s
2φ̇+ I3fω3 and QR = ω3/ρ

where the density ρ is defined by ρ = 1/
√
I3 + s2 + (I3/I1)f2. To O(θ2), these may

be written

Q̃J = (I1θ
2φ̇+ I3f0ω3)− 1

2I3ω3θ
2

Q̃R =

[
1 +

(
I1 − I3f0

(I1 + f20 )I3

)
θ2

2

]
ω3

ρ0

where ρ0 = 1/
√

(I1 + f20 )I3/I1. We can now show that

K =
1

4I1

[
Q̃J − I3f0ρ0Q̃R

]
(34)

This allows us to relate the solution in terms of µ1 and µ2 (or K), to the quantities
Q̃J and Q̃R (cf. Fig. 4 in [19]).

5.1. Epicycle character of the solution

We will first interpret the solution in the µ–ν-plane, noting that it bears a
correspondence to the θ–φ-plane through the relationships

θ = 2
√
µ2 + ν2 , φ = ω3t+ arctan (ν/µ)

We note that the solution (30)–(31) is comprised of two components: the first

µ = µ1 cos[β1(t− t1)] , ν = µ1 sin[β1(t− t1)]

is a counterclockwise circular motion with frequency β1 and radius µ1; the second

µ = µ2 cos[β2(t− t2)] , ν = −µ2 sin[β2(t− t2)]

is a clockwise circular motion with frequency β2 and radius µ2. The complete motion
is thus an epicycle.

We illustrate various possibilities schematically in Fig. 8. For µ1 < µ2, the orbit
circulates about the centre, µ = ν = 0, always curving towards it in a centripetal orbit
(Fig. 8(A)). For µ1 > µ2, the orbit circulates in the opposite direction about the centre,
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Figure 9. Routh Sphere: the trajectories in the θ–φ-plane are epicycles. Panels
(A)–(C): Analytical solutions of the quaternion equations for three sets of initial
conditions: (A) µ2 = 0.5µ1; (B) µ2 = µ1; (C) µ2 = 2µ1. In all cases, µ1 = 1
and t1 = t2 = 0. Panels (D)–(F): Numerical solutions of the full nonlinear
equations for the corresponding initial conditions: (D) ω2(0) = 0.008147; (E)
ω2(0) = 0.005389; (F) ω2(0) = 0.002632. In all cases θ(0) = 0.01, ω3(0) = 1.0
and φ(0) = ψ(0) = ω1(0) = 0.

sometimes curving towards it and sometimes curving away. This is a centrifugal orbit
(Fig. 8(C)). For µ1 = µ2, the orbit passes periodically through the centre µ = ν = 0.
We call this a central orbit (Fig. 8(B)); for further discussion, see Appendix B.

We have chosen 0 ≤ β1 ≤ β2 by arbitrary convention. The solution for µ and ν is
given by (30)–(31). To transform back to the θ–φ-plane, we must rotate through an
angle ω3t. Defining x = (θ/2) cosφ, y = (θ/2) sinφ, we have

x = µ1 cos(α1t− β1t1) + µ2 cos(α2t− β2t1)

y = µ1 sin(α1t− β1t1)− µ2 sin(α2t− β2t1)

where the frequencies are α1 = β1 + ω3 and α2 = β2 − ω3. We find that 0 ≤ α2 ≤ α1.
This effectively switches the roles of the two components of the solution: centripetal
motion in the µ–ν-plane corresponds to centrifugal in the θ–φ-plane, and vice versa.
Referring to (33) and (34), we see that the following correspondence holds:

[µ1 > µ2]⇐⇒ [K > 0]⇐⇒ [Q̃J > Q̃crit
J,0 ]⇐⇒ [Centripetal (in θ–φ-plane)]

[µ1 = µ2]⇐⇒ [K = 0]⇐⇒ [Q̃J = Q̃crit
J,0 ]⇐⇒ [Central (in θ–φ-plane)]

[µ1 < µ2]⇐⇒ [K < 0]⇐⇒ [Q̃J < Q̃crit
J,0 ]⇐⇒ [Centrifugal (in θ–φ-plane)]

where Q̃crit
J,0 = I3f0ρ0Q̃R (see also Fig. 4 in [19]).
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θ versus φ θ versus φ θ versus φ

POINT OF CONTACT POINT OF CONTACT POINT OF CONTACT

Figure 10. Top row: trajectories in the θ–φ-plane for three sets of initial
conditions, ω2 = 0.001005, ω3(0) = 0.02 (left), ω2 = 0.001384, ω3(0) = 0.09
(centre) and ω2 = 0.001658, ω3(0) = 0.14 (right). Bottom row: corresponding
plots of the trajectory of the point of contact. In all cases θ(0) = 0.01, φ(0) = 0,
ψ(0) = 0 and ω1(0) = 0 and µ2/µ1 = 3

4
. The solutions in the central column

satisfy the criterion (37).

5.2. Trajectory of the point of contact

So far, we have looked at the projections of the orbit in the µ–ν-plane and in the θ–φ-
plane. However, the external observer is aware of both the orientation of the body, as
determined by the Euler angles and the position as given by the coordinates (X,Y )
of the geometric centre or, equivalently, the point of contact.

The movement of the geometric centre is linked to the angular velocity of the
body through the rolling constraint [19]:

(Ẋ, Ẏ , 0) = ω× K

where K is a unit vertical vector. In terms of quaternions, this becomes

Ẋ = 2[γη̇ − ηγ̇ + ζξ̇ − ξζ̇]

Ẏ = 2[ξγ̇ − γξ̇ + ζη̇ − ηζ̇]

Substituting the solutions (9), (17) and (18) for the quaternion components, we get

X = [2µ1β1/α1] sin(α1t− β1t1)− [2µ2β2/α2] sin(α2t− β2t2) (35)

Y = − [2µ1β1/α1] cos(α1t− β1t1)− [2µ2β2/α2] cos(α2t− β2t2) (36)

We saw that the criterion for a central orbit, or the boundary between a centripetal
and a centrifugal orbit, in the θ–φ-plane was µ1 = µ2. The corresponding boundary
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for the X–Y -plane is the equality of the coefficients in (35)–(36) or

µ1β1
α1

=
µ2β2
α2

(37)

The distinction is a reflection of the nonholonomic nature of the constraint: we cannot
express (X,Y ) in terms of the Euler angles until the solution is found.

In Fig. 10 we show trajectories in the θ–φ-plane (top row) and corresponding plots
for the point of contact (bottom row). In the three cases, the orbit is centripetal in
the θ–φ-plane but in the X–Y -plane it changes character, from centripetal to central
to centrifugal as ω3 increases. The solutions in the central column of Fig. 10 satisfy
the criterion (37).

6. Conclusion

Box and loop orbits are found in a wide range of physical systems. We illustrate
them in the elementary context of a perturbed simple harmonic oscillator. Then, the
dynamical equations for small amplitude motions of the rock’n’roller are expressed
in terms of quaternions. The complete solution is expressed as an epi-ellipse, a
combination of two purely elliptic motions. This allows us to clarify the phenomenon
of recession, and the conditions under which it occurs. In the particular case of a
symmetric body (ε = 0), the Routh Sphere, the solution reduces to an epicycle. Only
loop orbits occur and there is no recession.

We have confined attention in the present study to the dynamics at first order
in the polar angle θ. In an extension of this work, we will present a more detailed
perturbation analysis, including a rigorous demonstration of energy conservation to
second order, explicit expressions for the Routh and Jellett quantities QR and QJ and
a complete analysis of the recession of the rock’n’roller.

The dynamics of the rattleback or celt have been discussed in many publications;
see, for example, [5]. It is an ellipsoidal body that exhibits a variety of reversals of
rotation. While the dominant behaviour of the rattleback is due to the mis-allignment
of its inertial and geometric axes, the mechanism of recession described here for the
rock’n’roller must also be present, and may be proposed as a mechanism accounting
for observed multiple reversals of the rattleback. This speculation deserves further
consideration.

One of the motivations for studying the rock’n’roller is the hope of finding an
invariant of the motion in addition to the energy. This expectation arises from the
symmetry of the body. For the general loaded sphere, there is a finite angle δ between
the principal axis corresponding to I3 and the line joining the centres of gravity and
symmetry. For the rock’n’roller, this angle is zero and the Lagrangian is independent of
the azimuthal angle φ. However, we have not found a second invariant and, considering
the non-holonomic nature of the problem, its existence remains an open question.

Appendix A: Euler Angle Ambiguity

In his work on celestial mechanics, Euler showed that any two independent orthogonal
frames can be related by (not more than) three rotations about the coordinate axes.
Kuipers [17] lists twelve sequences of rotations. The first, denoted xyz, means a
rotation about the x-axis, followed by a rotation about the new y-axis followed by a
rotation about the newer z-axis. Different choices are made in different areas of science,
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frequently leading to ambiguity in the meaning of the Euler angles. In mechanics, two
sequences are in common use, each commanding the respect due to its adoption by
renowned authorities.

We denote the unit orthogonal triad in the space frame by (I,J,K) and the
corresponding triad in the body frame by (i, j,k). Coordinates in the space frame are
(X,Y, Z) and in the body frame (x, y, z). The origin is colocated in the two frames.
The body frame may be related to the space frame by a set of three rotations. In both
rotation sequences, the first rotation is about the (space) Z axis (about the vector
K), and the third is about the (body) z axis (about the vector k). However, the axis
of the second rotation differs in the two sequences and, as a result, the magnitudes of
the rotations also differ.

The first sequence is the zxz-sequence, and we denote the Euler angles in this case
by (φ, θ, ψ). In this zxz-sequence, favoured by Landau & Lifshitz [18], Arnold [2] and
Goldstein et al. [11], the second rotation is of an angle θ about the x-axis that results
from the first rotation. In the second sequence, zyz, employed by Whittaker [24] and
by Synge and Griffith [22], we denote the angles by (Φ,Θ,Ψ). The second rotation
is now through an angle Θ about the y-axis that results from the first rotation. The
overall rotation must be identical for the two sequences. Constructing the rotation
matrix for the composition of the three rotations in each case and equating the two
results, we find that the relationship between the Euler anges in the two sequences is

Φ = φ− π

2
Θ = θ Ψ = ψ +

π

2
.

These relationships enable us to convert between the two conventions. The full rotation
matrix for zxz is given, for example, in Goldstein et al. [11, pg. 153], and in Marsden
and Ratiu [20, pg. 494]. For the zyz sequence, the rotation matrix is given in Whittaker
[24, pg. 10] and in Synge and Griffith [22, pg. 261].

The quaternion representing the rotation must be independent of the Euler angle
convention. However, the expressions for the quaternion components in terms of
the angles will be different in each case. This explains why our definitions of the
components (γ, ξ, η, ζ) are different from those of (χ, ξ, η, ζ) in Whittaker [24]. The
expansion of the components of angular velocity (ω1, ω2, ω3) in terms of angles is also
different in the two conventions, but their expression in terms of (γ, ξ, η, ζ) is identical.
Thus, many of the formulae we derive are the same as those found in [24], except that
we replace χ by γ to avoid confusion with our notation for cosψ.

Altmann [1] observes that sequence zyz is now universal in quantum physics,
as it is consistent with the Condon and Shortley convention. In the context of
classical mechanics, there is no obvious advantage of either convention over the other.
However, we feel that it is important to avoid any ambiguity by making the choice
clear. Sequence zxz is used in the present paper.

Appendix B: Epicyclic and epi-elliptic orbits

Epicyclic motion

We consider the character of solutions of the form

µ = µ1 cosβ1(t− t1) + µ2 cosβ2(t− t2) (38)

ν = λ1µ1 sinβ1(t− t1) + λ2µ2 sinβ2(t− t2) (39)
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Figure 11. Two epicyclic orbits. (a) Amplitudes unequal: µ1 = 1.0, µ2 = 2.0.
(b) Amplitudes equal: µ1 = µ2 = 1.0. In both cases, β1 = 1.0 and β2 = π2/8.

as obtained above, (17)–(18), for small-amplitude motions of the rock’n’roller. For the
Routh Sphere (ε = 0), λ1 = 1 and λ2 = −1. The motion consists of two components
representing circular motion in opposite directions. We have chosen the order of the
eigenvalues such that 0 ≤ β1 ≤ β2. Generically, β1 and β2 are incommensurate
and the orbit is dense in an annular region %min ≤ % ≤ %max where % =

√
µ2 + ν2,

%min =
∣∣|µ1| − |µ2|

∣∣ and %max = |µ1|+ |µ2|. The trajectory may be centripetal (always
curving towards the origin % = 0) or centrifugal (sometimes curving away), but it is
always a loop orbit. Precession is particularly evident when |µ1| ≈ |µ2|; see Fig. 11(a).
When µ1 = µ2, the solution may be written as a central orbit(

µ

ν

)
= 2µ1 cosβ+(t− t+) ·

(
cos

sin

)
β−(t− t−) (40)

where β+ = 1
2 (β1 + β2), β− = 1

2 (β1 − β2), t+ = (β1t1 + β2t2)/(β1 + β2) and
t− = (β1t1 − β2t2)/(β1 − β2). This is a central orbit, which passes twice through the
origin on each cycle (Fig. 11(b)). The precession angle is given by ∆ϕ = (β−/β+)2π.

Epi-elliptic motion

The solution (38)–(39) has two components, each being a trajectory that is elliptic
The first component is

µ = µ1 cos[β1(t− t1)] , ν = ν1 sin[β1(t− t1)] ,

elliptical motion with frequency β1 and semi-axes µ1 and ν1 = µ1λ1. The second
component is

µ = µ2 cos[β2(t− t2)] , ν = ν2 sin[β2(t− t2)] ,

elliptical motion with frequency β2 and semi-axes µ2 and ν2 = µ2λ2. The character
of the trajectory is thus determined by the relative magnitudes and signs of the
parameters {µ1, ν1, µ2, ν2}.

First, we consider the case where the second ellipse fits within the first:

|µ1| − |µ2| > 0 and |ν1| − |ν2| > 0 .
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Figure 12. (a) Inner ellipse with major and minor semi-axes a and b. Outer
ellipse taken as a circle of radius c. (b) c < b < a: loop orbit. (c) b < c < a: box
orbit. (d) b < a < c: loop orbit. In all cases, β1 = 1.0 and β2 = π2/8. The inner
ellipse is shown as a heavy curve in each panel.

Clearly, % remains positive, with %min = min{(|µ1| − |µ2|), (|ν1| − |ν2|)}. There is an
exclusion zone around the origin, inaccessible to the trajectory and we have a loop
orbit. Next, we consider the case where the first ellipse fits within the second:

|µ1| − |µ2| < 0 and |ν1| − |ν2| < 0 .

Again, % is bounded away from zero and the trajectory is a loop orbit. The remaining
case is where (|µ1| − |µ2|) and (|ν1| − |ν2|) are of opposite signs. Then % may become
zero, the trajectory may pass through the origin and the orbit is of box type. Since it
is only in this case that recession may be observed, the criterion for recession may be
written

(|µ1| − |µ2|) · (|ν1| − |ν2|) < 0 . (41)

as stated in (27) in §4.
To illustrate the character of the orbits, we plot some solutions in Fig 12. We let

the major and minor semi-axes of the inner ellipse be a and b and those of the outer
ellipse be c and d. Without loss of generality, we take c = d. Then the three cases
discussed above are presented in panels (b), (c) and (d) of Fig 12. The criterion (41)
for box orbits in this case is b < c < a. Clearly, loop orbits obtain for c < b and for
c > a.

There is a simple geometric interpretation of the criterion (41) for box orbits and
recession: it requires that, if the two ellipses are drawn with a common centre, they
intersect each other.
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Squaring the circle

The domain of the the orbit (1)–(2) of the simple harmonic oscillator, in the generic
case of irrational δ′, is dense in a rectangular area. If, for simplicity, we assume
x0 = y0, the orbit covers a square. It is not immediately obvious how this may be
expressed in terms of epi-elliptic motion. However, let us assume that ν1 = µ2 = 0, so
that the elliptic components degenerate into two orthogonal line segements and the
solution (38)–(39) becomes

µ = µ1 cosβ1(t− t1) , ν = ν2 sinβ2(t− t2) . (42)

This is isomorphic to the solution (1)–(2). Thus, the circle is squared.
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