The Sieve of Eratosthenes and a Partition of the Natural Numbers

PETER LYNCH, UCD

ABSTRACT. The sieve of Eratosthenes is a method for finding all the prime numbers less than some maximum value M by repeatedly removing multiples of the smallest remaining prime until no composite numbers less than or equal to M remain. The sieve provides a means of partitioning the natural numbers. We examine this partition and derive an expression for the densities of the constituent "Eratosthenes sets".

1 The Sieve of Eratosthenes

The primorial, P_K — often denoted K# — is defined to be the product of the first K primes:

$$P_K = \prod_{k=1}^K p_k \, .$$

The sequence of primorials is $\{2, 6, 30, 210, 2310, \ldots\}$ and the terms of the sequence grow as K^K . It is convenient to set $M = P_K$. The algorithm of Eratosthenes goes as follows: starting from the set $I_M = \{1, 2, 3, \ldots, M\}$,

- eliminate all multiples of 2 greater than 2;
- eliminate all remaining multiples of 3 greater than 3;
- eliminate all remaining multiples of 5 greater than 5;
-
- eliminate all remaining multiples of p_K greater than p_K .

All that remains is the set of the first *m* prime numbers, $\{2, 3, 5, \ldots, p_m\}$, where p_m is the largest prime not exceeding $M = P_K$.

For all $k \in \mathbb{N}$, let D_k be the set of numbers in \mathbb{N} that are divisible by p_k . For $k = 1, 2, \ldots, K$, we define the set $D_{k,M} = D_k \cap I_M$ to be the set of numbers in I_M that are divisible by p_k . Thus, $D_{1,M}$ is the set of even numbers up to M, $D_{2,M}$ the multiples of 3 up to M, and so on.

The k-th "Eratosthenes set", E_k , is the set containing p_k together with all the numbers removed at stage k. Thus, E_1 is the set of all multiples of 2, that is, all the even numbers; E_2 is the set of odd multiples of 3; E_3 is the set of multiples of 5 not divisible by 2 or 3; E_4 is the set of multiples of 7 not divisible by 2, 3 or 5; and so on.

Table 1: Arrangement of the natural numbers as multiples of the prime numbers in sequence. Row 0, column 0 contains $E_0 = \{1\}$. The k-th row contains the "Eratosthenes set" E_k .

1																
	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	
	3	9	15	21	27	33	39	45	51	57	63	69	81	87	93	
	5	25	35	55	65	85	95	115	125	145	155	175	185	205	215	
	7	49	77	91	119	133	161	203	217	259	287	301	329	343	371	
	11	121	143	187	209	253	319	341	407	451	473	517	583	649	671	
	:	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	·

The Eratosthenes set E_k may be defined symbolically:

$$E_k = \{ n \in \mathbb{N} : (p_k \mid n) \land (p_\ell \nmid n \text{ for } \ell < k) \}.$$

Some initial values of E_k are shown in Table 1.

We denote by $E_{k,M}$ the set $E_k \cap I_M$. It is the set containing all multiples of p_k up to M that are not multiples of any smaller prime. We see immediately that $E_{1,M} = D_{1,M}$, that $E_{2,M} = D_{2,M} \setminus D_{1,M} = D_{2,M} \cap D_{1,M}^{\mathsf{c}}$ and, more generally, that

$$E_{k,M} = D_{k,M} \setminus (D_{1,M} \cup D_{2,M} \cup \dots \cup D_{k-1,M}) = D_{k,M} \cap (D_{1,M} \cup D_{2,M} \cup \dots \cup D_{k-1,M})^{\mathsf{c}}.$$

Using De Morgan's law, we may write

$$E_{k,M} = D_{k,M} \cap \left(D_{1,M}^{\mathsf{c}} \cap D_{2,M}^{\mathsf{c}} \cap \dots \cap D_{k-1,M}^{\mathsf{c}} \right).$$

$$\tag{1}$$

Since all primes p_k for $k \leq K$ divide M, the sizes of the D-sets are known: $|D_{k,M}| = M/p_k$ and so $|D_{j,M}^{c}| = M - M/p_j = M(1 - 1/p_j)$.

The Inclusion-Exclusion Principle

The inclusion-exclusion principle provides a valuable means of calculating the sizes of unions of sets (Bajnok, 2013). We denote the cardinality of a finite set A by |A|. The size of the union of two finite sets is

$$|A \cup B| = |A| + |B| - |A \cap B|, \qquad (2)$$

where the intersection term prevents double counting. For the union of three sets,

$$|A \cup B \cup C| = (|A| + |B| + |C|) - (|A \cap B| + |A \cap C| + |B \cap C|) + |A \cap B \cap C|.$$
(3)

Prime Sieve

This idea can be generalised using the inclusion-exclusion principle to give the magnitude of the union of n finite sets:

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \leq i < j \leq n} |A_{i} \cap A_{j}| + \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}| - \dots + (-1)^{n+1} |A_{1} \cap \dots \cap A_{n}| .$$
(4)

Thus, the size of the union of sets is expressed as a combination of sizes of intersections.

Density

We define the density of a set $A \subseteq I_M$ (relative to M) to be $\rho(A) = |A|/M$. Then $\rho(D_{k,M}) =$ $1/p_k$ and $\rho(D_{j,M}^{c}) = (1 - 1/p_j)$. Clearly, density is additive for disjoint sets. Thus,

$$\rho(D_{k,M}) = \rho(D_{k,M} \cap (D_{\ell,M} \uplus D^{\mathsf{C}}_{\ell,M})) = \rho(D_{k,M} \cap D_{\ell,M}) + \rho(D_{k,M} \cap D^{\mathsf{C}}_{\ell,M})$$

and, if p_k and p_ℓ are coprime, $\rho(D_{k,M} \cap D_{\ell,M}) = 1/p_k p_\ell$ and $\rho(D_{k,M} \cap D_{\ell,M}^{c}) = (p_\ell - 1)/p_k p_\ell$, so that

 $\rho(D_{k,M} \cap D_{\ell,M}) = \rho(D_{k,M})\rho(D_{\ell,M})$ and $\rho(D_{k,M} \cap D_{\ell,M}^{\mathsf{C}}) = \rho(D_{k,M})\rho(D_{\ell,M}^{\mathsf{C}})$ (5)

Moreover.

$$\rho(D_{k,M}^{c} \cap D_{\ell,M}^{c}) = \rho((D_{k,M} \cup D_{\ell,M})^{c}) = 1 - \rho(D_{k,M} \cup D_{\ell,M}) \\
= 1 - [\rho(D_{k,M}) + \rho(D_{\ell,M}) - \rho(D_{k,M} \cap D_{\ell,M})] \\
= 1 - \left(\frac{1}{p_{k}} + \frac{1}{p_{\ell}}\right) + \frac{1}{p_{k}p_{\ell}} = \frac{p_{k} - 1}{p_{k}} \frac{p_{\ell} - 1}{p_{\ell}} \\
= \rho(D_{k,M}^{c})\rho(D_{\ell,M}^{c}).$$
(6)

We note that division of equations (2)-(4) by M converts the cardinalities to densities. Thus, for example, (2) becomes

 $\rho(A \cup B) = \rho(A) + \rho(B) - \rho(A \cap B).$

By means of the inclusion-exclusion principle, we easily extend the product relationships (5)and (6) to show that the density of the set $E_{k,M}$ in (1) is the product of the densities of the component sets on the right side:

$$\rho(E_{k,M}) = \rho(D_{k,M})\rho(D_{1,M}^{c})\rho(D_{2,M}^{c})\dots\rho(D_{k-1,M}^{c}).$$
(7)

Using explicit expressions for the terms on the right, the density of the set $E_{k,N}$ is

$$\rho(E_{k,M}) = \frac{1}{p_k} \frac{(p_1 - 1)}{p_1} \frac{(p_2 - 1)}{p_2} \dots \frac{(p_{k-1} - 1)}{p_{k-1}} = \frac{1}{P_k} \prod_{j=1}^{k-1} (p_j - 1), \qquad (8)$$

where $P_k = p_1 p_2 \dots p_k$. We observe that the numbers $\rho_{k,M} := \rho(E_{k,M})$ are generated by a recurrence relation

$$\rho_{k+1,M} = \left(\frac{p_k - 1}{p_{k+1}}\right) \rho_{k,M} \,, \tag{9}$$

with initial value $\rho_{1,M} = \frac{1}{2}$. This enables us to compute the sequence $\{\rho_{k,M}\}$. The first eight density values are given in Table 2.

k	1	2	3	4	5	6	7	8	
p_k	2	3	5	7	11	13	17	19	
P_k	2	6	30	210	2310	30,030	$510,\!510$	$9,\!699,\!690$	•••
$ ho_k$	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{15}$	$\frac{4}{105}$	$\frac{8}{385}$	$\frac{16}{1001}$	$\frac{192}{17,017}$	$\frac{3072}{323,323}$	

Table 2: Density of the Eratosthenes sets E_k for $k \leq 8$.

2 Passage from I_N to \mathbb{N}

For arbitrary $N \in \mathbb{N}$, let $I_N = \{1, 2, ..., N\}$ and let $D_{k,N}$ denote $D_k \cap \{1, 2, ..., N\}$, the set of all multiples of p_k not exceeding N. Then $|D_{k,N}| = \lfloor N/p_k \rfloor$ and $\rho(D_{k,N}) = \lfloor N/p_k \rfloor/N$. Since, for any real x, we have $x - 1 < \lfloor x \rfloor \le x$, it follows that $(N/p_k) - 1 < \lfloor N/p_k \rfloor \le N/p_k$, and thus $(1/p_k) - (1/N) < \rho(D_{k,N}) \le 1/p_k$. Therefore, the limit of $\rho(D_{k,N})$ exists, so that

$$\rho(D_k) := \lim_{N \to \infty} \rho(D_{k,N}) = \frac{1}{p_k} \quad \text{and also} \quad \rho(D_k^c) = 1 - \rho(D_k) = 1 - \frac{1}{p_k}$$

In this way, we can pass from I_N to \mathbb{N} , obtaining the densities of all the Eratosthenes sets in \mathbb{N} . In particular, the values of ρ_k in Table 2 are also the densities of the first eight (infinite) Eratosthenes sets relative to the natural numbers. Equations (7) and (8) remain valid in the limit $M \to \infty$, as does the recurrence relation for $\rho_k := \lim_{M\to\infty} \rho_{k,M}$. Thus,

$$\rho_{k+1} = \left(\frac{p_k - 1}{p_{k+1}}\right) \rho_k \,. \tag{10}$$

Convergence

We now show that the series $\sum \rho_n$ converges. The simple ratio test is inadequate, as $\lim \rho_{n+1}/\rho_n = 1$, telling us nothing. A more subtle and discriminating test is required. In his classical text, *Introduction to the Theory of Infinite Series*, Bromwich (1926, §12.1) describes an extension of the ratio test, originating with Ernst Kummer and refined by Ulisse Dini. To test a series $\sum a_n$ for convergence, we select a sequence $\{d_n\}$ such that the series $\sum d_n^{-1}$ is divergent. The criterion is as follows.

Let
$$t_n = d_n \left[\frac{a_n}{a_{n+1}} \right] - d_{n+1}$$
. Then $\begin{cases} \text{if } \lim t_n > 0, \quad \sum a_n \text{ converges;} \\ \text{if } \lim t_n < 0, \quad \sum a_n \text{ diverges.} \end{cases}$ (11)

If $\lim t_n = 0$, there is no conclusion and another choice of $\{d_n\}$ is required. The selection of the sequence $\{d_n\}$ depends on the series being tested.

This test can be used to show that the series $\sum \rho_n$ converges. From (9), the ratio of successive terms is $\rho_n/\rho_{n+1} = p_{n+1}/(p_n - 1)$. In his paper on infinite series, Euler (1737) showed that the series $\sum 1/p_n$ diverges. Choosing $d_n = p_n$, we have

$$t_n = p_n \left[\frac{p_{n+1}}{p_n - 1} \right] - p_{n+1} = \left[\frac{p_n p_{n+1} - (p_n - 1)p_{n+1}}{p_n - 1} \right] = \left[\frac{p_{n+1}}{p_n - 1} \right] > 1,$$

which fulfils the convergence criterion $\lim t_n > 0$, so the series converges. We will show below that the sum to infinity is 1, but the convergence rate is quite slow. Writing $\sigma_N = \sum_{k=1}^N \rho_k$ we have $\sigma_{10} = 0.842$, $\sigma_{1,000} = 0.938$, and $\sigma_{100,000} = 0.960$.

Partitioning the Natural Numbers

Defining $E_0 = \{1\}$, we obtain a partition of the natural numbers \mathbb{N} :

$$\mathbb{N} = \bigcup_{n=0}^{\infty} E_n \,, \tag{12}$$

where the sets E_n may be listed explicitly:

$$E_{0} = \langle 1 \rangle$$

$$E_{1} = \langle 2, 4, 6, 8, 10, 12, ... \rangle$$

$$E_{2} = \langle 3, 9, 15, 21, 27, ... \rangle$$

$$E_{3} = \langle 5, 25, 35, 55, 65, 85, ... \rangle$$

$$...$$

$$E_{K} = \langle p_{K}, p_{K}^{2}, p_{K}p_{K+1}, ... \rangle$$

$$...$$

The disjoint union in (12) contains all the positive integers, each occurring just once, providing a partition of \mathbb{N} .

Totient Function Expression for ρ_k

Euler's totient function $\varphi(n)$ counts the natural numbers up to n that are coprime to n. In other words, $\varphi(n)$ is the number of integers k in the range $1 \le k \le n$ for which the greatest common divisor gcd(k, n) is equal to 1. Clearly, for prime numbers, $\varphi(p) = p - 1$. Gauss first proved a result presented as Theorem 63 in Hardy and Wright (1960):

$$\sum_{d|N} \varphi(d) = N \,.$$

This states that the sum of the numbers $\varphi(d)$, extended over all the divisors d of any number N, is equal to N itself.

Prime Sieve

The number of values x coprime to $\prod_{j=1}^{k} m_j$ is, by definition, given by $\varphi(m_1 m_2 \dots m_k)$. But Euler's function is multiplicative for products of mutually coprime numbers $\{m_1, m_2, \dots, m_k\}$:

$$\varphi(m_1m_2\dots m_k) = \prod_{i=1}^k \varphi(m_j)$$

Thus, for $M = P_K$, we have

$$\varphi(P_K) = \varphi\left(\prod_{j=1}^K p_j\right) = \prod_{j=1}^K \varphi(p_j) = \prod_{j=1}^K (p_j - 1) = P_K \prod_{j=1}^K \left(1 - \frac{1}{p_j}\right).$$

Now, using (8), we can write the density in terms of the totient function:

$$\rho_k = \frac{1}{P_k} \prod_{j=1}^{k-1} (p_j - 1) = \frac{1}{P_k} \prod_{j=1}^{k-1} \varphi(p_j) = \frac{\varphi(P_{k-1})}{P_k} \,. \tag{13}$$

For example, for K = 4 we have $p_K = 7$, $P_K = 210$ and $P_{K-1} = 30$ and, counting explicitly, $\varphi(30) = |\{1, 7, 11, 13, 17, 19, 23, 29\}| = 8$. Thus,

$$\rho_4 = \frac{\varphi(P_3)}{P_4} = \frac{8}{210} = \frac{4}{105},$$

as already shown in Table 2.

An Interesting Result

Defining the cumulative density $\sigma_k = \sum_{j=1}^k \rho_k$ and noting that, as the sets E_k are mutually disjoint, σ_k must approach 1, we obtain the relationship

$$\sum_{k=1}^{\infty} \left[\frac{\varphi(P_{k-1})}{P_k} \right] = 1.$$

This result must be well known, although it has not been found in a cursory search of the literature.

Acknowledgements

My thanks to Dr Kevin Hutchinson, UCD for comments on a draft of this paper.

Sources

• Bajnok, Béla, 2013: An Invitation to Abstract Mathematics. Springer, 406pp. ISBN: 978-1-4899-9560-5.

Prime Sieve

• Bromwich T. J. I'A, 1926: Introduction to the Theory of Infinite Series, 2nd Edn. (1926), Macmillan, London, 542pp. 1st Edn., 1908.

• Euler Leonhard, 1737: Variæ observationes circa series infinitas (Various Observations about Infinite Series). Royal Imperial Academy, St Petersburg.

• Hardy, G. H. and E. M. Wright, 1960: An Introduction to the Theory of Numbers, 4th Edn., Oxford, Clarendon Press., xvi+418pp.