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The Sieve of Eratosthenes and a
Partition of the Natural Numbers

Peter Lynch, UCD

Abstract. The sieve of Eratosthenes is a method for finding all the prime numbers less than
some maximum value M by repeatedly removing multiples of the smallest remaining prime
until no composite numbers less than or equal to M remain. The sieve provides a means of
partitioning the natural numbers. We examine this partition and derive an expression for
the densities of the constituent “Eratosthenes sets”.

1 The Sieve of Eratosthenes

The primorial, PK — often denoted K# — is defined to be the product of the first K primes:

PK =
K∏
k=1

pk .

The sequence of primorials is {2, 6, 30, 210, 2310, . . . } and the terms of the sequence grow
as KK . It is convenient to set M = PK . The algorithm of Eratosthenes goes as follows:
starting from the set IM = {1, 2, 3, . . . ,M},

• eliminate all multiples of 2 greater than 2;

• eliminate all remaining multiples of 3 greater than 3;

• eliminate all remaining multiples of 5 greater than 5;

• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• eliminate all remaining multiples of pK greater than pK .

All that remains is the set of the first m prime numbers, {2, 3, 5, . . . , pm}, where pm is the
largest prime not exceeding M = PK .

For all k ∈ N, let Dk be the set of numbers in N that are divisible by pk. For k = 1, 2, . . . , K,
we define the set Dk,M = Dk ∩ IM to be the set of numbers in IM that are divisible by pk.
Thus, D1,M is the set of even numbers up to M , D2,M the multiples of 3 up to M , and so
on.

The k-th “Eratosthenes set”, Ek, is the set containing pk together with all the numbers
removed at stage k. Thus, E1 is the set of all multiples of 2, that is, all the even numbers;
E2 is the set of odd multiples of 3; E3 is the set of multiples of 5 not divisible by 2 or 3; E4

is the set of multiples of 7 not divisible by 2, 3 or 5; and so on.
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Table 1: Arrangement of the natural numbers as multiples of the prime numbers in sequence.
Row 0, column 0 contains E0 = {1}. The k-th row contains the “Eratosthenes set” Ek.

1
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 . . .
3 9 15 21 27 33 39 45 51 57 63 69 81 87 93 . . .
5 25 35 55 65 85 95 115 125 145 155 175 185 205 215 . . .
7 49 77 91 119 133 161 203 217 259 287 301 329 343 371 . . .
11 121 143 187 209 253 319 341 407 451 473 517 583 649 671 . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... . . .

The Eratosthenes set Ek may be defined symbolically:

Ek = {n ∈ N : (pk | n) ∧ (p` - n for ` < k)} .

Some initial values of Ek are shown in Table 1.

We denote by Ek,M the set Ek ∩ IM . It is the set containing all multiples of pk up to M
that are not multiples of any smaller prime. We see immediately that E1,M = D1,M , that
E2,M = D2,M \D1,M = D2,M ∩DC

1,M and, more generally, that

Ek,M = Dk,M \ (D1,M ∪D2,M ∪ · · · ∪Dk−1,M) = Dk,M ∩ (D1,M ∪D2,M ∪ · · · ∪Dk−1,M)C .

Using De Morgan’s law, we may write

Ek,M = Dk,M ∩ (DC
1,M ∩DC

2,M ∩ · · · ∩DC
k−1,M) . (1)

Since all primes pk for k ≤ K divide M , the sizes of the D-sets are known: |Dk,M | = M/pk
and so |DC

j,M | =M −M/pj =M(1− 1/pj).

The Inclusion-Exclusion Principle

The inclusion-exclusion principle provides a valuable means of calculating the sizes of unions
of sets (Bajnok, 2013). We denote the cardinality of a finite set A by |A|. The size of the
union of two finite sets is

|A ∪B| = |A|+ |B| − |A ∩B| , (2)

where the intersection term prevents double counting. For the union of three sets,

|A ∪B ∪ C| = (|A|+ |B|+ |C|)− (|A ∩B|+ |A ∩ C|+ |B ∩ C|) + |A ∩B ∩ C| . (3)
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This idea can be generalised using the inclusion-exclusion principle to give the magnitude of
the union of n finite sets:∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑

i=1

|Ai| −
∑

16i<j6n

|Ai ∩Aj|+
∑

16i<j<k6n

|Ai ∩Aj ∩Ak| − · · ·+ (−1)n+1 |A1 ∩ · · · ∩ An| . (4)

Thus, the size of the union of sets is expressed as a combination of sizes of intersections.

Density

We define the density of a set A ⊆ IM (relative toM) to be ρ(A) = |A|/M . Then ρ(Dk,M) =
1/pk and ρ(DC

j,M) = (1− 1/pj). Clearly, density is additive for disjoint sets. Thus,

ρ(Dk,M) = ρ(Dk,M ∩ (D`,M ]DC
`,M)) = ρ(Dk,M ∩D`,M) + ρ(Dk,M ∩DC

`,M)

and, if pk and p` are coprime, ρ(Dk,M ∩D`,M) = 1/pkp` and ρ(Dk,M ∩DC
`,M) = (p`− 1)/pkp`,

so that

ρ(Dk,M ∩D`,M) = ρ(Dk,M)ρ(D`,M) and ρ(Dk,M ∩DC
`,M) = ρ(Dk,M)ρ(DC

`,M) (5)

Moreover,

ρ(DC
k,M ∩DC

`,M) = ρ((Dk,M ∪D`,M)C) = 1− ρ(Dk,M ∪D`,M)

= 1− [ρ(Dk,M) + ρ(D`,M)− ρ(Dk,M ∩D`,M)]

= 1−
(

1

pk
+

1

p`

)
+

1

pkp`
=

pk − 1

pk

p` − 1

p`

= ρ(DC
k,M)ρ(DC

`,M) . (6)

We note that division of equations (2)–(4) byM converts the cardinalities to densities. Thus,
for example, (2) becomes

ρ(A ∪B) = ρ(A) + ρ(B)− ρ(A ∩B) .

By means of the inclusion-exclusion principle, we easily extend the product relationships (5)
and (6) to show that the density of the set Ek,M in (1) is the product of the densities of the
component sets on the right side:

ρ(Ek,M) = ρ(Dk,M)ρ(DC
1,M)ρ(DC

2,M) . . . ρ(DC
k−1,M) . (7)

Using explicit expressions for the terms on the right, the density of the set Ek,N is

ρ(Ek,M) =
1

pk

(p1 − 1)

p1

(p2 − 1)

p2
. . .

(pk−1 − 1)

pk−1
=

1

Pk

k−1∏
j=1

(pj − 1) , (8)

where Pk = p1p2 . . . pk. We observe that the numbers ρk,M := ρ(Ek,M) are generated by a
recurrence relation

ρk+1,M =

(
pk − 1

pk+1

)
ρk,M , (9)

with initial value ρ1,M = 1
2
. This enables us to compute the sequence {ρk,M}. The first eight

density values are given in Table 2.
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Table 2: Density of the Eratosthenes sets Ek for k ≤ 8.

k 1 2 3 4 5 6 7 8 . . .
pk 2 3 5 7 11 13 17 19 . . .
Pk 2 6 30 210 2310 30,030 510,510 9,699,690 . . .
ρk

1
2

1
6

1
15

4
105

8
385

16
1001

192
17,017

3072
323,323

. . .

2 Passage from IN to N

For arbitrary N ∈ N, let IN = {1, 2, . . . , N} and let Dk,N denote Dk ∩ {1, 2, ..., N}, the set
of all multiples of pk not exceeding N . Then |Dk,N | = [N/pk] and ρ(Dk,N) = [N/pk]/N .
Since, for any real x, we have x−1 < [x] ≤ x, it follows that (N/pk)−1 < [N/pk] ≤ N/pk,
and thus (1/pk)− (1/N) < ρ(Dk,N) ≤ 1/pk. Therefore, the limit of ρ(Dk,N) exists, so that

ρ(Dk) := lim
N→∞

ρ(Dk,N) =
1

pk
and also ρ(Dc

k) = 1− ρ(Dk) = 1− 1

pk
.

In this way, we can pass from IN to N, obtaining the densities of all the Eratosthenes sets in
N. In particular, the values of ρk in Table 2 are also the densities of the first eight (infinite)
Eratosthenes sets relative to the natural numbers. Equations (7) and (8) remain valid in the
limit M →∞, as does the recurrence relation for ρk := limM→∞ ρk,M . Thus,

ρk+1 =

(
pk − 1

pk+1

)
ρk . (10)

Convergence

We now show that the series
∑
ρn converges. The simple ratio test is inadequate, as

lim ρn+1/ρn = 1, telling us nothing. A more subtle and discriminating test is required.

In his classical text, Introduction to the Theory of Infinite Series, Bromwich (1926, §12.1)
describes an extension of the ratio test, originating with Ernst Kummer and refined by Ulisse
Dini. To test a series

∑
an for convergence, we select a sequence {dn} such that the series∑

d−1n is divergent. The criterion is as follows.

Let tn = dn

[
an
an+1

]
− dn+1 . Then

{
if lim tn > 0,

∑
an converges;

if lim tn < 0,
∑
an diverges.

(11)

If lim tn = 0, there is no conclusion and another choice of {dn} is required. The selection of
the sequence {dn} depends on the series being tested.
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This test can be used to show that the series
∑
ρn converges. From (9), the ratio of successive

terms is ρn/ρn+1 = pn+1/(pn − 1). In his paper on infinite series, Euler (1737) showed that
the series

∑
1/pn diverges. Choosing dn = pn, we have

tn = pn

[
pn+1

pn − 1

]
− pn+1 =

[
pnpn+1 − (pn − 1)pn+1

pn − 1

]
=

[
pn+1

pn − 1

]
> 1 ,

which fulfils the convergence criterion lim tn > 0, so the series converges. We will show below
that the sum to infinity is 1, but the convergence rate is quite slow. Writing σN =

∑N
k=1 ρk

we have σ10 = 0.842, σ1,000 = 0.938, and σ100,000 = 0.960.

Partitioning the Natural Numbers

Defining E0 = {1}, we obtain a partition of the natural numbers N:

N =
∞⊎
n=0

En , (12)

where the sets En may be listed explicitly:

E0 = 〈1〉
E1 = 〈2, 4, 6, 8, 10, 12, . . . 〉
E2 = 〈3, 9, 15, 21, 27, . . . 〉
E3 = 〈5, 25, 35, 55, 65, 85, . . . 〉

. . . . . . . . . . . . . . . . . . . . . . . .

EK = 〈pK , p2K , pKpK+1, . . . 〉
. . . . . . . . . . . . . . . . . . . . . . . .

The disjoint union in (12) contains all the positive integers, each occurring just once, pro-
viding a partition of N.

Totient Function Expression for ρk

Euler’s totient function ϕ(n) counts the natural numbers up to n that are coprime to n. In
other words, ϕ(n) is the number of integers k in the range 1 ≤ k ≤ n for which the greatest
common divisor gcd(k, n) is equal to 1. Clearly, for prime numbers, ϕ(p) = p − 1. Gauss
first proved a result presented as Theorem 63 in Hardy and Wright (1960):∑

d|N

ϕ(d) = N .

This states that the sum of the numbers ϕ(d), extended over all the divisors d of any number
N , is equal to N itself.
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The number of values x coprime to
∏k

j=1mj is, by definition, given by ϕ(m1m2 . . .mk). But
Euler’s function is multiplicative for products of mutually coprime numbers {m1,m2, . . . ,mk}:

ϕ(m1m2 . . .mk) =
k∏

i=1

ϕ(mj) .

Thus, for M = PK , we have

ϕ(PK) = ϕ

(
K∏
j=1

pj

)
=

K∏
j=1

ϕ(pj) =
K∏
j=1

(pj − 1) = PK

K∏
j=1

(
1− 1

pj

)
.

Now, using (8), we can write the density in terms of the totient function:

ρk =
1

Pk

k−1∏
j=1

(pj − 1) =
1

Pk

k−1∏
j=1

ϕ(pj) =
ϕ(Pk−1)

Pk

. (13)

For example, for K = 4 we have pK = 7, PK = 210 and PK−1 = 30 and, counting explicitly,
ϕ(30) = |{1, 7, 11, 13, 17, 19, 23, 29}| = 8. Thus,

ρ4 =
ϕ(P3)

P4

=
8

210
=

4

105
,

as already shown in Table 2.

An Interesting Result

Defining the cumulative density σk =
∑k

j=1 ρk and noting that, as the sets Ek are mutually
disjoint, σk must approach 1, we obtain the relationship

∞∑
k=1

[
ϕ(Pk−1)

Pk

]
= 1 .

This result must be well known, although it has not been found in a cursory search of the
literature.
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