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Abstract

When the frequencies of the elastic and pendular oscillations of an elastic pendulum or swinging spring are in the ratio
2:1, there is a regular exchange of energy between the two modes of oscillation. We refer to this phenorpelsatioss
Between the horizontal excursions, or pulses, the spring undergoes a change of azimuth which we call the precession angle
The pulsation and stepwise precession are the characteristic features of the dynamics of the swinging spring. The modulatior
equations for the small-amplitude resonant motion of the system are the well-known three-wave equations. We use Hamiltonian
reduction to determine a complete analytical solution. The amplitudes and phases are expressed in terms of both Weierstras
and Jacobi elliptic functions. The strength of the pulsation may be computed from the invariants of the equations. Several
analytical formulas are found for the precession angle. We deduce simplified approximate expressions, in terms of elementary
functions, for the pulsation amplitude and precession angle and demonstrate their high accuracy by numerical experiments
Thus, for given initial conditions, we can describe the envelope dynamics without solving the equations. Conversely, given
the parameters which determine the envelope, we can specify initial conditions which, to a high level of accuracy, yield this
envelope.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The present work is concerned with the three-dimensional motion of the elastic pendulum or swinging spring
in the case of resonance. It continues the investigation described in previous studies bjiB}rzetd Holm and
Lynch[9]. In particular, the exchange of energy between quasi-vertical and quasi-horizontal oscillations and the
stepwise precession of the swing-plane are investigated.

When the ratio of the normal mode frequencies of the spring is 2:1, a resonance occurs, in which energy is trans-
ferred periodically between vertical and horizontal oscillations. The first study of this resonance was that of Vitt and
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Gorelik[17]. We refer to the regular exchange phenomenguksation. The motion has two distinct characteristic
times, that of the fast oscillations and that of the slow pulsation envelope. As the oscillations change from horizontal
to vertical and back again, itis observed that each horizontal excursion or pulse is in a different direction. We call this
changeinazimuth the precession angle. The motion thus has three components: oscillation (fast), pulsation (slow) and
precession (slow), closely analogous to the rotation (fast), nutation (slow) and precession (slow) of a spifiiig top

We consider two complementary questions, one direct and one inverse:

e Question 1. Given initial conditions, can we describe the envelope dynamics without solving the equations?
e Question 2. Given the parameters which determine the envelope, can we specify initial conditions which yield
this envelope?

We provide a complete answer to Question 1. Analytical expressions are derived for the pulsation amplitude, pre-
cession angle and period in terms of the invariants of the motion. We also develop accurate approximate expressions
for the pulsation amplitude and precession angle. Thus, the envelope dynamics may be deduced from the initial
conditions. Question 2 is more recondite, but we can give a positive answer for the physically interesting case of
strong pulsation. We derive approximate expressions for the angular momentum and Hamiltonian in terms of the
pulsation amplitude and precession angle. Initial conditions can then be determined which yield the desired envelope
to a good level of approximation.

We briefly outline the contents of the paper bel@ection 2reviews the physics of the swinging spring and
previous work done on modelling its behaviour. When the amplitude is small, the Lagrangian may be approximated
to cubic order. When it is averaged over the fast oscillation time, a set of equations for the envelope amplitudes
is obtained. These modulation equations are the three-wave equations. They are found to have three independen
constants of motion and are therefore completely integrable. This system of equations can be reduced to a single
equation for one of the amplitudes.

Small-amplitude perturbations about steady-state solutions are studieciion 3 and an estimate of the
precession angle is obtained. The general solution of the three-wave equations for finite-amplitude motions is
derived inSection 4 The amplitudes are expressed in terms of elliptic functions and the phase angles as elliptic
integrals. Analytical expressions for the stepwise precession of the swing-plane are then deriveecTinns4
provides an exact answer to the direct question, Question 1 mentioned above. The analytic expression for the
precession angle is shown to reduce to the estimate obtairgsttion 3n the appropriate limit.

Recently, Dullin et al[5] constructed a canonical transformation in which the angle of the swing-plane is a
coordinate in an action-angle system. They showed that the precession angle is one of the two rotation numbers of
the invariant tori of the integrable system. They obtained a simple equation for the precession angle by approximating
an elliptic integral. They proved analytically that the resonant swinging spring has monodromy and concluded that
the system provides a clear physical demonstration of this phenomenon.

Several approximate expressions for the precession angle, involving only elementary functions, are obtained in
Section 5 One of these is equivalent to the formula reportefbin Since we have already obtained an analytic
expression for the precession angle, it is possible to assess the accuracy of these approximations by comparing the
values they give with the true values. The approximate expressions are found to give remarkably accurate results.
The intensity of the pulsation envelope is determined by solving a cubic equation whose coefficients are defined by
the invariants.

To answer the inverse question, Question 2 above, we assume the pulsation amplitude and precession angle are
given and derive expressions for the invariants. From these, appropriate initial conditions are easily determined. In

1 AJava Appletillustrating the pulsation of the swinging spring may be fouhttat/www.maths.tcd.iefplynch/SwingingSpring/S$iome.
Page.html
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addition to being easier to evaluate, the approximate formulas for the precession angle are needed to answer thi
inverse question: the analytic expression is not easily inverted whereas the approximate formulas for the pulsation
amplitude can be inverted easily. To obtain an invertible expression for the pulsation amplitude, we approximate
the cubic by a quadratic, and obtain$ection 6simple approximate expressions for the angular momentum and
Hamiltonian. These approximations may be used to control the envelope dynamics by an appropriate choice of
initial conditions.

In Section 7 we present a schematic diagram which shows the qualitative dependence of the envelope mo-
tion on the values of the invariants. This allows us to determine, at a glance, the general character of the so-
lution for given values of the constants of motion. Several important special solutions are indicated on the
diagram.

2. Thedynamical equations

The physical system under investigation is an elastic pendulum, or swinging spring, consisting of a heavy mass
suspended from a fixed point by a light spring and moving under graviflyig. ). We assume an unstretched
length¢g, length¢ at equilibrium, spring constaiktand mass:. The Lagrangian, approximated to cubic order in
the amplitudes, is

L =32+ 32425 — 3oh (P + ) + 0%2%] + 322 +)D)z, )

wherex, y andz are the Cartesian coordinates centred at the point of equilibriwwes +/g/¢ is the frequency of

linear pendular motiony; = /k/m is the frequency of its elastic oscillations ahnd= Zoa)é/zz. The equations

of motion in Cartesian, spherical and cylindrical coordinates may be foufi@]nThere are two constants of the
motion, the total energy and the angular momentum about the vertical, and the system is not integrable. Its chaotic
motions have been studied by many authors (see referenfeg)n

Fig. 1. The swinging spring. Cartesian coordinates are used, with the origin at the point of stable equilibrium of the bob. The pivot is at point
(©,0,0).
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2.1. Thetime-averaged equations

We confine attention to the resonant case= 2wy and apply the averaged Lagrangian technique. The solution
is assumed to be of the form:

x = R{a(r) expliogt)}, (2
y = R{b(?) expliwrn)}, ()
z = R{c(r) expRiwgt)}. (4)

The coefficients(z), b(r) andc(f) are assumed to vary on a time-scale which is much longer than the time-scale of
the oscillationsz = 1/wg. The Lagrangian is averaged over this time, yielding

(L) = Ywr[I{aa* + bb* + 2¢c*} + Rix(@® + b?)c*)],

wherex = 1 /4wg. The resulting Euler—Lagrange equations are the modulation equations for the envelope dynamics:

ia = «ka*c, (%)
ib = kb*c, (6)
ic = 3k(@® + b?). @

2.2. Thethree-wave equations

We now transform to new variables:
A = k(a +ib), B = Jx(a—ib), C = k. (8)

Then the equations for the envelope dynamics take the form:

iA = B*C, 9)
iB = CA", (10)
iC = AB. (11)

These three equations for the slowly varying complex amplitutleB and C are thethree-wave equations. The

relevance of these equations in various physical contexts is discug8édlihey govern quadratic wave resonance

in fluids and plasmas. Their application to resonant Rossby wave triads is considg¥gH In Appendix A we

show that they are a special case of the Nahm equations which are used to construct soliton solutions in certain

particle field theories. For further references to the three-wave equations and a discussion of their prop@ties see
The three-wave equations conserve the following three quantities:

H = 3(ABC* + A*B*C) = R{ABC*}, (12)
N =|AP+|B?+2|CJ%, (13)

J=|AI?—|B)~ (14)
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The equations are completely integrable. They can be written in canonical form with Hamiltérdad Poisson
bracket§A, A*} = {B, B*} = {C, C*} = —2i, as

_ 20H

iA=i{A,H = —, 15
(A Hy =0 (15)

. 20H

iB=i{B,H = — 16

\B=1{B. H} = — . (16)

L 20H

iIC=i{C, H} = . 17
(C.H =S5 (17)

The following positive-definite combinations of andJ are physically significant:
Ny =3(N+D=|AP+IC%  N-=3(N-J)=I[B>+IC

These combinations are known as hanley—Rowe relations. Together with the HamiltoniaH , they provide three
independent constants of the motion. We note #iié invariant under the symmetry transformations:

(A, B,C) — (A€X, Be X (), (18)
(A, B,C) — (A€, B, CéX), (19)
(A, B,C) — (A, BX Cé€X). (20)

These symmetries are associated, via Noether's theorem, with the three invafiants N_}. Any two of the
transformations generate the third. This reflects the inter-depended¢ce&vefand N_.

The concept of an instantaneous ellipse was introducfg] .iff the slow variations are temporarily disregarded,
the horizontal projection of the trajectory of the pendulum giveii)yand (3)is a central ellipse. Its orientatiah
relative to thec-axis is given by

2R {ab*}

t = —. 21
anp=_—— (21)
This is equivalent to Eq. (4.20) §9]. Using the transformatio(8), it takes an even simpler form:
_J{ABY} .
tan 2 = RAB] arg{AB*}. (22)

As A, B andC vary, the orientatiop changes, causing the instantaneous ellipse to precess. The eccentricity of the
ellipse also changes, varying from (quasi-)circular to highly eccentric; this is the pulsation phenomenon.

2.3. Reduction of the system

To reduce the system, we express the amplitudes in polar form:

A = |A|expi§), (23)
B = | B exp(in), (24)
C = |C|expiy). (25)

In general, the phases df B andC are not periodic. Howevet,= y — (& + n) is periodic; this is clear fron28)
below. The Hamiltonian may be written:

H = |A||B||C] cos¢.
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The HamiltonianH is zero if any of the amplitudes vanish, or if cos= 0. These cases can be treated separately
as in[2,9], but the formulas derived for nonzefd give the correcd = 0 limit.

The amplitudgC| will be obtained in closed form in terms of elliptic functions. On€éis known,|A| and|B|
follow immediately from the Manley—Rowe relations:

|Al = /N4 = |CI2, |B| = \/N- —|CI2.

From(22)the precession angle is related to the phasgsty(& —n) /2. The phasesandny may now be determined.
Using the three-wavequations (9)—(11pgether withEgs. (23)—(25)we find

. H H
3 g n B2 (26)
so thatt andn can be obtained by quadratures. Finaflis determined unambiguously by
dic?
e —2Htan¢ and H = |A||B||C| cos¢. (27)
It also follows from(26) and (27Yhat
. 1 1 1
=H|(—+—7-—]. 28
‘ <|A|2+ B2 |C|2) (29)

The phase of” follows immediately,y = & + n + ¢, and we can then reconstruct the complete solution using
(23)—(25)

2.4. The equation for |C|2

FromEq. (11)for C, and its complex conjugate we get
d|C|?

dr
Using the definition of the Hamiltonian, it follows that

— 23{ABC"). (29)

|AI2IB2|CI% = H? + [3{ABC*}]2

Applying this to the square ¢29) and using the definitions of the Manley—Rowe quantities immediately yields an
equation forC|? alone:

dici?\? 2 22 2
( . ) = 4[(Ny — |CI)(N- — [CP)ICI* — H?]. (30)

We define the cubic polynomialy(|C|?) (plotted inFig. 2) by
@0(IC1?) = (N4 — |CI>)(N- — |CP)|CI2. (31)

Then the right-hand side ¢80) may be written 49o(|C|%) — H2]. For smallH?, this cubic has three positive real
roots. If these roots, in descending order of magnitude, are deagteck andC3, it follows that

0<C{<C3<N_<iN<N,<Ci<N (32)

(We have assumed without loss of generality thiat- 0.) In the case of equality of roots, the solution may
be obtained in terms of elementary functions. We assume in general that this is not so and spyé iior
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Fig. 2. Polynomiakbg as a function ofC|?.

terms of elliptic functions. However, before doing this, we investigate perturbation motion about steady
solutions.

3. Small-amplitude modulation of steady states

We consider the case where the variations of the amplitudes about their mean values are small. This enables u
to make additional approximations and derive simple estimates of the pulsation period and rate of precession. Fromn
these two quantities, the precession angle follows immediately.

3.1. Steady-state motion

We first consider solutions for which the amplitudds, | B and|C| are constant. The simplest cases are where
the phases are also constant; then the three-wave equations become

B*C=CA"*=AB=0,

which give three particular solutions

() A=Ag, B=C=0.
(i) B=Bo,C=A=0.
(i) C=Co, A=B=0.

The first two solutions correspond to conical motions: the bob moves in a circle, clockwise or anti-clockwise, while
the spring traces out a cone. These solutions are stable to small perturbations. The third particular case represen
purely vertical oscillations; this motion is unstalple].

More generally, fron{27), constancy of the amplitudes implies= y — (¢ + n) = 0 so thatd = |A||B||C|, and
the three-wave equations become

—|AJ& = |Bl|C], —[B|n = |C]|Al, —[Cly = |Al|B|. (33)
Differentiating(30), a simple algebraic manipulation yields

IC2 = 2= 12N - N2 +372). (34)
The other amplitudes are given by

|AI? = A3 = [(N +3J) + VN2 +3J2], |B|? = B3 = L[(N — 3J)) + VN2 +3J2].
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These solutions were studied by Lynd!8], who called them elliptic—parabolic modes (EP-modes) because of the
shape of the trajectory of the pendulum bob. The precession rate is givensbyp = %(é — 1) (see[9]). From
(33)it follows that
PE.c)
2Hp’
whereHp = AgBoCp. ForJ = 0 we have planar motion with

(35)

ICI?= %N, |A]?=|B? = iN.

These are the cup-like and cap-like solutions of Vitt and Goiféirg.
3.2. Perturbation about elliptic—parabolic motion

We consider small deviations about the steady EP-mode solutions. We @iAte- C(z) +e€ WhereCS is given
by (34)and|e| <« CS. Then, if(30)is differentiated and nonlinear termsdrare omitted, we obtain

d2
de v (2\/N2 + 312) €=0. (36)
The solution is(f) = €(0) coswpt, an oscillation aboufcz, with the pulsation frequency:

wp = ~2v N2 + 3J2. (37)

For the EP-modes, the horizontal projection is an ellipse precessing at a consta@t fdte perturbation is a
pulsating motion, with sinusoidal time variation, in which the major and minor axes of the ellipse alternately expand
and contract with periodp = 27/wp. The area of the ellipse is proportional foand remains constaff)]. It is
straightforward to derive expressions in terms of elementary functions for the remaining amplitudes and the phases,
but they are not required to determine the precession angle.

We note from(37)thaty/2N < wp < 2+/2N. From the precession rate and the pulsation frequency, the precession
angle follows immediatelyA¢ = 22Tp. Using(34), (35) and (37)this gives us

_JC(2)271_7T< J ) 2N — /N2 +3J2 (38)
T 2Howp 3 \/BHp JNZX32 |
For small angular momentuth < N, the term in square brackets is closef®/ and
JVN
Ap~ L IV _ (39)
3 \ V8Hy

4. Analytical solution of the three-wave equations
4.1. Solution in Weierstrass elliptic functions

We now derive an explicit analytical solution faf|2, valid for finite amplitudes. The solutions fpt|2 and| B|?
follow immediately from the Manley—Rowe relations. Th@6) are integrated for the phases. The integrals turn out
to be similar to those occurring for the spherical pendulum, so the approach of Whitt@kapplies. The required
properties of the Weierstrass elliptic functions are given in Whittaker and WEitSp@&hapter 20fnd Lawderf12,
Chapter 6](see alsd1,4,7)).
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4.1.1. Solution for the amplitudes
The quadratic term on the right (80) is removed by a simple transformation= |C|?/N — 1/3 andr = +/Nt.
Then we obtain

du\ 2
(d_br[> =4u® — gou — g3 = 4(u — e1)(u — e2)(u — e3). o)

This is the standard form of the equation for Weierstrass elliptic functions. The conggaautsl g3, called the
invariants, are given by

B 1+J2 (1 N 12+4H2
82=\3"N2) BT\ T2 3Nz a3 )
For smallH?, the discriminantA = g% — 27g§ is positive and the three roots are real. This is the case of physical

interest, and we assume the roots of the cubic are ordered sq that, > e3. Note thate; + ex + e3 = 0. The
general solution of40) is

u=p+a,

whereq is an arbitrary (complex) constant. The functiprx) is defined by

1 / 1 1
p) = 22 - Z { (z — 2mw1 — 2nap)?  (2mar + 2”w2)2} ’ (41)

m,n

where the summation is over all integraln exceptn = n = 0. It has poles on the real line and is doubly periodic:
©(z + 2mw1 + 2nw) = p(z) for all integersn andn. The difficult problem of determining1 andw, from the
invariants is discussed [(9, Section 21.73]The quantityws is defined by requiring; + w2 + w3 = 0. It may be
shown that

p(w1) = e1, ©(w2) = ez, P (w3) = e3. (42)

In the present casey; is real andws is pure imaginary (explicit expressions are given below). On the real line,
g (2) is real, with values in the rangej|, +00). On the linez = w3 + x it takes real values in the intervadi] es].
Moreover, ag varies along the edge of the rectangle from @{do w1 + w3 (=—w2) to w3 t0 0, (z) is real and
decreases monotonically fro#po to e; t0 ez t0 e3 to —o0. To satisfy the initial conditions, we choose= w3 — 1o,
whererg is real and may be taken as zero by a suitable choice of time origin. g tes w3) is real and oscillates
betweeres ande,. The solution for the amplitude is

ICI? = N[5 + 9t + w3)]. (43)
The behaviour of the Weierstragsfunction is shown irFig. 3. For generat it takes complex values. On the line

J{z} = w3 the function is real with periodic oscillations, as indicated by the heavy lines at the front of the figure.

4.1.2. Solution for the phase angles

Weierstrass’s zeta function is defined by
d . _
=@, lml@ - =0 (44)
Z z—0

It is quasi-periodic in the sense that

Uz + 2w1) = 8(2) + 2¢(w1). (45)
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R{p ()
()}

2

1, 0 3(z)

-1
Rz} Rz}

G{z} -2 0

Fig. 3. Weierstrass’g-function with half-periodsv; = 2, wg = i on the domainz = x + iy : x € [-2, +6], y € [-1, +1]. Left panel: real
part; right panel: imaginary part. Values foE x — w3 are plotted as heavy lines. Calculations are bas€d bnThe function has double poles
atz = 2mw1 + 2nwo.

We note that(z) is an odd function of and will use the relation:

w15(w2) — wpl(w1) = 3. (46)
The sigma function is defined by

E|Oga(z) = ¢(2), lim @ =1 47

dZ z—0 Z

It is also quasi-periodic, such that
0(z + 2w1) = —exp[Z(w1)(z + w1)] 0(2). (48)

Three other sigma functions may be defined. The relationship between the sigma functions and the Weierstrass
g-function is similar to that between the theta functions and the Jacobi elliptic functions. We will require the
identity:
o' (@)
$(2) — p(e)
(this follows from a consideration of the poles and zeros of the functions on each side).
The solution(43) leads to a solution fofA|?:

|AI? = (N +3J) — Np(t + w3). (50)

={z—a) —z+a)+ 2 (49)

Substituting in the first of26) we have
dg 6H
N — = .
VN dr  6Ngp(t+ w3) — (N +3J)
Now we introduce auxiliary constants. defined by

N+3 N3
on _t  PUWIETeN

pey) =
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Using (40), it follows that

4H?
[/ (k)] = [9' (k)] = — (W) .

We must determine which sign for the derivatives should be chosen.B&)the following sequence of inequalities
holds:

—3<e3<er<e <z<e;<e1 < (51)

Wi
ol
wIN

Sincees < e_ < e4 < ey, it follows thatk . lie on the line betwee; andw1 + w3, which determines the sign of
the derivatives to bg'(k+) = 2iH/N®/2, a positive imaginary number. The equation§dhus becomes

dg _ (i) 0 (k1)
da \2) pttos) — )

Using(49)this may be expressed in terms of zeta functions and gifigt may be integrated immediately to yield

o= (%) {log [w] 4 2;<K+>r} . (52)

o(t + w3+ K4)

A similar expression holds foy — no with k_ replacingc. Thus we obtain the expression for the azimuthal angle
¢:

(1 1 o(t+w3—«y)o(tT+ w3+ k)
o=0= () {lown —semr oo S T T )
This is the solution for the azimuth as a function of time. Using the quasi-periodic prop@deand (48)the

change inp whent varies by 2»; may be computed:
A¢ = —iw1(¢(ky) — §(k-)) +ig(w1) (Kt — Kk-). (53)

This is the desired analytical expression for the pulsation ahgle.
We note two obvious special caseq68). WhenJ = 0 we havec, = «_, yielding a zero result foA¢. When
H =0, we havec; = w1 andxk_ = —wp, SO

A¢ = —i[o18(w2) — w2t(w1)] = 37, (54)
where we have usgd6). These two special cases intersect in the homoclinic orbit (With H = 0) which has an

infinite transition time.

4.2. Solution in Jacobi dliptic functions

While (53)is the analytical solution, it is not immediately obvious how numerical information may be extracted
from it. The quantities on the right side are all computable in principle, but at the expense of considerable effort. It
is therefore useful to seek an alternative expression, in terms of Jacobi elliptic functions.

2 The apparent discrepancy with the result of Whittaker for the spherical pendd®inp. 106]arises from our choice of convention
that J{wz/w1} > 0. Our result is consistent with the rigid body formula (7.3.24) in Law§?], who adopts the same convention as
we do.
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4.2.1. Solution for the amplitudes
Recall that with the transformation= |C|?/N — 1/3 andr = /N, (30) was transformed t¢40), which we

write again for convenience:

du \?

o) = Hu e —e)u —es). (55)

T

For solutions of physical interesi? is sufficiently small that the three roots of the cubic are real. Defining the
quantities:

€2 —e3
K% = (61_63> and 1% = (e — e3),

a further transformation:

[u—e3
w=_/—-, S = VT
e2 —e3
bringsEq. (55)to the standard form:

d 2
<d—':> — (1— w1 - Ku?). (56)

The solution isw = sn(s — sg), Or
u = e3+ (e2 — e3) SIP(s — s0),
wheresg is arbitrary. The Jacobi elliptic function srhas period &, where

K—K(k)—/l oy
B o JA—w? A - k2w?)

so srf(s — sg) has period X. For definiteness, we sgf = 0, which means choosing the origin of time where the
solution has a minimum:

(57)

|C|?2 = C5 4 (C5 — C3) srP(v/No). (58)
Clearly,|C| oscillates betweeti'z andC» with physical period:
2K
T= . 59
N 9

The remaining amplitudesA | and|B|, follow from the Manley—Rowe relations:
|A? =Ny —|C%  |B?=N_—|C]%

They have the same period|&§ but vary in anti-phase with it and in phase with each other. We denote the minimum
and maximum values gfA| by A3 and A2, and similarly for|B|. Thus

Ny =A3+C3=A3+C3,  N_=Bi+C5=8B5+C3
The initial values of the amplitudes (feg = 0) are
[A(0)| = Az, |B(O)| = Ba, |IC(O)| = Cs.

We note here an important scaling invariance of the three-wave equations. If the amplitudes are magnified by a
constant factor and the time is contracted by the same factor, the foEg=f(9)—(11)s unchanged. Thus, the
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period of the modulation envelope motion varies inversely with its amplitude. The overall scale may be measured
by v/N and the inverse dependencelobn this is seen iif59).

The solutiong43) and (58must be equivalent. This follows from identities relating Weierstrass and Jacobi elliptic
functions. The complimentary modulus is defined’as: +/1 — k2, and we writeK’ = K(k’). The parameters are
related by

€23 / €1 —e2 K iK'
k= ; k= ; W= ——, w3 = —F——
e1—e3 e1 —e3 Je1r—e3 Je1—e3

[7, p. 919] Then we have

p(z) — 63 + &_
Sre(Je1 — e32)

But the Jacobi function sm+ i K”) is given in terms of its value on the real line by

sn(s +iK') =

ksns
and the equivalence between the two forms of solution follows immediately.

4.2.2. Solution for the phase angles
It remains to determine the phases. Integratio(26] furnishes the anglesandsn. We define

2 C3—C5  ex—e3 Lo H/N?3/?
= = ) + = = )
* Ny — C% ey —e3 U\/NA% Je1— es(er —e3)
» C5-C3 ex—e3 H H/N%?

= = N )\,_ = = .
TN CZ e —e3 vWNBS  Je1r—e3(e- —e3)
It follows from (51) thatk? < y2 < y2 < 1. We may now writ¢26)in the form:

d A d A
—S:—TJF, _”Z_T, (60)
ds 1—yZsris ds 1—y%srés
The right sides are the integrands occurring in Legendre’s elliptic integral of the thirdXkipd590] They may
be put in standard algebraic form by defining= sns. Writing

H(s,a,k)zfs ds =/x x :
0o 1—asfs Jo (1—ad)y/(1—x2)1—kx?)
the solution forg becomes
§— o= —hidI(s, Y3, ). (61)
There is an analogous solution fgerThe changes i andn over a half-period € [0, K] are
SAE=—A 0102, k), 3An=—A_II(y2 k),

where thecomplete elliptic integral is defined a&l(a, k) = I1(K, a, k). The azimuthal angle of the pendulum is
¢ = (1/2)(¢ — n). Thus, the change in the azimuth over a full pulsation period is

Ap = —( TI(Y2, k) — A_TI(y2, k). (62)
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In Appendix B an alternative formuléB.4) is derived from the expressiq62), which is structurally similar to
(53) obtained above. Using this formula, the limiting casg = /2 for H = 0 is again derived, in agreement with
(54).

In Section 3a simple approximation scheme was used to calculate a for{@8)dor the precession angle near
to the EP-modes. This formula can be recovered from the exact expré88joimhe EP-modes are characterised
by having a value off such that the two root§3 andC3 of the cubicd(|C|?) are equal:

C3=C3=C3 (63)

Sinced(|C|?) = |C|2(N4 — |CI?)(N_ — |C|?) — H?, this means that, for the EP-modes:

H=Hy= \/ C3(Ny — C3)(N- — C3). (64)

But CZ = CZ impliesez = e3, k = 0 andy1 = y, = 0. Thus, forH = Ho, the complete elliptic integral of the
third kind reduces tar/2, since both its arguments are zero, and

Ap=—(hy — A )3m. (65)

Furthermore, substituting forand H in the expressions fory andi_ gives

1 Co/N-—C3 1 CoJNy—C3

Ay = , A= )
JN-3c3 [Ny -3 JN-3c3 N3
Substituting these i(65) we obtain
JC
Ad 70

2,/N -3C3\ N, —C3\/N_ -3
Using (34) and(64), this may be written

7JC3
 V2Ho(N? + 3J2)4/4°

A¢

in agreement with the previous calculati¢gB8). This shows that the limit of the exact formué2) asH — Hp
corresponds exactly to the value for infinitesimal perturbations of EP-modes obtaiBedtion 3

5. Approximate formulasfor the precession angle

We have derived an exact analytical expression for the precession angle, involving elliptic integrals. Itis of interest
to obtain more convenient approximate formulas, involving only elementary functions. It might be expected that
the easiest way to do this would be to approxim(@®®) directly. However, it turns out that it is easier, and more
transparent, to return to the differential equations governing the system, use them to write down an integral for the
precession angle and approximate this integral.

The precession angle¢s= (1/2)(¢ — n). Combining the two components (#6), we obtain

dop JH

dr — 2]A12|BIZ (66)
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Eqg. (29)may be written:

d|C|?
= +2,/|A|2|B|?|C|? — HZ. 67
- = 42,/1a12B12C) (67)
Taking the quotient of these two equations, we get
do JH

—+ : (68)
dic|? 4|A|2|BI2/|A2| B]2|C|2 — H?

The pulsation of the amplitud€’| occurs betwee’; andCs, whereC% andC% are the two smallest zeros of the
polynomial:

@ = |A]?|BI?|C|? — H? = |C%(IC|> — N1)(IC|? — N_) — H?. (69)
It is also useful to writep = &g — H? where
@ = |A%BI?|CI? = |CI2(ICI> — N1)(ICI? — N-)

is as defined by31) and illustrated irFig. 2 The two signs in the differentiaquation (68orrespond to phase
changes during alternate half-cycles of the pulsation. The integf@Bybver a full cycle may be written formally:

JH /Cﬁ diC?
Ap = — _— .
2 Jez |APRIBI2V®
Itis convenient to change the integration limits; to do this, we congiti®ias an integral over the compl&xplane,
whereZ = |C|? on the positive real axis. This gives

0= | i (71)
4 Jo, Z—N)(Z—-NHJO2)

The contouiC; encirclesC3 andC3 and the square root in the integrand has two branch cuts, onedgamC3
and the other frontff to +o0. This is illustrated irFig. 4. In addition to the three branch points, the integrand has
two simple poles aZ = N, andZ = N_. In fact, the residues at these two poles sum up to zero:
—iJ 1 i
Reg§N;)=—-Reg§N_ )= —— = ——. 72
gN5) N =y -a- =32 (72)

Furthermore, the integrand goes to zero sufficiently fagZas— oo that we can replace the conto€y by Co
(Fig. 4). Returning to the original integr&r0), this corresponds to a change of integration range to

_JH /00 d|C|?
2 Jez |ARIBRVS
This interval is more convenient than the previous one because the integrand is small everywhere except near th

lower limit of integration and because the point of inflectiondircan cause difficulties when approximatidyg
nearC3.
2

(70)

A (73)

7 7
2 2 ‘4 N + 2
/3 /2 /1

Fig. 4. Contourg’; andC; in the Z-plane.
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Since the integrand is dominated by its behaviour r@{athe obvious approach would be to find a quadratic
which approximatee near this point. As?f is the root of a cubic, it can be written in terms#@f J andN, but this
expression is cumbersome and does not yield a convenient approximation. It is simpler to consider the behaviour of
@ atN, = (N + J)/2. This point is close t@f becaused? must be small compared 1 for the periodic motion
to exist?

Having decided to approximate &tt, rather tharC?, the next step is to approximade = Z(Z — N4)(Z—N_)
by a quadratic with a root &Y, :

Yo = Zo(Z — Ny)(Z — Z3). (74)

It is possible to perform the resulting approximate integral. However, the solution is complicatedZmntess
(seeAppendix Q. Thus, we consider

Uo=Zo(Z—Ni)(Z—-N-o). (75)

The quadraticly and cubic®g both vanish atZ = N, andZ = N_. They are also equal wheth = Zg. We
consider two choices dfy.
First, we choos& to be the mean of = N, andZ = N_, thatisZo = N/2. The integral(73) becomes

JH [*® d
Ap=21 / d (76)

2 Jz, (Z— No)I(Z = NOWWo(Z) — B2

whereZ, is the larger root ofyg — H? = 0. Definingo = 2Z — N, we get

+0o0
Ad = / 2V2H do , 77
oy (02— J2)\/02 — (J2+8H2/N)
whereo, = /J2 4+ 8H?2/N. This may be integrated analytical§, p. 72]to give
+00
Ap = —tan~! V8H 7 —|Z_ tant vBH . (78)
VNI ) /o2 = (J2+8H?/N) o 2 VN
Noting that tarlx = (r/2) — tan~1(1/x), the phase change over a full cycle is
A¢ ~ tan™t VNI ) (79)
V8H

This elegant approximate formula for the pulsation angle was reported by Dullin[&} ahd we refer to it as the
DGC formula. Numerical experiments indicate that it is of high accuracy throughout the accessible doffigin. In
a uniform bound on the error is calculated.

An alternative choice of quadratic approximation requidgsand @ to have equal derivatives @ = N.. In
this caseZo = N,.. We integrate, again taking the lower limit to be the larger rookef- H? = 0, to get

JVN+J
JeH |
It will be shown below that this formula is also in reasonable agreement with the analytical solution.

The above approximations are subtle: we replace a cubic by a quadratic, changing the integrand, but we also change
the lower limit. These effects tend to compensate, resulting in surprisingly accurate approximations. Moreover, it

A¢ ~ tan~! ( (80)

8 It can be shown easily that the maximum allowed valué/8f N® is H2, = 1/54 ~ 0.0185 and occurs faf = 0.
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is found that the two approximatioig9) and (80have errors which are of opposite sign and approximately equal.

ChoosingZg = (N + «J)/2 in (75), we get the approximation:

J/'N J

IVNFa) ) (81)
V8H

Numerical experiments comparing the approximate and true valuag aiver the accessible region, allow us to

deduce an optimal value = 0.458. InAppendix Da value in close agreement with this= 0.441, is derived by

matching(81) with the formula(38) for the pulsation angle of perturbations of EP-modes. Numerical results using

the various approximations will be presented in the following section(@hpwill be found to yield remarkably

accurate results.

A¢ ~ tan™! (

6. Numerical experiments

In this section we examine the numerical accuracy of the approximate formulas for the precession angle.
We do this by comparing the approximate formulas to the ‘exact’ analytic expre@2qnOf course,(62) is
itself an approximation to the behaviour of the swinging spring. However, for small-amplitude motion, it is
a very accurate approximation: it was demonstrated numerical[f]inhat the behaviour determined by the
three-wave equations is in excellent agreement with the solutiof®-ef) arising from the physical cubic-order
Lagrangian(1).

We first compare the precession angle calculated using the exact analytical expi@2pidth values extracted
from a numerical integration of the three-wasguations (9)—(11)For givenN andJ, the maximum value of the
cubic®g(Z) is at Zmax = (1/6)[2N — v/ N2 + 3J2]. Thus, the maximum value df is

Ho = Ho(N, J) = / Po(Zmax)-

The three-wave equations were solved for a range of valugs/J0 < 1 and H covering the accessible param-
eter domain 0< H < Hp. We takeN = 1 in all cases; this is no loss of generality, as it is equivalent to a
rescaling of the amplitudes by~1/2 and of the time byVY/2. From the numerical solution, the major and minor
axes:

Amaj= A+ |B| and Amin = |A] —|B]

of the osculating or instantaneous ellipse (& were calculated as functions of time, and the precession angle
was evaluated as the changedirbetween successive maxima #&f,s. The precession angle was computed as

a function of J and H. The results are presentedhig. 5. The heavy line isHy(J). The left-hand panel shows

A¢ calculated using the analytical formul@2). The precession angle vanishes o= 0 and is equal to 90for

H = 0. The centre panel shows the angle calculated from the numerical solution of the three-wave equations. It
is very similar to the analytical result. The right-hand panel shows the difference between the precession angle
calculated from the numerical solution and the analytical formula. The values are generally very small (the contour
interval inFig. 5C) is 0.1°). The maximum difference is.6°> and the discrepancy may be ascribed to numerical
noise.

6.1. Determination of the precession angle

We now show that the envelope of the motion may be determined to high accuracy by using approximate formulas
involving only elementary functions. We use the analytical values as a reference to evaluate the accuracy of the
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(A) AG(ANA) (B) AG(NUM) (C) INUM-ANA|
0.12 0.12 012 T Max=0.615"
0.1 0.1 0.1 Q“

0.08 : 0.08 008} IS8 &

o o / Gy [
0.06 0.06 006 Yhu B 1
0.04 5 0.04 0.04} 0", 1
002l ) 0.02 Y/ 0.02f f‘-f’ﬁg 1

90 4 o |
0 0.5 1 0 0.5 1 0 0.5 1
J J J

Fig. 5. Left-hand panel: precession angle calculated using the exact analytical form(#&). Centre panelA¢ calculated from numerical
integration of the three-wave equations. Note thegt= 0 for / = 0 andA¢ = 90° for H = 0. Right-hand panel: difference in precession
angle between the numerical and the analytical solution.

approximate formulas. IRig. 6the differences between the exact and approximate expressiofg fare shown.
The absolute values of these errors are plotted. The maximum error in the DGC foffiqul&(A)) is about
2.2°, and occurs fov ~ 1/2 andH at its maximum permissible value. The error in the alternative forr(@0&

is of comparable magnitude, with a maximum of abol8’AFig. 6(B)), but is of opposite sign. The optimal
valuea = 0.458 of the parameter in the formy(&l) was found by experimenkig. 6(C) shows that this formula is
significantly more accurate, with a maximum error less thdh 0 his is aremarkable level of precision, considering
the simplicity of the formula. The compensation of errors leads to what might be describedunsetisenable
effectiveness of the approximation.

6.2. Determination of the pulsation amplitude

The extent to which energy is exchanged between the elastic and pendular modes of oscillation may be measured
by therelative pulsation amplitude defined as
_2ACG-C
= ¥ .

P (82)

(A) |DGC-ANA| (B) |ALT — ANA| (C) |OPT — ANA|

0.12 Max=0.380" 1

0.12 Max=2.515 0.12

&

0.1 0.1 0.1
0.08 0.08 0.08

2
0.06 0.06 0.06

0.04
0.02

0.04
0.02

J J J
Fig. 6. Differences in precession angle between three approximate formulas and the analytical sol(8@n(A) the DGC formula(79); (B)

the alternative formul@80); (C) the optimum formuld81). Absolute values are shown. The signs of the errorg®j and (80)are opposite.
The contour interval is Q° in all panels.



56 P. Lynch, C. Houghton/ Physica D 190 (2004) 38-62

This quantity varies fromP = 0 for no energy exchange #® = 1 for maximal exchange. Fdi = O, it reduces
to P = 1— J/N. Given the invariantv, H andJ, we may compute® by solving the cubic equatio®(Z) = 0
where, as beforeb(Z) = ®o(Z) — H?, with Z = |C|? and® defined by(31). For determination of the envelope,
(82)is ideal. However, for the inverse problem, it must be simplified. Noting(ﬂ%a& C% + C§ = N, we may write
the pulsation amplitude as

P_2(2C§+C§—N)
- - ,

We have already introduced i{T5) a quadraticpy which approximates the cubi@g in the range Cg, Cf].
If we use the roots offp — H?> = 0 as estimates off and Cg, an approximate expression f@ may be
obtained:

J? 4H?

P=1-[—+——.
N2+NZZO

(83)
For fixed P this represents an ellipse {d, H)-space. The great advantagg®3)is that it can be used to solve the
inverse problem. Two special cases follow immediately: whes- 0 thenP = 1 — J/N (which is exact); when
J =0thenP = 1— 2H/N./Zy (which is not exact).
We plot the exact values of the pulsation amplitude, obtained by solving the cubic egbéfipe- 0, inFig. 7(A).
Note thatP = 0 whenH = Hp andP = 1 whenH = J = 0. The approximate values calculated usij@g) are
shown inFig. 7(B) and the differenc€Papprox— Pexact in Fig. 7(C). The approximation is quite accurate wheis
large. This is the region of primary physical interest, corresponding to strongly pulsating motion. For large values
of H, the approximation is no longer valid. We have derived several other approximate expressiBng/ifibch
are more accurate, but also more complicated, {B8h

6.3. Control of the envel ope dynamics

The approximate formulas allow us to control the pulsation and precession by a judicious choice of initial
conditions. Recall that the precession angle is given, to high accuraf®1hyvhich we write

I Zo
tan A¢p = , 84
*=2n (84)
(A) P—exact (B) P—approx (C) P—diff.
0.12 0.12 0.12
0.1 0.1 0.1
0.08 0.08 0.08
0.06 0.06 0.06
0.04 0.04 0.04
0.02 0.02 0.02
0 0.5 1 0 0.5 1 0 0.5 1
J J J

Fig. 7. Pulsation amplitude. (AP based on solving the cubic equation and ugi®g). (B) P from approximation(83). (C) Magnitude of
difference between exact and approximate values. The heavy cutlg€.s The contour interval is 0.1 in all panels.
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whereZy = (N + «J)/2. This may be used i(83) to eliminate eitheH or J, yielding the two equations:

J
P=1- v cscA¢ and P=1- SecAg.

2H
N/ Zg
But these are instantly invertible, to give equationsf@ndH in terms of P and A¢:
J=N1-P)sinA¢ and H = (3y/Zo)N(1— P) cosA¢. (85)

Toillustrate the effectiveness of these formulas, six values of the precession angle wereshosda0°, 20°, 30°,
45°,60°, 90°}. We setNV = 1 and fixed the value of the pulsation amplitude tatbe 0.9. We then calculated and
H from (85)and computed the numerical solution of the three-veayeations (9)—(11)he initial value of C|2 was
taken to be the roats of &(|C|?) = 0 having intermediate algebraic magnitude. Th&J? and| B2 were obtained
from the Manley—Rowe relations. The initial phases were all set to zero. Polar pléfsodgainsip are shown in
Fig. 8(the integration time in each case corresponds to a total precession of abQuriBOothA majand— Amqj are

plotted). These plots represent the outer envelope of the horizontal projection of the trajectory of the pendulum bob. It

is clear that the precession for the numerical solutionis, in each case, close to the valuédsed/malso calculated
the pulsation amplitude of the numerical solution and it was, in all cases, within 2% of the prescribef valie.

This confirms the effectiveness of the inversion formulas as a means of pre-determining the envelope of the motion.
We note that, in general, the horizontal projection of the trajectory is not a closed curve, but densely covers a

region of phase-space. The motion is not periodic but quasi-periodic. The horizontal projection is a closed curve

only in the exceptional cases whewp and 2r are commensurate, that is, when their ratio is a rational number. In

this case the motion is periodic and the horizontal footprint is a star-like graph, as illustr&tigd 8 The number
of points in the star is the denominatbof the rational numben¢/2r if dis even, or 2 if d is odd (e.g.A¢ = 40°
yields an 18-pointed star amlp = 50° a 36-pointed star).

90

270 270

270 270 270

Fig. 8. Polar plots ofAna) = |A| + | B| againstp, computed from the numerical solution @&)—(11)for six sets of initial conditions. For all
casesN = 1l andP = 0.9, andJ and H are computed fron85). Top panelsA¢ € {10°, 20°, 30°}, bottom panelsA¢ € {45°, 60°, 90°}. The
integration time in each case corresponds to a total precession of approximatglpd@0othAmaj and— Amgj are plotted.
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7. Conclusion

We have presented a complete analytical solution of the three-wave equations, which govern the small-amplitude
dynamics of the resonant swinging spring. The periodic variation of the amplitudes is associated with the char-
acteristic pulsation and precession of the system. Several analytical formulas for the precession angle have bee
presented. We have also derived simplified approximate expressions in terms of elementary functions. The optimal
approximation(81) has been shown by numerical experiments to be remarkably accurate, with a maximum error
of only 0.4°. The amplitude of the pulsation envelope is determined from the roots of a cubic equation whose
coefficients are defined by the invariants. Thus, we have provided a complete and positive answer to Question 1
posed inSection 1

The inverse question, Question 2%®ction 1 has also been answered affirmatively. The approximate formu-
las (85) give values ofJ and H which lead to a solution having the prescribed pulsation amplitude and pre-
cession angle. They are of high accuracy for strongly pulsating motion, which is the case of primary physical
interest.

The qualitative features of the envelope dynamics of the swinging spring are depicted schematkealy@in
The axes are normalised angular momentiiN and normalised Hamiltoniafl/ Hyo. The physically accessible
domain is shaded. The bounding curveds= Hy(J, N). The pulsation amplitude vanishes on this curve and the
solutions are the elliptic—parabolic modds8]. Regions of the parameter space are indicated where the pulsation
amplitude and precession angle take large or small values. The corners of the accessible region represent speci
solutions. Thus(J, H) = (0, Hyp) corresponds to the cup-like and cap-like solutions of Vitt and Gof&ifk For
(J, H) = (N, 0), the motion of the spring traces out a cone. FinaltyH) = (0, 0) represents the homoclinic orhit,
and includes the case of (unstable) pure vertical oscillations.

1 QUALITATIVE ENVELOPE DYNAMICS

Cup & Cap —
Modes
(Vitt & Gorelik) Weak
Precession
£—EP Modes (P=0)
T Weak
HH, | A9=0 Pulsation
» Strong Strong _
Homoclinic Pulsation Ad=r/2 Bracesslon Conical
Orbit — 1 Motion
0 JN — 1

Fig. 9. Qualitative features of the envelope dynamics of the swinging spring.
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Appendix A. The Nahm equations and the three-wave equations

The Nahm equations are a set of integrable equations for a three-vector of skew-Hermetiarmatrices
(Ta(s), Ta(s), T3(s)):

O =111 = 11 - 1Ty, (A1)
where(ijk) is a cyclic permutation of123). In the simplest casee (—1, 1) and the matrices have simple poles as
s — +1.

The Nahm equations were originally discovered because it is possible to use solutions to the equations to construct
solutions of the Bogomolny equati¢h6]. These solutions are called Bogomolny—Prasad—Sommerfield monopoles.
The Bogomolny equation occurs as a super-symmetry or minimum energy condition in Yang—Mills—Higgs theory
and is of interest to theoretical particle physicists.

There is a Lax formulation of the Nahm equations and an associated Lax curve ofgenli. Then = 2 case
is elliptic and the solutions are elliptic functions; in fact, fo= 2 the Nahm equations reduce to the Euler—Poinsot
equations and are easily solved. Surprisingly, it is sometimes also the case that the Nahm equation2 &@n
be solved in terms of elliptic functions. This happens when the solution has a symmetry and the quotient of the Lax
curve by that symmetry gives a genus-one surface. These symmetries of the Nahm matrices correspond to spatial
symmetries of the corresponding monopoles. The group elements act both by conjugation on the Nahm matrices
and by rotation of the three-vector of matri¢8sl1].

One example ia = 3 D, symmetry[10]. The symmetry reduces the Nahm matrices to

i 0 Ff 0 1 0 > 0 —iR{F3} 0 —J{Fs}
n=—|F 0 F|, T =— —F; 0 F; , T3 = 0 0 0
V2 0 Ff O V2 0 -F O J{F3} 0 IiR{F3}
Substituting these matrices into the Nahm equations gives
dF; o

and two others by cyclic permutation. These equations are the ‘explosive interaction’ three-wave equations identified
in [2]. They are related to the equations studied in the present papetlywith F; = A*, F, = B* andF3 = C.

Appendix B. Relationship between Jacobi and Weier strass for ms of the precession angle

To relate the expressiq62) obtained by means of Jacobi’s elliptic functions to the expred&8jin terms of
the Weierstrass form, we introduce auxiliary constahtaindd_ defined by
vz 2

Sr12d+=k—2, Sr?d,=]]:—;.
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Note that since’? > k2, these constants are comple (@ndd_ lie on the line betwee® andK +iK’). It follows
that

sn2d+=<el_e3>, cn2d+:_<ﬁ)’ dn2d+=<e+_ez>

ey —e3 ey —e3

with similar expressions involving_. The first of(60) may be written:
dé At y_% Sres
PR g
It may be shown without difficulty, usingg. (55) that
A1y2 = +ik?sndy endy dnd,..
Then the solutiorf61) for £ may be written:
§—&0=—Ays —il(s, dy, k), (B.1)

wherelT1 (s, d+, k) is another standard form (Jacobi’'s form) for the elliptic integral of the third Ki®d Section
22.74}

S k?sndy cndy dnd, Sre s
1—k2sréd, sres

The elliptic integral of the second kind is defined (with= snz) as

z X _ 242
E(z)z/ dnzzdzz/ ‘/%dx.
0 0 1—x

The complete integral is denotéd= E(K). E(z) is not periodic; the periodic component is represented by Jacobi's
zeta function:

(s, ds K) = /
0

Ez
Z(z) = E(z) — a

This is an odd function with periodk. It is related to Jacobi's theta function, also having peri&d By
d
Z(z) = —log®(z).
dz

The elliptic integral of the third kind may now be expressed as follows:

1 O(z—a)
i(z,a, k) = zlog———— + ZZ(a). B.2
1@ a k) =3 g@(z+a)+ (a) (B.2)
For the complete form of the integral, when= K, the logarithmic term vanishes:
O'(a)

Mi(a, k) = KZ(a) = K (B.3)

O(a)”
Using this in(B.1), we obtain the change over a half-perikid
IAE = —Khy —IKZ(dy).
Finally, using the analogous expression fof, we get the precession angle:

Ap = —K(Ouy —A_) —iK(Z(dy) — Z(d_)). (B.4)
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This is the change over the period Zfor s) or 2K /v+/N (for 7). The structural similarity between this expression
and the resulf53) in terms of Weierstrass functions is immediate.

WhenJ = 0, we have., = A_ andy; = y_, so thatd; = d_ and(B.4)impliesA¢ = 0. ForH = 0 we have
Ay =i_=0,d; = Kandd_ = K +iK'. Then using the relation:

2+ iK' = Z(w) im 4 cnudnu
u =Z(u) — —+ ——
2K shu

with u = K, it follows immediately than¢ = /2, in agreement witl{54).

Appendix C. Approximation integral with best fit at Z = N4

We approximatebg = Z(Z — N4+)(Z — N_) by a quadratic with a root & — Ny:
Yo = Zo(Z — N )(Z — Zy). (C.1)
To obtain the best fit af = N, we choose&Zp andZ; so that
Wo(Z) — ®o(Z) = O((Z — N3)3). (C.2)

This impliesZo = Ny + J andZ; = N_ZF/(NJr + J). Using the software packa@d®arLk, it is possible to evaluate
the resulting approximate integral:

_ HJ [ d|C|?

2 Jey |AP2|B2yWo — H?
whereC, is the larger root oo — H2 = 0. The result is
1 4 JIN+D H . JG5J + N) .
A¢:—<2tan 1—+n)——<2tanh +m>.
4 22N +3JH 4/ J3 — H2 272V 73— H2/N +3J
(C.4)

This gives arather good approximation: the maximum error is ab@utHowever, it is not a convenient expression
because the factay J3 — H? is sometimes real and sometimes imaginary. Moreover, the expression cannot easily
be inverted to givéd or J in terms of A¢. In fact, unlessZ; = N_, any approximating quadrat{€.1)will give an
expression with this problem. Thus, 8ection S we choose&Z; = N_.

Appendix D. The approximate formulasfor A¢ and the EP-modes

The approximate formulg§9) and (80For A¢ correspond t§81)with « = 0 andw = 1. They have their largest
errors on the parabola corresponding to the EP-modes, WhenHy (seeFig. 6). This is, perhaps, unsurprising:
these formulas are calculated by assuntihis small. For the EP-mode# is as large as it can be for a givénlt
is interesting to considé€B1) along the EP-modes by settitfy= Hp and comparing it to the pulsation anggS3)
for infinitesimal perturbations of these modes. A convenient way of making a direct comparison is to expand both
formulas in the small quantity(z)/N, whose maximum value is 1/6. Setting= 1 we find that, for the approximate
formula(81):

1 IVI+al b1 8
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and for the ‘exact’ formulg38):

CO J T 37 2 4
~T T2 4 och), (D.2)
\/N+_C(2)\/N__CS\/§\4/1+3JZ 2 4°° 0

The two expansions match to this order when

128
¥=o 5 1~ 0.441 (D.3)
This value is very close to the one calculated above by numerically minimising the maximum error in the formula
(81) over the range of physical values band H.
Comparison with the EP-modes does reveal that the approximate formulaspfare poor neat = 0 and

H = Hy: for small J the approximate formuléBl) gives

Ap=m

N
ap~ TN (D.4)
V/8Hp
whereas, as shown Bection 3.2the ‘exact’ formula has
N
ap~ EIN (D.5)
3 V8Hy

so the approximate formula has a relative errorr3 = 1.047 or about 5%. However, sineep is small when/
is small, the absolute error in this region is also small.
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