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Abstract

When the frequencies of the elastic and pendular oscillations of an elastic pendulum or swinging spring are in the ratio
2:1, there is a regular exchange of energy between the two modes of oscillation. We refer to this phenomenon aspulsation.
Between the horizontal excursions, or pulses, the spring undergoes a change of azimuth which we call the precession angle.
The pulsation and stepwise precession are the characteristic features of the dynamics of the swinging spring. The modulation
equations for the small-amplitude resonant motion of the system are the well-known three-wave equations. We use Hamiltonian
reduction to determine a complete analytical solution. The amplitudes and phases are expressed in terms of both Weierstrass
and Jacobi elliptic functions. The strength of the pulsation may be computed from the invariants of the equations. Several
analytical formulas are found for the precession angle. We deduce simplified approximate expressions, in terms of elementary
functions, for the pulsation amplitude and precession angle and demonstrate their high accuracy by numerical experiments.
Thus, for given initial conditions, we can describe the envelope dynamics without solving the equations. Conversely, given
the parameters which determine the envelope, we can specify initial conditions which, to a high level of accuracy, yield this
envelope.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The present work is concerned with the three-dimensional motion of the elastic pendulum or swinging spring
in the case of resonance. It continues the investigation described in previous studies by Lynch[13] and Holm and
Lynch [9]. In particular, the exchange of energy between quasi-vertical and quasi-horizontal oscillations and the
stepwise precession of the swing-plane are investigated.

When the ratio of the normal mode frequencies of the spring is 2:1, a resonance occurs, in which energy is trans-
ferred periodically between vertical and horizontal oscillations. The first study of this resonance was that of Vitt and
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Gorelik[17]. We refer to the regular exchange phenomenon aspulsation. The motion has two distinct characteristic
times, that of the fast oscillations and that of the slow pulsation envelope. As the oscillations change from horizontal
to vertical and back again, it is observed that each horizontal excursion or pulse is in a different direction. We call this
change in azimuth the precession angle. The motion thus has three components: oscillation (fast), pulsation (slow) and
precession (slow), closely analogous to the rotation (fast), nutation (slow) and precession (slow) of a spinning top[3].1

We consider two complementary questions, one direct and one inverse:

• Question 1. Given initial conditions, can we describe the envelope dynamics without solving the equations?
• Question 2. Given the parameters which determine the envelope, can we specify initial conditions which yield

this envelope?

We provide a complete answer to Question 1. Analytical expressions are derived for the pulsation amplitude, pre-
cession angle and period in terms of the invariants of the motion. We also develop accurate approximate expressions
for the pulsation amplitude and precession angle. Thus, the envelope dynamics may be deduced from the initial
conditions. Question 2 is more recondite, but we can give a positive answer for the physically interesting case of
strong pulsation. We derive approximate expressions for the angular momentum and Hamiltonian in terms of the
pulsation amplitude and precession angle. Initial conditions can then be determined which yield the desired envelope
to a good level of approximation.

We briefly outline the contents of the paper below.Section 2reviews the physics of the swinging spring and
previous work done on modelling its behaviour. When the amplitude is small, the Lagrangian may be approximated
to cubic order. When it is averaged over the fast oscillation time, a set of equations for the envelope amplitudes
is obtained. These modulation equations are the three-wave equations. They are found to have three independent
constants of motion and are therefore completely integrable. This system of equations can be reduced to a single
equation for one of the amplitudes.

Small-amplitude perturbations about steady-state solutions are studied inSection 3, and an estimate of the
precession angle is obtained. The general solution of the three-wave equations for finite-amplitude motions is
derived inSection 4. The amplitudes are expressed in terms of elliptic functions and the phase angles as elliptic
integrals. Analytical expressions for the stepwise precession of the swing-plane are then derived. ThusSection 4
provides an exact answer to the direct question, Question 1 mentioned above. The analytic expression for the
precession angle is shown to reduce to the estimate obtained inSection 3in the appropriate limit.

Recently, Dullin et al.[5] constructed a canonical transformation in which the angle of the swing-plane is a
coordinate in an action-angle system. They showed that the precession angle is one of the two rotation numbers of
the invariant tori of the integrable system. They obtained a simple equation for the precession angle by approximating
an elliptic integral. They proved analytically that the resonant swinging spring has monodromy and concluded that
the system provides a clear physical demonstration of this phenomenon.

Several approximate expressions for the precession angle, involving only elementary functions, are obtained in
Section 5. One of these is equivalent to the formula reported in[5]. Since we have already obtained an analytic
expression for the precession angle, it is possible to assess the accuracy of these approximations by comparing the
values they give with the true values. The approximate expressions are found to give remarkably accurate results.
The intensity of the pulsation envelope is determined by solving a cubic equation whose coefficients are defined by
the invariants.

To answer the inverse question, Question 2 above, we assume the pulsation amplitude and precession angle are
given and derive expressions for the invariants. From these, appropriate initial conditions are easily determined. In

1 A Java Applet illustrating the pulsation of the swinging spring may be found athttp://www.maths.tcd.ie/∼plynch/SwingingSpring/SSHome
Page.html.

http://www.maths.tcd.ie/plynch/SwingingSpring/SS_Home_Page.html
http://www.maths.tcd.ie/plynch/SwingingSpring/SS_Home_Page.html
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addition to being easier to evaluate, the approximate formulas for the precession angle are needed to answer this
inverse question: the analytic expression is not easily inverted whereas the approximate formulas for the pulsation
amplitude can be inverted easily. To obtain an invertible expression for the pulsation amplitude, we approximate
the cubic by a quadratic, and obtain inSection 6simple approximate expressions for the angular momentum and
Hamiltonian. These approximations may be used to control the envelope dynamics by an appropriate choice of
initial conditions.

In Section 7, we present a schematic diagram which shows the qualitative dependence of the envelope mo-
tion on the values of the invariants. This allows us to determine, at a glance, the general character of the so-
lution for given values of the constants of motion. Several important special solutions are indicated on the
diagram.

2. The dynamical equations

The physical system under investigation is an elastic pendulum, or swinging spring, consisting of a heavy mass
suspended from a fixed point by a light spring and moving under gravity,g (Fig. 1). We assume an unstretched
length�0, length� at equilibrium, spring constantk and massm. The Lagrangian, approximated to cubic order in
the amplitudes, is

L = 1
2(ẋ

2 + ẏ2 + ż2)− 1
2[ω2

R(x
2 + y2)+ ω2

Zz
2] + 1

2λ(x
2 + y2)z, (1)

wherex, y andz are the Cartesian coordinates centred at the point of equilibrium,ωR = √
g/� is the frequency of

linear pendular motion,ωZ = √
k/m is the frequency of its elastic oscillations andλ = �0ω

2
Z/�

2. The equations
of motion in Cartesian, spherical and cylindrical coordinates may be found in[13]. There are two constants of the
motion, the total energy and the angular momentum about the vertical, and the system is not integrable. Its chaotic
motions have been studied by many authors (see references in[14]).

Fig. 1. The swinging spring. Cartesian coordinates are used, with the origin at the point of stable equilibrium of the bob. The pivot is at point
(0,0, �).



P. Lynch, C. Houghton / Physica D 190 (2004) 38–62 41

2.1. The time-averaged equations

We confine attention to the resonant caseωZ = 2ωR and apply the averaged Lagrangian technique. The solution
is assumed to be of the form:

x = R{a(t)exp(iωRt)}, (2)

y = R{b(t)exp(iωRt)}, (3)

z = R{c(t)exp(2iωRt)}. (4)

The coefficientsa(t), b(t) andc(t) are assumed to vary on a time-scale which is much longer than the time-scale of
the oscillations,τ = 1/ωR. The Lagrangian is averaged over this time, yielding

〈L〉 = 1
2ωR[I{ȧa∗ + ḃb∗ + 2ċc∗} +R{κ(a2 + b2)c∗}],

whereκ = λ/4ωR. The resulting Euler–Lagrange equations are the modulation equations for the envelope dynamics:

iȧ = κa∗c, (5)

iḃ = κb∗c, (6)

iċ = 1
4κ(a

2 + b2). (7)

2.2. The three-wave equations

We now transform to new variables:

A = 1
2κ(a+ ib), B = 1

2κ(a− ib), C = κc. (8)

Then the equations for the envelope dynamics take the form:

iȦ = B∗C, (9)

iḂ = CA∗, (10)

iĊ = AB. (11)

These three equations for the slowly varying complex amplitudesA, B andC are thethree-wave equations. The
relevance of these equations in various physical contexts is discussed in[9]. They govern quadratic wave resonance
in fluids and plasmas. Their application to resonant Rossby wave triads is considered in[15]. In Appendix A, we
show that they are a special case of the Nahm equations which are used to construct soliton solutions in certain
particle field theories. For further references to the three-wave equations and a discussion of their properties see[2].

The three-wave equations conserve the following three quantities:

H = 1
2(ABC∗ + A∗B∗C) = R{ABC∗}, (12)

N = |A|2 + |B|2 + 2|C|2, (13)

J = |A|2 − |B|2. (14)
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The equations are completely integrable. They can be written in canonical form with HamiltonianH and Poisson
brackets{A,A∗} = {B,B∗} = {C,C∗} = −2i, as

iȦ = i{A,H} = 2∂H

∂A∗ , (15)

iḂ = i{B,H} = 2∂H

∂B∗ , (16)

iĊ = i{C,H} = 2∂H

∂C∗ . (17)

The following positive-definite combinations ofN andJ are physically significant:

N+ ≡ 1
2(N + J) = |A|2 + |C|2, N− ≡ 1

2(N − J) = |B|2 + |C|2.
These combinations are known as theManley–Rowe relations. Together with the HamiltonianH , they provide three
independent constants of the motion. We note thatH is invariant under the symmetry transformations:

(A,B,C) → (Aeiχ, B e−iχ, C), (18)

(A,B,C) → (Aeiχ, B,C eiχ), (19)

(A,B,C) → (A,B eiχ, C eiχ). (20)

These symmetries are associated, via Noether’s theorem, with the three invariants{J,N+, N−}. Any two of the
transformations generate the third. This reflects the inter-dependence ofJ , N+ andN−.

The concept of an instantaneous ellipse was introduced in[9]. If the slow variations are temporarily disregarded,
the horizontal projection of the trajectory of the pendulum given by(2) and (3)is a central ellipse. Its orientationφ
relative to thex-axis is given by

tan 2φ = 2R{ab∗}
aa∗ − bb∗ . (21)

This is equivalent to Eq. (4.20) in[9]. Using the transformation(8), it takes an even simpler form:

tan 2φ = I{AB∗}
R{AB∗} = arg{AB∗}. (22)

AsA, B andC vary, the orientationφ changes, causing the instantaneous ellipse to precess. The eccentricity of the
ellipse also changes, varying from (quasi-)circular to highly eccentric; this is the pulsation phenomenon.

2.3. Reduction of the system

To reduce the system, we express the amplitudes in polar form:

A = |A| exp(iξ), (23)

B = |B| exp(iη), (24)

C = |C| exp(iγ). (25)

In general, the phases ofA, B andC are not periodic. However,ζ = γ − (ξ + η) is periodic; this is clear from(28)
below. The Hamiltonian may be written:

H = |A||B||C| cosζ.
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The HamiltonianH is zero if any of the amplitudes vanish, or if cosζ = 0. These cases can be treated separately
as in[2,9], but the formulas derived for nonzeroH give the correctH = 0 limit.

The amplitude|C| will be obtained in closed form in terms of elliptic functions. Once|C| is known,|A| and|B|
follow immediately from the Manley–Rowe relations:

|A| =
√
N+ − |C|2, |B| =

√
N− − |C|2.

From(22)the precession angle is related to the phases byφ = (ξ−η)/2. The phasesξ andηmay now be determined.
Using the three-waveequations (9)–(11)together withEqs. (23)–(25), we find

ξ̇ = − H

|A|2 , η̇ = − H

|B|2 (26)

so thatξ andη can be obtained by quadratures. Finally,ζ is determined unambiguously by

d|C|2
dt

= −2H tan ζ and H = |A||B||C| cosζ. (27)

It also follows from(26) and (27)that

ζ̇ = H

(
1

|A|2 + 1

|B|2 − 1

|C|2
)
. (28)

The phase ofC follows immediately,γ = ξ + η + ζ, and we can then reconstruct the complete solution using
(23)–(25).

2.4. The equation for |C|2

FromEq. (11)for Ċ, and its complex conjugate we get

d|C|2
dt

= 2I{ABC∗}. (29)

Using the definition of the Hamiltonian, it follows that

|A|2|B|2|C|2 = H2 + [I{ABC∗}]2.
Applying this to the square of(29)and using the definitions of the Manley–Rowe quantities immediately yields an
equation for|C|2 alone:(

d|C|2
dt

)2

= 4[(N+ − |C|2)(N− − |C|2)|C|2 −H2]. (30)

We define the cubic polynomialΦ0(|C|2) (plotted inFig. 2) by

Φ0(|C|2) = (N+ − |C|2)(N− − |C|2)|C|2. (31)

Then the right-hand side of(30)may be written 4[Φ0(|C|2)−H2]. For smallH2, this cubic has three positive real
roots. If these roots, in descending order of magnitude, are denotedC2

1, C2
2 andC2

3, it follows that

0 ≤ C2
3 ≤ C2

2 ≤ N− ≤ 1
2N ≤ N+ ≤ C2

1 ≤ N. (32)

(We have assumed without loss of generality thatJ ≥ 0.) In the case of equality of roots, the solution may
be obtained in terms of elementary functions. We assume in general that this is not so and solve for|C|2 in
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Fig. 2. PolynomialΦ0 as a function of|C|2.

terms of elliptic functions. However, before doing this, we investigate perturbation motion about steady
solutions.

3. Small-amplitude modulation of steady states

We consider the case where the variations of the amplitudes about their mean values are small. This enables us
to make additional approximations and derive simple estimates of the pulsation period and rate of precession. From
these two quantities, the precession angle follows immediately.

3.1. Steady-state motion

We first consider solutions for which the amplitudes|A|, |B| and|C| are constant. The simplest cases are where
the phases are also constant; then the three-wave equations become

B∗C = CA∗ = AB = 0,

which give three particular solutions

(i) A = A0, B = C = 0.
(ii) B = B0, C = A = 0.

(iii) C = C0, A = B = 0.

The first two solutions correspond to conical motions: the bob moves in a circle, clockwise or anti-clockwise, while
the spring traces out a cone. These solutions are stable to small perturbations. The third particular case represents
purely vertical oscillations; this motion is unstable[13].

More generally, from(27), constancy of the amplitudes impliesζ = γ − (ξ+ η) = 0 so thatH = |A||B||C|, and
the three-wave equations become

−|A|ξ̇ = |B||C|, −|B|η̇ = |C||A|, −|C|γ̇ = |A||B|. (33)

Differentiating(30), a simple algebraic manipulation yields

|C|2 = C2
0 ≡ 1

6(2N −
√
N2 + 3J2). (34)

The other amplitudes are given by

|A|2 = A2
0 ≡ 1

6[(N + 3J)+
√
N2 + 3J2], |B|2 = B2

0 ≡ 1
6[(N − 3J)+

√
N2 + 3J2].
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These solutions were studied by Lynch[13], who called them elliptic–parabolic modes (EP-modes) because of the
shape of the trajectory of the pendulum bob. The precession rate is given byΩ ≡ φ̇ = 1

2(ξ̇ − η̇) (see[9]). From
(33) it follows that

Ω = JC2
0

2H0
, (35)

whereH0 = A0B0C0. ForJ = 0 we have planar motion with

|C|2 = 1
6N, |A|2 = |B|2 = 1

3N.

These are the cup-like and cap-like solutions of Vitt and Gorelik[17].

3.2. Perturbation about elliptic–parabolic motion

We consider small deviations about the steady EP-mode solutions. We write|C|2 = C2
0 + ε whereC2

0 is given
by (34)and|ε| � C2

0. Then, if(30) is differentiated and nonlinear terms inε are omitted, we obtain

d2ε

dt2
+
(
2
√
N2 + 3J2

)
ε = 0. (36)

The solution isε(t) = ε(0) cosωPt, an oscillation aboutC2
0 with thepulsation frequency:

ωP =
√

2
4
√
N2 + 3J2. (37)

For the EP-modes, the horizontal projection is an ellipse precessing at a constant rateΩ. The perturbation is a
pulsating motion, with sinusoidal time variation, in which the major and minor axes of the ellipse alternately expand
and contract with periodTP = 2π/ωP. The area of the ellipse is proportional toJ and remains constant[9]. It is
straightforward to derive expressions in terms of elementary functions for the remaining amplitudes and the phases,
but they are not required to determine the precession angle.

We note from(37)that
√

2N ≤ ωP ≤ 2
√

2N. From the precession rate and the pulsation frequency, the precession
angle follows immediately:*φ = ΩTP. Using(34), (35) and (37), this gives us

*φ = JC2
0

2H0

2π

ωP
= π

3

(
J√
8H0

)[
2N − √

N2 + 3J2

4
√
N2 + 3J2

]
. (38)

For small angular momentumJ � N, the term in square brackets is close to
√
N and

*φ ≈ π

3

(
J
√
N√

8H0

)
. (39)

4. Analytical solution of the three-wave equations

4.1. Solution in Weierstrass elliptic functions

We now derive an explicit analytical solution for|C|2, valid for finite amplitudes. The solutions for|A|2 and|B|2
follow immediately from the Manley–Rowe relations. Then(26)are integrated for the phases. The integrals turn out
to be similar to those occurring for the spherical pendulum, so the approach of Whittaker[18] applies. The required
properties of the Weierstrass elliptic functions are given in Whittaker and Watson[19, Chapter 20]and Lawden[12,
Chapter 6](see also[1,4,7]).
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4.1.1. Solution for the amplitudes
The quadratic term on the right of(30) is removed by a simple transformationu = |C|2/N − 1/3 andτ = √

Nt.
Then we obtain(

du

dτ

)2

= 4u3 − g2u− g3 = 4(u− e1)(u− e2)(u− e3). (40)

This is the standard form of the equation for Weierstrass elliptic functions. The constantsg2 andg3, called the
invariants, are given by

g2 =
(

1

3
+ J2

N2

)
, g3 =

(
− 1

27
+ J2

3N2
+ 4H2

N3

)
.

For smallH2, the discriminant∆ = g3
2 − 27g2

3 is positive and the three roots are real. This is the case of physical
interest, and we assume the roots of the cubic are ordered so thate1 > e2 > e3. Note thate1 + e2 + e3 = 0. The
general solution of(40) is

u = ℘(τ + α),

whereα is an arbitrary (complex) constant. The function℘(z) is defined by

℘(z) = 1

z2
+
∑
m,n

′ { 1

(z− 2mω1 − 2nω2)2
− 1

(2mω1 + 2nω2)2

}
, (41)

where the summation is over all integralm, n exceptm = n = 0. It has poles on the real line and is doubly periodic:
℘(z + 2mω1 + 2nω2) = ℘(z) for all integersm andn. The difficult problem of determiningω1 andω2 from the
invariants is discussed in[19, Section 21.73]. The quantityω3 is defined by requiringω1 +ω2 +ω3 = 0. It may be
shown that

℘(ω1) = e1, ℘(ω2) = e2, ℘(ω3) = e3. (42)

In the present case,ω1 is real andω3 is pure imaginary (explicit expressions are given below). On the real line,
℘(z) is real, with values in the range [e1,+∞). On the linez = ω3 + x it takes real values in the interval [e3, e2].
Moreover, asz varies along the edge of the rectangle from 0 toω1 toω1 + ω3 (=−ω2) toω3 to 0,℘(z) is real and
decreases monotonically from+∞ to e1 to e2 to e3 to−∞. To satisfy the initial conditions, we chooseα = ω3−τ0,
whereτ0 is real and may be taken as zero by a suitable choice of time origin. Then℘(τ + ω3) is real and oscillates
betweene3 ande2. The solution for the amplitude is

|C|2 = N[ 1
3 + ℘(τ + ω3)]. (43)

The behaviour of the Weierstrass℘-function is shown inFig. 3. For generalz it takes complex values. On the line
I{z} = ω3 the function is real with periodic oscillations, as indicated by the heavy lines at the front of the figure.

4.1.2. Solution for the phase angles
Weierstrass’s zeta function is defined by

dζ

dz
= −℘(z), lim

z→0
[ζ(z)− z−1] = 0. (44)

It is quasi-periodic in the sense that

ζ(z+ 2ω1) = ζ(z)+ 2ζ(ω1). (45)
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Fig. 3. Weierstrass’s℘-function with half-periodsω1 = 2,ω3 = i on the domain{z = x + iy : x ∈ [−2,+6], y ∈ [−1,+1]. Left panel: real
part; right panel: imaginary part. Values forz = x−ω3 are plotted as heavy lines. Calculations are based on(41). The function has double poles
at z = 2mω1 + 2nω2.

We note thatζ(z) is an odd function ofz and will use the relation:

ω1ζ(ω2)− ω2ζ(ω1) = 1
2πi. (46)

The sigma function is defined by

d

dz
logσ(z) = ζ(z), lim

z→0

σ(z)

z
= 1. (47)

It is also quasi-periodic, such that

σ(z+ 2ω1) = −exp[2ζ(ω1)(z+ ω1)] σ(z). (48)

Three other sigma functions may be defined. The relationship between the sigma functions and the Weierstrass
℘-function is similar to that between the theta functions and the Jacobi elliptic functions. We will require the
identity:

℘′(α)
℘(z)− ℘(α)

= ζ(z− α)− ζ(z+ α)+ 2ζ(α) (49)

(this follows from a consideration of the poles and zeros of the functions on each side).
The solution(43) leads to a solution for|A|2:

|A|2 = 1
6(N + 3J)−N℘(τ + ω3). (50)

Substituting in the first of(26)we have

√
N

dξ

dτ
= 6H

6N℘(τ + ω3)− (N + 3J)
.

Now we introduce auxiliary constantsκ± defined by

℘(κ+) = N + 3J

6N
≡ e+, ℘(κ−) = N − 3J

6N
≡ e−.



48 P. Lynch, C. Houghton / Physica D 190 (2004) 38–62

Using(40), it follows that

[℘′(κ+)]2 = [℘′(κ−)]2 = −
(

4H2

N3

)
.

We must determine which sign for the derivatives should be chosen. From(32)the following sequence of inequalities
holds:

−1
3 ≤ e3 ≤ e2 ≤ e− ≤ 1

6 ≤ e+ ≤ e1 ≤ 2
3. (51)

Sincee2 < e− < e+ < e1, it follows thatκ± lie on the line betweenω1 andω1 + ω3, which determines the sign of
the derivatives to be℘′(κ±) = 2iH/N3/2, a positive imaginary number. The equation forξ thus becomes

dξ

dτ
=
(

1

2i

)
℘′(κ+)

℘(τ + ω3)− ℘(κ+)
.

Using(49)this may be expressed in terms of zeta functions and using(47)it may be integrated immediately to yield

ξ − ξ0 =
(

1

2i

){
log

[
σ(τ + ω3 − κ+)
σ(τ + ω3 + κ+)

]
+ 2ζ(κ+)τ

}
. (52)

A similar expression holds forη− η0 with κ− replacingκ+. Thus we obtain the expression for the azimuthal angle
φ:

φ − φ0 =
(

1

2i

){
[ζ(κ+)− ζ(κ−)]τ + 1

2
log

[
σ(τ + ω3 − κ+)
σ(τ + ω3 + κ+)

σ(τ + ω3 + κ−)
σ(τ + ω3 − κ−)

]}
.

This is the solution for the azimuth as a function of time. Using the quasi-periodic properties(45) and (48)the
change inφ whenτ varies by 2ω1 may be computed:

*φ = −iω1(ζ(κ+)− ζ(κ−))+ iζ(ω1)(κ+ − κ−). (53)

This is the desired analytical expression for the pulsation angle.2

We note two obvious special cases of(53). WhenJ = 0 we haveκ+ = κ−, yielding a zero result for*φ. When
H = 0, we haveκ+ = ω1 andκ− = −ω2, so

*φ = −i[ω1ζ(ω2)− ω2ζ(ω1)] = 1
2π, (54)

where we have used(46). These two special cases intersect in the homoclinic orbit (withJ = H = 0) which has an
infinite transition time.

4.2. Solution in Jacobi elliptic functions

While (53) is the analytical solution, it is not immediately obvious how numerical information may be extracted
from it. The quantities on the right side are all computable in principle, but at the expense of considerable effort. It
is therefore useful to seek an alternative expression, in terms of Jacobi elliptic functions.

2 The apparent discrepancy with the result of Whittaker for the spherical pendulum[18, p. 106]arises from our choice of convention
that I{ω3/ω1} > 0. Our result is consistent with the rigid body formula (7.3.24) in Lawden[12], who adopts the same convention as
we do.
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4.2.1. Solution for the amplitudes
Recall that with the transformationu = |C|2/N − 1/3 andτ = √

Nt, (30) was transformed to(40), which we
write again for convenience:(

du

dτ

)2

= 4(u− e1)(u− e2)(u− e3). (55)

For solutions of physical interest,H2 is sufficiently small that the three roots of the cubic are real. Defining the
quantities:

k2 =
(
e2 − e3

e1 − e3

)
and ν2 = (e1 − e3),

a further transformation:

w =
√
u− e3

e2 − e3
, s = ντ

bringsEq. (55)to the standard form:(
dw

ds

)2

= (1 − w2)(1 − k2w2). (56)

The solution isw = sn(s − s0), or

u = e3 + (e2 − e3) sn2(s − s0),

wheres0 is arbitrary. The Jacobi elliptic function sns has period 4K, where

K = K(k) =
∫ 1

0

dw√
(1 − w2)(1 − k2w2)

, (57)

so sn2(s − s0) has period 2K. For definiteness, we sets0 = 0, which means choosing the origin of time where the
solution has a minimum:

|C|2 = C2
3 + (C2

2 − C2
3) sn2(ν

√
Nt). (58)

Clearly,|C| oscillates betweenC3 andC2 with physical period:

T = 2K

ν
√
N
. (59)

The remaining amplitudes,|A| and|B|, follow from the Manley–Rowe relations:

|A|2 = N+ − |C|2, |B|2 = N− − |C|2.
They have the same period as|C| but vary in anti-phase with it and in phase with each other. We denote the minimum
and maximum values of|A| byA3 andA2, and similarly for|B|. Thus

N+ = A2
3 + C2

2 = A2
2 + C2

3, N− = B2
3 + C2

2 = B2
2 + C2

3.

The initial values of the amplitudes (fors0 = 0) are

|A(0)| = A2, |B(0)| = B2, |C(0)| = C3.

We note here an important scaling invariance of the three-wave equations. If the amplitudes are magnified by a
constant factor and the time is contracted by the same factor, the form ofEqs. (9)–(11)is unchanged. Thus, the
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period of the modulation envelope motion varies inversely with its amplitude. The overall scale may be measured
by

√
N and the inverse dependence ofT on this is seen in(59).

The solutions(43) and (58)must be equivalent. This follows from identities relating Weierstrass and Jacobi elliptic
functions. The complimentary modulus is defined ask′ = √

1 − k2, and we writeK′ = K(k′). The parameters are
related by

k =
√
e2 − e3

e1 − e3
, k′ =

√
e1 − e2

e1 − e3
, ω1 = K√

e1 − e3
, ω3 = iK′

√
e1 − e3

[7, p. 919]. Then we have

℘(z) = e3 + e1 − e3

sn2(
√
e1 − e3z)

.

But the Jacobi function sn(s + iK′) is given in terms of its value on the real line by

sn(s + iK′) = 1

k sns

and the equivalence between the two forms of solution follows immediately.

4.2.2. Solution for the phase angles
It remains to determine the phases. Integration of(26) furnishes the anglesξ andη. We define

γ2
+ = C2

2 − C2
3

N+ − C2
3

= e2 − e3

e+ − e3
, λ+ = H

ν
√
NA2

2

= H/N3/2

√
e1 − e3(e+ − e3)

,

γ2
− = C2

2 − C2
3

N− − C2
3

= e2 − e3

e− − e3
, λ− = H

ν
√
NB2

2

= H/N3/2

√
e1 − e3(e− − e3)

.

It follows from (51) thatk2 < γ2+ < γ2− < 1. We may now write(26) in the form:

dξ

ds
= − λ+

1 − γ2+ sn2 s
,

dη

ds
= − λ−

1 − γ2− sn2 s
. (60)

The right sides are the integrands occurring in Legendre’s elliptic integral of the third kind[1, p. 590]. They may
be put in standard algebraic form by definingx = sns. Writing

Π(s, a, k) ≡
∫ s

0

ds

1 − a sn2 s
=
∫ x

0

dx

(1 − ax2)
√
(1 − x2)(1 − k2x2)

,

the solution forξ becomes

ξ − ξ0 = −λ+Π(s, γ2
+, k). (61)

There is an analogous solution forη. The changes inξ andη over a half-periods ∈ [0,K] are

1
2*ξ = −λ+Π(γ2

+, k),
1
2*η = −λ−Π(γ2

−, k),

where thecomplete elliptic integral is defined asΠ(a, k) = Π(K, a, k). The azimuthal angle of the pendulum is
φ = (1/2)(ξ − η). Thus, the change in the azimuth over a full pulsation period is

*φ = −(λ+Π(γ2
+, k)− λ−Π(γ2

−, k)). (62)
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In Appendix B, an alternative formula(B.4) is derived from the expression(62), which is structurally similar to
(53)obtained above. Using this formula, the limiting case*φ = π/2 forH = 0 is again derived, in agreement with
(54).

In Section 3a simple approximation scheme was used to calculate a formula(38) for the precession angle near
to the EP-modes. This formula can be recovered from the exact expression(62). The EP-modes are characterised
by having a value ofH such that the two rootsC2

2 andC2
3 of the cubicΦ(|C|2) are equal:

C2
0 ≡ C2

2 = C2
3. (63)

SinceΦ(|C|2) = |C|2(N+ − |C|2)(N− − |C|2)−H2, this means that, for the EP-modes:

H = H0 ≡
√
C2

0(N+ − C2
0)(N− − C2

0). (64)

But C2
2 = C2

3 impliese2 = e3, k = 0 andγ1 = γ2 = 0. Thus, forH = H0, the complete elliptic integral of the
third kind reduces toπ/2, since both its arguments are zero, and

*φ = −(λ+ − λ−)1
2π. (65)

Furthermore, substituting forν andH in the expressions forλ+ andλ− gives

λ+ = 1√
N − 3C2

0

C0

√
N− − C2

0√
N+ − C2

0

, λ− = 1√
N − 3C2

0

C0

√
N+ − C2

0√
N− − C2

0

.

Substituting these in(65)we obtain

*φ = πJC0

2
√
N − 3C2

0

√
N+ − C2

0

√
N− − C2

0

.

Using(34)and(64), this may be written

*φ = πJC2
0√

2H0(N2 + 3J2)1/4
,

in agreement with the previous calculation,(38). This shows that the limit of the exact formula(62) asH → H0

corresponds exactly to the value for infinitesimal perturbations of EP-modes obtained inSection 3.

5. Approximate formulas for the precession angle

We have derived an exact analytical expression for the precession angle, involving elliptic integrals. It is of interest
to obtain more convenient approximate formulas, involving only elementary functions. It might be expected that
the easiest way to do this would be to approximate(62) directly. However, it turns out that it is easier, and more
transparent, to return to the differential equations governing the system, use them to write down an integral for the
precession angle and approximate this integral.

The precession angle isφ = (1/2)(ξ − η). Combining the two components of(26), we obtain

dφ

dt
= JH

2|A|2|B|2 . (66)
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Eq. (29)may be written:

d|C|2
dt

= ±2
√

|A|2|B|2|C|2 −H2. (67)

Taking the quotient of these two equations, we get

dφ

d|C|2 = ± JH

4|A|2|B|2
√

|A|2|B|2|C|2 −H2
. (68)

The pulsation of the amplitude|C| occurs betweenC2 andC3, whereC2
3 andC2

2 are the two smallest zeros of the
polynomial:

Φ = |A|2|B|2|C|2 −H2 = |C|2(|C|2 −N+)(|C|2 −N−)−H2. (69)

It is also useful to writeΦ = Φ0 −H2 where

Φ0 = |A|2|B|2|C|2 = |C|2(|C|2 −N+)(|C|2 −N−)

is as defined by(31) and illustrated inFig. 2. The two signs in the differentialequation (68)correspond to phase
changes during alternate half-cycles of the pulsation. The integral of(68)over a full cycle may be written formally:

*φ = JH

2

∫ C2
2

C2
3

d|C|2
|A|2|B|2√Φ

. (70)

It is convenient to change the integration limits; to do this, we consider(70)as an integral over the complexZ-plane,
whereZ = |C|2 on the positive real axis. This gives

*φ = JH

4

∫
C1

dZ

(Z −N+)(Z −N−)
√
Φ(Z)

. (71)

The contourC1 encirclesC2
3 andC2

2 and the square root in the integrand has two branch cuts, one fromC2
3 to C2

2
and the other fromC2

1 to +∞. This is illustrated inFig. 4. In addition to the three branch points, the integrand has
two simple poles atZ = N+ andZ = N−. In fact, the residues at these two poles sum up to zero:

Res(N+) = −Res(N−) = −iJ

4

1

N+ −N−
= − i

4
. (72)

Furthermore, the integrand goes to zero sufficiently fast as|Z| → ∞ that we can replace the contourC1 by C2

(Fig. 4). Returning to the original integral(70), this corresponds to a change of integration range to

*φ = JH

2

∫ ∞

C2
1

d|C|2
|A|2|B|2√Φ

. (73)

This interval is more convenient than the previous one because the integrand is small everywhere except near the
lower limit of integration and because the point of inflection inΦ can cause difficulties when approximatingΦ
nearC2

2.

Fig. 4. ContoursC1 andC2 in theZ-plane.
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Since the integrand is dominated by its behaviour nearC2
1 the obvious approach would be to find a quadratic

which approximatesΦ near this point. AsC2
1 is the root of a cubic, it can be written in terms ofH , J andN, but this

expression is cumbersome and does not yield a convenient approximation. It is simpler to consider the behaviour of
Φ atN+ = (N + J)/2. This point is close toC2

1 becauseH2 must be small compared toN for the periodic motion
to exist.3

Having decided to approximate atN+ rather thanC2
1, the next step is to approximateΦ0 = Z(Z−N+)(Z−N−)

by a quadratic with a root atN+:

Ψ0 = Z0(Z −N+)(Z − Z1). (74)

It is possible to perform the resulting approximate integral. However, the solution is complicated unlessZ1 = N−
(seeAppendix C). Thus, we consider

Ψ0 = Z0(Z −N+)(Z −N−). (75)

The quadraticΨ0 and cubicΦ0 both vanish atZ = N+ andZ = N−. They are also equal whenZ = Z0. We
consider two choices ofZ0.

First, we chooseZ0 to be the mean ofZ = N+ andZ = N−, that isZ0 = N/2. The integral(73)becomes

*φ = JH

2

∫ ∞

Z+

dZ

(Z −N+)(Z −N−)
√
Ψ0(Z)−H2

, (76)

whereZ+ is the larger root ofΨ0 −H2 = 0. Definingσ = 2Z −N, we get

*φ =
∫ +∞

σ+

2
√

2JH dσ

(σ2 − J2)
√
σ2 − (J2 + 8H2/N)

, (77)

whereσ+ =
√
J2 + 8H2/N. This may be integrated analytically[6, p. 72]to give

*φ = − tan−1

{(√
8H√
NJ

)
σ√

σ2 − (J2 + 8H2/N)

}∣∣∣∣∣
+∞

σ+

=
[
π

2
− tan−1

(√
8H√
NJ

)]
. (78)

Noting that tan−1x = (π/2)− tan−1(1/x), the phase change over a full cycle is

*φ ≈ tan−1

(√
NJ√
8H

)
. (79)

This elegant approximate formula for the pulsation angle was reported by Dullin et al.[5] and we refer to it as the
DGC formula. Numerical experiments indicate that it is of high accuracy throughout the accessible domain. In[5]
a uniform bound on the error is calculated.

An alternative choice of quadratic approximation requiresΨ0 andΦ0 to have equal derivatives atZ = N+. In
this caseZ0 = N+. We integrate, again taking the lower limit to be the larger root ofΨ0 −H2 = 0, to get

*φ ≈ tan−1

(
J
√
N + J√
8H

)
. (80)

It will be shown below that this formula is also in reasonable agreement with the analytical solution.
The above approximations are subtle: we replace a cubic by a quadratic, changing the integrand, but we also change

the lower limit. These effects tend to compensate, resulting in surprisingly accurate approximations. Moreover, it

3 It can be shown easily that the maximum allowed value ofH2/N3 isH2
00 = 1/54 ≈ 0.0185 and occurs forJ = 0.
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is found that the two approximations(79) and (80)have errors which are of opposite sign and approximately equal.
ChoosingZ0 = (N + αJ)/2 in (75), we get the approximation:

*φ ≈ tan−1

(
J
√
N + αJ√

8H

)
. (81)

Numerical experiments comparing the approximate and true values of*φ over the accessible region, allow us to
deduce an optimal valueα = 0.458. InAppendix Da value in close agreement with this,α = 0.441, is derived by
matching(81)with the formula(38) for the pulsation angle of perturbations of EP-modes. Numerical results using
the various approximations will be presented in the following section and(81) will be found to yield remarkably
accurate results.

6. Numerical experiments

In this section we examine the numerical accuracy of the approximate formulas for the precession angle.
We do this by comparing the approximate formulas to the ‘exact’ analytic expression(62). Of course,(62) is
itself an approximation to the behaviour of the swinging spring. However, for small-amplitude motion, it is
a very accurate approximation: it was demonstrated numerically in[9] that the behaviour determined by the
three-wave equations is in excellent agreement with the solutions of(2)–(4)arising from the physical cubic-order
Lagrangian(1).

We first compare the precession angle calculated using the exact analytical expression(62)with values extracted
from a numerical integration of the three-waveequations (9)–(11). For givenN andJ , the maximum value of the
cubicΦ0(Z) is atZmax = (1/6)[2N − √

N2 + 3J2]. Thus, the maximum value ofH is

H0 = H0(N, J) =
√
Φ0(Zmax).

The three-wave equations were solved for a range of values 0≤ J ≤ 1 andH covering the accessible param-
eter domain 0≤ H ≤ H0. We takeN = 1 in all cases; this is no loss of generality, as it is equivalent to a
rescaling of the amplitudes byN−1/2 and of the time byN1/2. From the numerical solution, the major and minor
axes:

Amaj = |A| + |B| and Amin = |A| − |B|
of the osculating or instantaneous ellipse (see[9]) were calculated as functions of time, and the precession angle
was evaluated as the change inφ between successive maxima ofAmaj. The precession angle was computed as
a function ofJ andH . The results are presented inFig. 5. The heavy line isH0(J). The left-hand panel shows
*φ calculated using the analytical formula(62). The precession angle vanishes forJ = 0 and is equal to 90◦ for
H = 0. The centre panel shows the angle calculated from the numerical solution of the three-wave equations. It
is very similar to the analytical result. The right-hand panel shows the difference between the precession angle
calculated from the numerical solution and the analytical formula. The values are generally very small (the contour
interval inFig. 5(C) is 0.1◦). The maximum difference is 0.6◦ and the discrepancy may be ascribed to numerical
noise.

6.1. Determination of the precession angle

We now show that the envelope of the motion may be determined to high accuracy by using approximate formulas
involving only elementary functions. We use the analytical values as a reference to evaluate the accuracy of the
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Fig. 5. Left-hand panel: precession angle*φ calculated using the exact analytical formula(62). Centre panel:*φ calculated from numerical
integration of the three-wave equations. Note that*φ = 0 for J = 0 and*φ = 90◦ for H = 0. Right-hand panel: difference in precession
angle between the numerical and the analytical solution.

approximate formulas. InFig. 6the differences between the exact and approximate expressions for*φ are shown.
The absolute values of these errors are plotted. The maximum error in the DGC formula (Fig. 6(A)) is about
2.2◦, and occurs forJ ≈ 1/2 andH at its maximum permissible value. The error in the alternative formula(80)
is of comparable magnitude, with a maximum of about 2.5◦ (Fig. 6(B)), but is of opposite sign. The optimal
valueα = 0.458 of the parameter in the formula(81)was found by experiment.Fig. 6(C) shows that this formula is
significantly more accurate, with a maximum error less than 0.4◦. This is a remarkable level of precision, considering
the simplicity of the formula. The compensation of errors leads to what might be described as theunreasonable
effectiveness of the approximation.

6.2. Determination of the pulsation amplitude

The extent to which energy is exchanged between the elastic and pendular modes of oscillation may be measured
by therelative pulsation amplitude defined as

P = 2(C2
2 − C2

3)

N
. (82)

Fig. 6. Differences in precession angle*φ between three approximate formulas and the analytical solution(62): (A) the DGC formula(79); (B)
the alternative formula(80); (C) the optimum formula(81). Absolute values are shown. The signs of the errors of(79) and (80)are opposite.
The contour interval is 0.1◦ in all panels.
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This quantity varies fromP = 0 for no energy exchange toP = 1 for maximal exchange. ForH = 0, it reduces
to P = 1 − J/N. Given the invariantsN, H andJ , we may computeP by solving the cubic equationΦ(Z) = 0
where, as before,Φ(Z) = Φ0(Z)−H2, withZ = |C|2 andΦ0 defined by(31). For determination of the envelope,
(82) is ideal. However, for the inverse problem, it must be simplified. Noting thatC2

1 +C2
2 +C2

3 = N, we may write
the pulsation amplitude as

P = 2(2C2
2 + C2

1 −N)

N
.

We have already introduced in(75) a quadraticΨ0 which approximates the cubicΦ0 in the range [C2
2, C

2
1].

If we use the roots ofΨ0 − H2 = 0 as estimates ofC2
1 andC2

2, an approximate expression forP may be
obtained:

P = 1 −
√
J2

N2
+ 4H2

N2Z0
. (83)

For fixedP this represents an ellipse in(J,H)-space. The great advantage of(83) is that it can be used to solve the
inverse problem. Two special cases follow immediately: whenH = 0 thenP = 1 − J/N (which is exact); when
J = 0 thenP = 1 − 2H/N

√
Z0 (which is not exact).

We plot the exact values of the pulsation amplitude, obtained by solving the cubic equationΦ(Z) = 0, inFig. 7(A).
Note thatP = 0 whenH = H0 andP = 1 whenH = J = 0. The approximate values calculated using(83) are
shown inFig. 7(B) and the difference(Papprox−Pexact) in Fig. 7(C). The approximation is quite accurate whenP is
large. This is the region of primary physical interest, corresponding to strongly pulsating motion. For large values
of H , the approximation is no longer valid. We have derived several other approximate expressions forP , which
are more accurate, but also more complicated, than(83).

6.3. Control of the envelope dynamics

The approximate formulas allow us to control the pulsation and precession by a judicious choice of initial
conditions. Recall that the precession angle is given, to high accuracy, by(81), which we write

tan*φ = J
√
Z0

2H
, (84)

Fig. 7. Pulsation amplitude. (A)P based on solving the cubic equation and using(82). (B) P from approximation(83). (C) Magnitude of
difference between exact and approximate values. The heavy curve isH0(J). The contour interval is 0.1 in all panels.
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whereZ0 = (N + αJ)/2. This may be used in(83) to eliminate eitherH or J , yielding the two equations:

P = 1 − J

N
csc*φ and P = 1 − 2H

N
√
Z0

sec*φ.

But these are instantly invertible, to give equations forJ andH in terms ofP and*φ:

J = N(1 − P) sin *φ and H = (1
2

√
Z0)N(1 − P) cos*φ. (85)

To illustrate the effectiveness of these formulas, six values of the precession angle were chosen:*φ ∈ {10◦,20◦,30◦,
45◦,60◦,90◦}. We setN = 1 and fixed the value of the pulsation amplitude to beP = 0.9. We then calculatedJ and
H from(85)and computed the numerical solution of the three-waveequations (9)–(11). The initial value of|C|2 was
taken to be the rootC2

2 of Φ(|C|2) = 0 having intermediate algebraic magnitude. Then|A|2 and|B|2 were obtained
from the Manley–Rowe relations. The initial phases were all set to zero. Polar plots ofAmaj againstφ are shown in
Fig. 8(the integration time in each case corresponds to a total precession of about 180◦, and bothAmaj and−Amaj are
plotted). These plots represent the outer envelope of the horizontal projection of the trajectory of the pendulum bob. It
is clear that the precession for the numerical solution is, in each case, close to the value used in(85). We also calculated
the pulsation amplitude of the numerical solution and it was, in all cases, within 2% of the prescribed valueP = 0.9.
This confirms the effectiveness of the inversion formulas as a means of pre-determining the envelope of the motion.

We note that, in general, the horizontal projection of the trajectory is not a closed curve, but densely covers a
region of phase-space. The motion is not periodic but quasi-periodic. The horizontal projection is a closed curve
only in the exceptional cases when*φ and 2π are commensurate, that is, when their ratio is a rational number. In
this case the motion is periodic and the horizontal footprint is a star-like graph, as illustrated inFig. 8. The number
of points in the star is the denominatord of the rational number*φ/2π if d is even, or 2d if d is odd (e.g.,*φ = 40◦

yields an 18-pointed star and*φ = 50◦ a 36-pointed star).

Fig. 8. Polar plots ofAmaj = |A| + |B| againstφ, computed from the numerical solution of(9)–(11)for six sets of initial conditions. For all
cases,N = 1 andP = 0.9, andJ andH are computed from(85). Top panels:*φ ∈ {10◦,20◦,30◦}, bottom panels:*φ ∈ {45◦,60◦,90◦}. The
integration time in each case corresponds to a total precession of approximately 180◦, and bothAmaj and−Amaj are plotted.



58 P. Lynch, C. Houghton / Physica D 190 (2004) 38–62

7. Conclusion

We have presented a complete analytical solution of the three-wave equations, which govern the small-amplitude
dynamics of the resonant swinging spring. The periodic variation of the amplitudes is associated with the char-
acteristic pulsation and precession of the system. Several analytical formulas for the precession angle have been
presented. We have also derived simplified approximate expressions in terms of elementary functions. The optimal
approximation(81) has been shown by numerical experiments to be remarkably accurate, with a maximum error
of only 0.4◦. The amplitude of the pulsation envelope is determined from the roots of a cubic equation whose
coefficients are defined by the invariants. Thus, we have provided a complete and positive answer to Question 1
posed inSection 1.

The inverse question, Question 2 inSection 1, has also been answered affirmatively. The approximate formu-
las (85) give values ofJ andH which lead to a solution having the prescribed pulsation amplitude and pre-
cession angle. They are of high accuracy for strongly pulsating motion, which is the case of primary physical
interest.

The qualitative features of the envelope dynamics of the swinging spring are depicted schematically inFig. 9.
The axes are normalised angular momentumJ/N and normalised HamiltonianH/H00. The physically accessible
domain is shaded. The bounding curve isH = H0(J,N). The pulsation amplitude vanishes on this curve and the
solutions are the elliptic–parabolic modes[13]. Regions of the parameter space are indicated where the pulsation
amplitude and precession angle take large or small values. The corners of the accessible region represent special
solutions. Thus,(J,H) = (0, H00) corresponds to the cup-like and cap-like solutions of Vitt and Gorelik[17]. For
(J,H) = (N,0), the motion of the spring traces out a cone. Finally(J,H) = (0,0) represents the homoclinic orbit,
and includes the case of (unstable) pure vertical oscillations.

Fig. 9. Qualitative features of the envelope dynamics of the swinging spring.
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Appendix A. The Nahm equations and the three-wave equations

The Nahm equations are a set of integrable equations for a three-vector of skew-Hermetiann × n matrices
(T1(s), T2(s), T3(s)):

d

ds
Ti = [Tj, Tk] = TjTk − TkTj, (A.1)

where(ijk) is a cyclic permutation of(123). In the simplest cases ∈ (−1,1) and the matrices have simple poles as
s → ±1.

The Nahm equations were originally discovered because it is possible to use solutions to the equations to construct
solutions of the Bogomolny equation[16]. These solutions are called Bogomolny–Prasad–Sommerfield monopoles.
The Bogomolny equation occurs as a super-symmetry or minimum energy condition in Yang–Mills–Higgs theory
and is of interest to theoretical particle physicists.

There is a Lax formulation of the Nahm equations and an associated Lax curve of genus(n−1)2. Then = 2 case
is elliptic and the solutions are elliptic functions; in fact, forn = 2 the Nahm equations reduce to the Euler–Poinsot
equations and are easily solved. Surprisingly, it is sometimes also the case that the Nahm equations forn > 2 can
be solved in terms of elliptic functions. This happens when the solution has a symmetry and the quotient of the Lax
curve by that symmetry gives a genus-one surface. These symmetries of the Nahm matrices correspond to spatial
symmetries of the corresponding monopoles. The group elements act both by conjugation on the Nahm matrices
and by rotation of the three-vector of matrices[8,11].

One example isn = 3D2 symmetry[10]. The symmetry reduces the Nahm matrices to

T1 = i√
2


 0 F∗

1 0
F1 0 F1

0 F∗
1 0


 , T2 = 1√

2


 0 F2 0

−F∗
2 0 F∗

2
0 −F2 0


 , T3 =


−iR{F3} 0 −I{F3}

0 0 0
I{F3} 0 iR{F3}


 .

Substituting these matrices into the Nahm equations gives

dF1

ds
= F∗

2F
∗
3 (A.2)

and two others by cyclic permutation. These equations are the ‘explosive interaction’ three-wave equations identified
in [2]. They are related to the equations studied in the present paper bys = it with F1 = A∗, F2 = B∗ andF3 = C.

Appendix B. Relationship between Jacobi and Weierstrass forms of the precession angle

To relate the expression(62) obtained by means of Jacobi’s elliptic functions to the expression(53) in terms of
the Weierstrass form, we introduce auxiliary constantsd+ andd− defined by

sn2 d+ = γ2+
k2

, sn2 d− = γ2−
k2

.
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Note that sinceγ2± > k2, these constants are complex (d+ andd− lie on the line betweenK andK+ iK′). It follows
that

sn2 d+ =
(
e1 − e3

e+ − e3

)
, cn2 d+ = −

(
e1 − e+
e+ − e3

)
, dn2 d+ =

(
e+ − e2

e+ − e3

)

with similar expressions involvingd−. The first of(60)may be written:

dξ

ds
= −λ+ − λ+γ2+ sn2 s

1 − γ2+ sn2 s
.

It may be shown without difficulty, usingEq. (55), that

λ+γ2
+ = +ik2 snd+ cnd+ dnd+.

Then the solution(61) for ξ may be written:

ξ − ξ0 = −λ+s − iΠ1(s, d+, k), (B.1)

whereΠ1(s, d+, k) is another standard form (Jacobi’s form) for the elliptic integral of the third kind[19, Section
22.74]:

Π1(s, d+, k) =
∫ s

0

k2 snd+ cnd+ dnd+ sn2 s

1 − k2 sn2 d+ sn2 s
ds.

The elliptic integral of the second kind is defined (withx = snz) as

E(z) ≡
∫ z

0
dn2 zdz =

∫ x

0

√
1 − k2x2

1 − x2
dx.

The complete integral is denotedE = E(K).E(z) is not periodic; the periodic component is represented by Jacobi’s
zeta function:

Z(z) = E(z)− Ez

K
.

This is an odd function with period 2K. It is related to Jacobi’s theta function, also having period 2K, by

Z(z) = d

dz
logΘ(z).

The elliptic integral of the third kind may now be expressed as follows:

Π1(z, a, k) = 1

2
log

Θ(z− a)

Θ(z+ a)
+ zZ(a). (B.2)

For the complete form of the integral, whenz = K, the logarithmic term vanishes:

Π1(a, k) = KZ(a) = K
Θ′(a)
Θ(a)

. (B.3)

Using this in(B.1), we obtain the change over a half-periodK:

1
2*ξ = −Kλ+ − iKZ(d+).

Finally, using the analogous expression for*η, we get the precession angle:

*φ = −K(λ+ − λ−)− iK(Z(d+)− Z(d−)). (B.4)
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This is the change over the period 2K (for s) or 2K/ν
√
N (for t). The structural similarity between this expression

and the result(53) in terms of Weierstrass functions is immediate.
WhenJ = 0, we haveλ+ = λ− andγ+ = γ−, so thatd+ = d− and(B.4) implies*φ = 0. ForH = 0 we have

λ+ = λ− = 0, d+ = K andd− = K + iK′. Then using the relation:

Z(u+ iK′) = Z(u)− iπ

2K
+ cnudnu

snu

with u = K, it follows immediately that*φ = π/2, in agreement with(54).

Appendix C. Approximation integral with best fit at Z = N+

We approximateΦ0 = Z(Z −N+)(Z −N−) by a quadratic with a root atZ −N+:

Ψ0 = Z0(Z −N+)(Z − Z1). (C.1)

To obtain the best fit atZ = N+, we chooseZ0 andZ1 so that

Ψ0(Z)−Φ0(Z) = O((Z −N+)3). (C.2)

This impliesZ0 = N+ + J andZ1 = N2+/(N+ + J). Using the software packageMaple, it is possible to evaluate
the resulting approximate integral:

*φ = HJ

2

∫ ∞

C+

d|C|2
|A|2|B|2

√
Ψ0 −H2

, (C.3)

whereC+ is the larger root ofΨ0 −H2 = 0. The result is

*φ = 1

4

(
2 tan−1 J(N + J)

2
√

2
√
N + 3JH

+ π

)
− H

4
√
J3 −H2

(
2 tanh−1 J(5J +N)

2
√

2
√
J3 −H2

√
N + 3J

+ iπ

)
.

(C.4)

This gives a rather good approximation: the maximum error is about 1.2◦. However, it is not a convenient expression
because the factor

√
J3 −H2 is sometimes real and sometimes imaginary. Moreover, the expression cannot easily

be inverted to giveH or J in terms of*φ. In fact, unlessZ1 = N−, any approximating quadratic(C.1)will give an
expression with this problem. Thus, inSection 5, we chooseZ1 = N−.

Appendix D. The approximate formulas for �φ and the EP-modes

The approximate formulas(79) and (80)for*φ correspond to(81)with α = 0 andα = 1. They have their largest
errors on the parabola corresponding to the EP-modes, whenH = H0 (seeFig. 6). This is, perhaps, unsurprising:
these formulas are calculated by assumingH is small. For the EP-modes,H is as large as it can be for a givenJ . It
is interesting to consider(81)along the EP-modes by settingH = H0 and comparing it to the pulsation angle(38)
for infinitesimal perturbations of these modes. A convenient way of making a direct comparison is to expand both
formulas in the small quantityC2

0/N, whose maximum value is 1/6. SettingN = 1 we find that, for the approximate
formula(81):

*φ ≈ tan−1

(
J
√

1 + αJ√
8H

)
≈ π

2
−
√

8

1 + α
C2

0 + O(C4
0) (D.1)
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and for the ‘exact’ formula(38):

*φ = π
C0√

N+ − C2
0

√
N− − C2

0

J√
2 4
√

1 + 3J2
≈ π

2
− 3π

4
C2

0 + O(C4
0). (D.2)

The two expansions match to this order when

α = 128

9π2
− 1 ≈ 0.441. (D.3)

This value is very close to the one calculated above by numerically minimising the maximum error in the formula
(81)over the range of physical values ofJ andH .

Comparison with the EP-modes does reveal that the approximate formulas for*φ are poor nearJ = 0 and
H = H0: for smallJ the approximate formula(81)gives

*φ ≈ J
√
N√

8H0
, (D.4)

whereas, as shown inSection 3.2, the ‘exact’ formula has

*φ ≈ π

3

J
√
N√

8H0
, (D.5)

so the approximate formula has a relative error ofπ/3 = 1.047 or about 5%. However, since*φ is small whenJ
is small, the absolute error in this region is also small.
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