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Met Éireann, Glasnevin Hill, Dublin 9, Ireland

Accepted 2003 January 29. Received 2002 November 26; in original form 2002 July 9

ABSTRACT
The radii of the planetary and satellite orbits are in approximate agreement with geometric
progressions. The question of whether the observed patterns have some physical basis or are
due to chance may be addressed using a Monte Carlo approach. We find that the estimated prob-
ability of chance occurrence depends sensitively on the restrictions imposed on the population
of orbits. We argue that it is not possible to conclude unequivocally that laws of Titius–Bode
type are, or are not, significant. Therefore, the possibility of a physical explanation for the
observed distributions remains open.
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1 I N T RO D U C T I O N

The approximate regularity in the sequence of distances from the
Sun of the planets of our Solar system, which is described by the
empirical relationship known as the Titius–Bode law, has been a
subject of interest and controversy for centuries. The law played
a significant role during the search for new planetary bodies. The
discovery of Uranus by Herschel in 1781 and of the largest asteroid
Ceres by Piazzi in 1801 appeared to confirm the accuracy of the
law. Both Adams and Leverrier used the Titius–Bode law in their
calculations for a new planet (Neptune). However, there is a substan-
tial deviation between the observed orbital radius of Neptune and
the value indicated by the empirical law. For Pluto, the connection
breaks down completely.

The Titius–Bode law, or Bode’s law for short, states that the orbital
radii of the planets are given, in astronomical units, by the formula

rn = 0.4 + 0.3 × 2n, n = −∞, 0, 1, 2, 3, . . . . (1)

The values produced by this formula and the observed values are
compared in Table 1. It is clear that, with the exceptions noted above,
the agreement is remarkable. However, Newman, Haynes & Terzian
(1994) have considered the psychological tendency to find pattern
where none exists, and have also discussed how inappropriate in-
ferences regarding astronomical phenomena have been drawn from
statistical analyses. Interest in the Titius–Bode law has been height-
ened by the discovery of extrasolar planets, although it may be many
years before its relevance in this context can be tested.

We will not attempt to review the extensive literature devoted
to the Titius–Bode law, and mention only a few key contributions.
Nieto (1972) traced the history of the law up to about 1970 and
reviewed the many attempts to explain it in physical terms. Several
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references to more recent work may be found in Hayes & Tremaine
(1998). White (1972) argued that jet streams may develop in a rotat-
ing gaseous disc at discrete orbital distances given by a geometric
progression. It is arguable that such a hydrodynamic process could
have determined the gross features of the planetary distribution of
the Solar system. Variations from this might well be associated with
the apparent tendency of the system to move, over its lifetime, to-
wards resonant configurations. The possible relationship between
Bode’s law and the well-known near-resonances between periods
in the planetary and satellite systems (Molchanov 1968) remains to
be clarified. Molchanov’s total resonance theory has been reviewed,
in the light of more recent understanding, by Beletsky (2001, sec-
tion 4.5). In contrast to theories relying on specific physical pro-
cesses, Graner & Dubrulle (1994) argued that a Titius–Bode type
law emerges automatically as a consequence of the scale invariance
and rotational symmetry of the protoplanetary disc, and that such
geometric relationships are a generic characteristic of a broad range
of physical systems.

Despite the distinguished part the Titius–Bode law has played
in the evolution of our knowledge of planetary dynamics, no theo-
retical explanation of it has been advanced that has found general
acceptance. Indeed, the view has frequently been expressed that the
putative relationship between the orbital radii is coincidental, and
that the observed pattern is due to chance. It is this question which
we wish to address.

2 A P RO BA B I L I S T I C PA R A D OX

The decision as to whether a given event is the result of chance, or is
so unlikely as to suggest a definite causative origin, is fraught with
difficulty. The measure of probability of the observed event is not
normally definable in a unique manner, so that different conclusions
may result from different methods of measurement. A simple exam-
ple illustrates the problem. Let us consider the following question:
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Table 1. Planetary radii given by the Titius–Bode law compared to
the observed values.

n Planetary Radius from Observed mean
body Bode’s law radius (au)

−∞ Mercury 0.4 0.39
0 Venus 0.7 0.72
1 Earth 1.0 1.00
2 Mars 1.6 1.52
3 (Ceres) 2.8 2.77
4 Jupiter 5.2 5.20
5 Saturn 10.0 9.54
6 Uranus 19.6 19.18
7 Neptune 38.8 30.06
8 Pluto 77.2 39.44

What is the probability that a randomly chosen chord intersecting
a circle will have a radius greater than the length of the side of an
inscribed equilateral triangle? (For a unit circle, the length is

√
3.)

We consider three alternative methods of defining the chord:

(i) Choose an arbitrary point within the circle as the mid-point
of the chord.

(ii) Specify randomly the two points at which the chord intersects
the circle.

(iii) Choose a random point on an arbitrary radius as the mid-
point of the chord.

Elementary reasoning shows that the probability of the event is
1/4, 1/3 and 1/2 respectively for the three methods. The paradox
is resolved by recognizing that the question is not well posed: the
answer depends on the method by which the chord is chosen. To
have a unique answer, we must specify the manner of choice.

The same problem arises in deciding whether Bode’s Law is
merely a coincidence or something deeper. We may ask if the ob-
served planetary pattern could have occurred by chance, but the
estimated probability may depend strongly upon the manner of its
estimation.

3 T H E U R A N I A N S AT E L L I T E S Y S T E M

The admissible values of n in equation (1) appear unnatural and
contrived to force a fit, especially the choice n = −∞ for Mercury.
Most investigators have considered that the significant element is the
exponential dependence on planet number, and have used simple ge-
ometric series to study the significance of patterns of the Titius–Bode
type. Murray & Dermott (1999) considered a geometric progression
of orbital periods

Tn = T0 An, n = 1, 2, 3, . . . , (2)

and compared the values produced by this formula with the observed
periods of the five major satellites of Uranus. The parameters T 0 and
A were obtained by considering the logarithm of (2) and minimizing
the mean square deviation

χ 2 = 1

5

5∑

n=1

[
log T obs

n − (log T0 + n log A)
]2

, (3)

where T obs
n are the observed periods, given in Table 2. The resulting

values are T 0 = 0.7919 and A = 1.777. For these parameters the
discrepancy is χ = 0.0247 and the periods given by equation (2) are
in close agreement with the observed values (Table 2). The question
is whether this agreement is statistically significant.

Table 2. Periods of the Uranian satellites given by the Murray &
Dermott (1999) formula compared to the observed values.

n Satellite Murray–Dermott Observed
fitted period period

1 Miranda 1.407 1.413
2 Ariel 2.500 2.520
3 Umbriel 4.442 4.144
4 Titania 7.893 8.706
5 Oberon 14.02 13.46

Murray & Dermott (1999) used a Monte Carlo technique to ad-
dress this question. Using a method similar to that of Dermott (1973),
they generated a series of 105 sets of periods for the five satellites,
random but for certain restrictions on their distribution. The period
of the innermost satellite was fixed in agreement with the observed
period of Miranda (T 1 = 1.413). The other four periods were gen-
erated by the formula

Tn+1

Tn
= L + xn(U − L), n = 1, 2, 3, 4, (4)

where L and U are fixed lower and upper limits on the ratio of
successive periods and xn are randomly chosen in the interval
[0, 1]. For the observed system, L = 1.546 and U = 2.101. For
each system, the parameters T 0 and A that minimized the deviation
χ were determined. The number of systems having rms deviation χ

less than the deviation (χ0 = 0.0247) for the observed system was
calculated, and thus the probability P(χ < χ0) of this event was
estimated to be 0.79. Murray & Dermott (1999) concluded that the
probability that the observed configuration of satellites has arisen by
chance is about 80 per cent. It is this conclusion which we believe
is open to question.

In Fig. 1(a), a sample of the population of 105 sets of orbital
periods of the five satellites in the population chosen by Murray
& Dermott (1999) is illustrated in the upper left panel (for clarity,
only 50 cases are shown). The limiting cases permitted under the
imposed restrictions are indicated by the dotted lines. We see that
the satellite periods fall within a triangular region on the plot. In
Fig. 1(b) (lower left panel) the cumulative probability distribution
of χ is shown. The shaded area represents the cases where χ < χ 0.
It confirms that most cases have rms deviation less than that of the
actual system.

The pattern of equation (4) chosen by Murray & Dermott (1999)
is only one of limitless possibilities. We consider now an alternative
choice. The values of the parameters, T 0 = 0.7919 and A = 1.777,
are those which yield the best fit to the observed system. The best-
fitting periods are those in column 3 of Table 2, given by

log T fit
n = log T0 + n log A, n = 1, 2, 3, 4, 5. (5)

To generate the alternative population of sets of periods, we allow
the logarithm of the period of each satellite to take a value at random
within a band centred on the best-fitting value:

log Tn = log T0 + (n + kyn) log A. (6)

Here yn is a random number in the range [−1/2, +1/2] and k is a
fixed positive parameter that determines the width of the band. For
k = 1, the bands abut each other.

In Fig. 1(c), we show a sample of the population of sets of or-
bital periods in the alternative population (upper right panel; only 50
cases are shown). The orbital bandwidth in equation (6) is k = 2/3.
This choice is arbitrary, but allows substantial variation in the possi-
ble configuration of satellites whilst ensuring that close encounters,
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Figure 1. Distribution of the five principal Uranian satellites. (a) Logarithm of periods given by the Murray & Dermott (1999) formula (equation 4) (only the
first 50 random sets are shown). (b) Cumulative probability distribution calculated for 105 cases of equation (4). The shaded area is for χ < χ0. (c) Logarithm
of periods given by the alternative distribution (equation 6) for k = 2/3 (only the first 50 random sets are shown). (d) Cumulative probability distribution
calculated for 105 cases of equation (6). The shaded area is for χ < χ0.

which might result in catastrophic instabilities, cannot occur. The
limiting cases permitted under the imposed restrictions are again
indicated by the dotted lines. The permitted satellite periods fall
within a strip with parallel sides. In Fig. 1(d) (lower right panel), the
corresponding cumulative probability distribution of χ is shown.
The shaded area represents the cases where χ < χ0. It confirms
that, in marked contrast to the Murray & Dermott (1999) popula-
tion, most cases have rms deviation greater than that of the actual
system. From the sample of 105 cases, we estimate that P(χ < χ0)
= 0.20. When the bandwidth parameter is increased to k = 1, the
estimated probability of the observed pattern is reduced to P(χ <

χ 0) = 0.05, indicating that the actual disposition of the satellites is
very unlikely to have arisen by chance.

4 T H E S O L A R S Y S T E M

We now apply the above analysis to the planets of the Solar sys-
tem. There are arguments about whether the asteroid belt, which
may be the residue of a former planet, or may have been prevented
by the tidal stresses of Jupiter from ever forming a planet, should
be included or omitted. We recall that the gap in the pattern of
the Titius–Bode law was noted long before the observation of the
first asteroid, Ceres, and indeed contributed to the detection of this
celestial body. It appears reasonable to include Ceres as a represen-
tative of the putative former planet. In a similar vein Pluto, which

is nowhere near the position expected from the Titius–Bode law,
may be a recently captured interloper and this may explain its large
deviation from the prediction. However, its omission would seem
artificial, and might justify criticism that inconvenient data were
being disregarded. In summary, we have decided that the most ob-
jective choice is to include in the analysis all ten ‘planets’ listed in
Table 1.

We postulate a geometric progression of planetary orbital radii

Rn = R0 An, n = 1, 2, . . . , 10 (7)

and choose the parameters R0 and A by minimizing the rms deviation
from the observed periods of the planets. Since the planetary radii
Rn and periods T n are related by Kepler’s third law, equation (7)
is equivalent in form to equation (2). The resulting values of the
parameters are R0 = 0.2139 and A = 1.706; for these parameters,
the discrepancy is χ0 = 0.0544 and the radii given by equation (7)
are in broad agreement with the observed values (Table 3). [We
note that the rms discrepancy for the original Titius–Bode formula
(4) is χTB = 0.0993, so the geometric progression (7) is a better
fit!]

We now estimate the probability that the agreement between the
observed planetary distribution and that arising from the assumed
geometric law might result from chance. The random population
chosen by Murray & Dermott (1999) was generated using equa-
tion (4), with the observed lower and upper limits of the ratios of
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Table 3. Planetary radii given by the best-fitting geometric progres-
sion (equation 7) compared to the observed values.

n Planetary Radius from Observed mean
body best fit (7) radius (au)

−∞ Mercury 0.37 0.39
0 Venus 0.63 0.72
1 Earth 1.07 1.00
2 Mars 1.83 1.52
3 (Ceres) 3.13 2.77
4 Jupiter 5.36 5.20
5 Saturn 9.17 9.54
6 Uranus 15.68 19.18
7 Neptune 26.82 30.06
8 Pluto 45.88 39.44

successive planetary radii, L = 1.503 and U = 2.851. In Fig. 2,
50 sets of orbital periods of the planets in this population are illus-
trated in the upper left panel; the total sample size was 105 sets. In
Fig. 2(b) (lower left panel) the cumulative probability distribution
of χ is shown. The shaded area represents the cases where χ <

χ 0. It confirms that most cases have rms deviation greater than that
of the actual system. The probability P(χ < χ0) is approximately
0.39. One might conclude that the chance that a randomly chosen
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Figure 2. Distribution of the Solar system planetary radii. (a) Logarithm of periods given by the Murray & Dermott (1999) formula (equation 4) (only the
first 50 random sets are shown). (b) Cumulative probability distribution calculated for 105 cases of equation (4). The shaded area is for χ < χ0. (c) Logarithm
of periods given by the alternative distribution (equation 6) for k = 2/3 (only the first 50 random sets are shown). (d) Cumulative probability distribution
calculated for 105 cases of equation (6). The shaded area is for χ < χ0.

planetary configuration would fit the Titius–Bode law as closely as
the observed system is only about 40 per cent.

When the alternative population given by equation (6) is used,
another conclusion suggests itself. In Fig. 2(c), we show a sample
of the population of sets of orbital periods in this population (upper
right panel) for orbital bandwidth k = 2/3. In Fig. 2(d) (lower right
panel), the corresponding cumulative probability distribution of χ is
shown. In contrast to the Murray & Dermott (1999) population, most
cases have rms deviation less than that of the actual system. From
the sample of 105 cases, we estimate that P(χ < χ0) = 0.99. This
prompts the conclusion that the observed pattern is almost certainly
due to chance. When the bandwidth parameter is increased to k = 1,
the estimated probability of the observed pattern is reduced to P(χ <

χ 0) = 0.34, about the same value as for the Murray–Dermott
population.

5 S U M M A RY

The estimated probability of a chance agreement with a geometric
progression was derived for the major Uranian satellites and for the
Solar system, using a Monte Carlo approach, with two distinct popu-
lations generated with different constraints. For the Uranian system,
the Murray & Dermott (1999) method gave a greater probability of
chance occurrence than the alternative method (with k = 2/3). Sur-
prisingly, for the Solar system, the opposite situation obtained: the
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alternative population indicated a very high probability of chance
agreement with a geometric progression. However, the value varied
strongly with the bandwidth parameter k. Murray and Dermott also
found that the choice of L and U strongly affected the outcome.
We conclude that the estimated probability is very sensitive to the
method of defining the ‘random’ set of planetary systems.

Hayes & Tremaine (1998) studied simulated solar systems using
a wide variety of radius exclusion laws. They found that the results
were quite sensitive to details of the exclusion method chosen. They
concluded that the significance of Bode’s law is simply that stable
planetary systems tend to be regularly spaced. They conjectured
that this conclusion could be strengthened by making long-term
orbit integrations to reject unstable planetary configurations. Their
conclusion may be looked at in another way: the stability of the Solar
system may yet be shown to ‘explain’ the regularity encapsulated
in Bode’s law.

We make no claim as to the relative merits of the alternative meth-
ods of choosing the random populations. Indeed, there is unlimited
scope for yet other choices. We note that, for the Solar system, the
alternative population with k = 2/3 implies a minimum ratio of suc-
cessive radii Rn+1/Rn � 1.13 and successive periods T n+1/T n �
1.20. Murray & Dermott (1999) stated that there is no compelling
evidence that the Uranian satellite system obeys any Titius–Bode
type relation, beyond what would be expected by chance. They go
on to suggest that the law as applied to the planets is also without
significance. The main result of the current study is that this conclu-

sion is unsafe, and that the possibility that the observed regularity in
the patterns of the planetary and satellite systems has some physical
explanation is still open.
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