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A RakPIDLY TRAVELLING PLANETARY-SCALE INSTABILITY IN THE ATMOSPHERE 
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Abstract. The hydrodynamic instability of the 
zonally averaged circulation of the atmosphere is 
investigated using a primitive equation model on 
a global domain. The classical baroclinically 
unstable modes are examined and a new mode of 

instability is found. This mode has phase-speed 
greater than the maximum zonal flow velocity 
(such a solution is impossible within the frame- 
work of quasi-geostrophic theory). It draws 
energy from the mean flow in the troposphere 
through baroclinic conversion and it penetrates 
deeply into the middle atmosphere, its growth 
there being supported by convergence of vertical 
wave energy flux. With zonal wavenumber one it 
has a period of two days and an e-folding time 
of six days. Such instabilities may play an 
important role in the dynamics of the middle 
atmosphere. 

Introduction 

-- -- 
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where •=sin•, o=cos•, u=om is the zonal mean 
windspee•, • the corresponding mean geopotential, 
fl=•(l+2m)-o•, f2=•(1+2•), and N 2 is the Brunt- 
V•is•l• frequency. The perturbation quantities 
are assumed to have harmonic dependence upon • 
and t, q'(•,•,Z,t)=q(•,Z)exp(i(m•-vt)), where the 
zonal wavenumber m is a positive integer and the 
frequency v is real for neutral modes and complex 
for growing or decaying modes. 

We now derive from the primitive equations, 
without further approximation, a single equation 
for the perturbation geopotential, •': 

Until recently almost all the studies of baro- 
clinic instability in the atmosphere have been 
based on the quasi-geostrophic equations, with 
B-plane geometry. With this system the phase- 
speeds of instabilities are restricted by the 
Miles-Howard theorem to lie within a certain 

semicircle in the complex c-plane (Miles, 1961; 
Howard, 1961). Furthermore, the real part of the 
phase-speed must be less than the maximum east- 
ward mean flow velocity Umax. Thus, rapidly 
travelling instabilities cannot be described by 
the quasi-geostrophic system. The present note 
describes some results of an instability study 
based on the primitive equations on a sphere. 
The solutions of this system are no longer sub- 
ject to the constraints of the Miles-Howard 
theorem, and indeed an instability is found with 
phase-speed much greater than Umax. The mode has 
zonal wavenumber one and planetary meridional 
scale. It has a period of about two days and an 
e-folding time of 6 days. A further instability 
with zonal wavenumber two has also been found. 

The Model 

The primitive equations are linearized about a 
zonally averaged flow which is a function of 
latitude and height. The independent variables 
are longitude •, latitude •, log-pressure Z=-ln p 
and time t. The equations are nondimensionalized 
using length- and time-scales a and (2•) -1, where 
a and • are the radius and rotation rate of the 

earth. If u', v', W' and •' represent the pert- 
urbation zonal, meridional and vertical velo- 
cities and geopotential, the linearized nondimen- 
sional primitive equations may be written: 
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A•+B •z+C •zz+D•$+E•+F• = O (2) 
where the coefficients are complex functions of 
• and Z. Their explicit form is given in Lynch 
(1982). We solve this equation on a global 
domain with full spherical geometry. The pertur- 
bation geopotential must vanish at the poles and 
a radiation condition is applied at 1OO km. We 
force a vertical velocity with specified complex 
frequency at the lower boundary, and solutions 
of the homogeneous eigensystem are determined by 
searching in the frequency plane for resonant 
response to the forcing. (Resonances are found 
using coarse scans in v; a triangular steepest 
descent method (Hollingsworth, 1975) is then used 
to locate the eigenfrequencies accurately). The 
grid resolution is A•=5 ̧ and AZ=2«km (37 x 41 
points), and we use the method of Lindzen and Kuo 
(1969) to solve the system. 

The zonal winds are represented by simple 
polynomial functions of sin• and Z. The mean 
wind and mass fields are in geostrophic and 
hydrostatic balance. The zonal wind cross- 
section is shown in figure 1. It is based on the 
solsticial cross-section of Murgatroyd (1969) and 
is representative of Northern winter conditions. 

Zero Zonal Flow 

Results 

To test the system a scan is made over real 
frequencies for an isothermal motionless basic 
state and a norm of the response is plotted 
against forcing frequency. Strong peaks occur at 
points corresponding to the eigenfrequencies of 
the known analytical solutions, the Hough modes 
(figure 2). The solutions at these points agree 
closely with the theoretical structures. Impos- 
ition of a non-zero zonal flow modifies these 

modes to varying degrees, as found in previous 
studies (Schoeberl and Clark, 1980; Salby, 1981). 
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Fig. 1. Zonal average wind distribution u (m/s). 

With the zonal flow in figure 1 various com- 
plex resonances are detected. Some of these are 
described below. All solutions shown have zonal 

wavenumber one and no dissipation is included. 

Charney Mode 

A strong resonant response is obtained for 
•frequency v=(0.012,0.020), corresponding to a 
period of 42 days and a growth-rate (e-folding 
time) of 8 days. The modulus of the geopotential 
perturbation is shown in figure 3. The structure 
is typical of solutions first investigated by 
Charney (1947). It is strongly bound to the sur- 
face and energy calculations reveal the source of 
the instability to be the meridional temperature 
shear below the winter tropospheric jet. Because 
of its relatively slow growth compared to the 
synoptic scale instabilities it is likely to be 
swamped by them in the troposphere. 

Green Mode 

Green (1960) discovered instabilities with 
internal vertical structure and significant 
amplitude in the stratosphere. A resonance peak 
was found with the present model for v=(-0.029, 
0.008) (period 17 days and growth rate 19 days). 
The solution had a maximum above the surface, 

strong penetration into the stratosphere, planet- 
ary meridional scale and an energy cycle typical 
of barDclinic instabilities. It is like a Green 
mode but with such a slow growth it is question- 
able whether it could maintain itself against 
dissipation. (The solution is shown in Lynch 
(1982)). 

In view of the bounds on phase-speed and 
growth rate of unstable waves implied by quasi- 
geostrophic theory previous studies have sought 
solutions within the resulting parameter range. 
Furthermore, since the main source of energy is 
in the horizontal temperature shear and since 
this is very small near the equator most models 
have been in a hemispheric domain. The present 
global primitive equation model is not subject 
to these limitations and is capable of simul- 
ating unstable motions which are not represented 
in more restricted models. A strong resonance 

peak is found to occur when the frequency v = 
(0.244,0.026); this corresponds to a wave with 
period of 2 days and e-folding time of 6 days. 
The Doppler shifted phase-speed is (Cr-5) = 
(ao/m) X(Vr-m•) and since m=l and •m•x = 0.127 
this is everywhere positive. That is, the phase- 
speed is greater than the maximum zonal windspeed 
and there is no steering level for the wave. 
Such a motion cannot be described within the 

ambit of quasi-geostrophic theory. It represents 
a wave with rapid eastward progression and sub- 
stantial growth rate. The structure of the wave 
is shown in figure 4. The maximum value of the 
geopotential occurs at the earth's surface, near 
the equator. There is another surface maximum 
near 30øN, and there is a further maximum near 
the equatorial stratopause. Comparing figures 
3 and 4, we see that the penetration of the wave 
into the upper atmosphere is very strong (recall 
that the values plotted in figures 3 and 4 must 
be scaled by exp(Z/2) to get the geopotential 
amplitudes). The horizontal scale decreases away 
from the surface; this behaviour of unstable 
ultra-long waves was also noted by Hartmann 
(1979). The source of energy for the wave is the 
barDclinic conversion of potential energy in the 
troposphere; the conversion takes place near the 
surface, between about 15øN and 30øN latitude 
where the temperature shear below the tropo- 
spheric jet is very strong. The energy released 
near the surface is carried upward and equator- 
ward. There is strong convergence of wave 
energy flux in the middle atmosphere. 

The meridional structure of the mode in figure 
4 is similar (except near the surface) to that of 
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Fig. 2. Log-norm of geopotential response as a 
function of frequency for a motionless basic 
state. H(1,1) is the '5-Day Wave'; other peaks 
correspond to higher rotational Hough modes. 
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F•õ. 3. •J•plitude of õeopotential, •=+'exp(-Z/2), 
for a forc•nõ frequency • = (0.012,0.020). 

the Kelvin Mode, the gravest eastward-travelling 
free mode. A relationship between the two modes 
was sought. The zonal flow was scaled by an 
intensity factor which was gradually reduced to 
zero. The growth rate of the instability de- 
creased to zero as the zonal flow was 'switched 

off' in this way (in accordance with physical 
requirements), and its resonance frequency 
approached a (real) value v TM 0.290 (for T = 30OK). 
The Kelvin wave was found to have a frequency 
v = 0.418 (for zero zonal wind and T = 30OK). 

It remained stable as the zonal intensity factor 
was increased and its structure and frequency 
were not strongly modified. Thus, there does not 
appear to be any relationship between the two 
modes. The resonance peak at v = 0.290 for zero 
zonal wind was very weak. This frequency does 
not correspond to that of any of the Hough modes, 
but this is not surprising if we regard the 
problem of switching on the wind as a singular 
perturbation problem: for such a system there is 
no guarantee that solutions of the perturbed 
problem will correspond to, or continuously 
approach, solutions of the unperturbed problem 
as the perturbation parameter is reduced to zero. 

Boyd (1982) has found that the Kelvin wave is 
unstable in the presence of meridional shear 
(though the growth rate is very small). The 
present instability was modified, but remained 
qualitatively unchanged as the zonal wind in 
figure 1 was gradually replaced by an analytical 
wind profile without horizontal shear. The 
growth rate is an order of magnitude greater than 
that found by Boyd. Therefore, there does not 
appear to be any relationship between these two 
forms of instability. Neither does the present 
instability bear any obvious relationship to 
those discussed by Boyd and Christidis (1982). 

An instability with wavenumber two and fre- 
quency v = (0.512,0.041) was found. It has a 
period of one day and e-folding time of 4 days, 

and its structure is similar to that of the 

wavenumber one instability. 

Conclusions 

A realistic zonal flow provides a source of 
energy for the growth of instabilities. Unstable 
modes of the types first discovered by Charney 
(1947) and by Green (1960) have been located. 
These solutions are in general agreement with the 
findings of previous studies. 

A new mode of instability, not discussed by 
previous investigators, has been found. This 
solution has a phase-speed greater than the max- 
imum eastward zonal flow velocity; the Doppler 
shifted'phase-speed is everywhere positive. Such 
a solution is impossible within the framework of 
quasi-geostrophic theory. The mode has zonal 
wavenumber one, a period of two days and growth 
rate of 6 days. Its energy source is in the 
troposphere but it penetrates deeply into the 
middle atmosphere, its growth there being sup- 
ported by vertical wave-energy flux convergence. 

Rapidly travelling instabilities of the type 
discussed here are likely to play an important 
role in the dynamics of the middle atmosphere. 
Such motions have not yet been isolated with 
certainty in observational studies; it is prob- 
able that they are very common, since the tropo- 
spheric energy sources are a permanent feature 
of the zonal flow. However, the penetration of 
such instabilities into the middle atmosphere 
must be sensitive to the detailed structure of 
the mean flow and to the eff-ects of radiative 

damping. The mean flow is subject to variations 
over a wide range of time-scales, and its inten- 
sity at a given moment is likely to be greater 
than that depicted in figure 1. 

The results discussed in this study were con- 
fined to a few solutions for wavenumber one. It 
would be of interest to investigate solutions for 
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F•g. 4. Amplitude and phase of õeopotential, +, 
for a forcinõ frequency v = (0.244,0.026). 
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other wavenumbers and for other zonal flows. The 

effects of dissipation should also be investig- 
ated. The energetics of the instabilities must 
be studied in greater detail. Such studies are 
necessary for the assessment of the importance of 
the instabilities in the overall dynamics of the 
middle atmosphere. 
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