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T he first weather forecasts executed on an auto-
 matic computer were described in a landmark 
 paper by Charney et al. (1950, hereafter CFvN). 

They used the Electronic Numerical Integrator and 
Computer (ENIAC), which was the most powerful 
computer available for the project, albeit primitive 
by modern standards. The results were sufficiently 
encouraging that numerical weather prediction be-
came an operational reality within about five years.

CFvN subjectively compared the forecasts to analy-
ses and drew general conclusions about their quality. 

FIG. 1. Visitors and some participants in the 1950 ENIAC 
computations. (left to right) Harry Wexler, John von Neumann, 
M. H. Frankel, Jerome Namias, John Freeman, Ragnar 
Fjørtoft, Francis Reichelderfer, and Jule Charney. (Provided 
by MIT Museum.)

THE ENIAC 
FORECASTS
A Re-creation

BY PETER LYNCH

NCEP–NCAR reanalyses help show that four historic 

forecasts made in 1950 with a pioneering electronic 

computer all had some predictive skill and, with a 

minor modif ication, might have been still better.

However, they were not verified objectively. In this 
study, we recreate the four forecasts using data avail-
able through the National Centers for Environmental 
Prediction–National Center for Atmospheric Research 
(NCEP–NCAR) 50-year reanalysis project. A com-
parison of the original and reconstructed forecasts 
shows them to be in good agreement. Quantitative 
verification of the forecasts yields surprising results: 
On the basis of root-mean-square errors, persistence 
beats the forecast in three of the four cases. The mean 
error, or bias, is smaller for persistence in all four cases. 
However, when S1 scores (Teweles and Wobus 1954) 
are compared, all four forecasts show skill, and three 
are substantially better than persistence.

PREPARING THE GROUND.  John von 
Neumann was one of the leading mathematicians of 
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the twentieth century. He made important contribu-
tions in several areas: mathematical logic, functional 
analysis, abstract algebra, quantum physics, game 
theory, and the development and application of 
computers. In the mid-1930s von Neumann became 
interested in turbulent fluid flows. He saw that prog-
ress in hydrodynamics would be greatly accelerated if 
a means for solving complex equations numerically 
were available. It was clear that very fast automatic 
computing machinery was required. According to 
Thompson (1983), von Neumann regarded weather 
prediction by numerical means as “the most complex, 
interactive, and highly nonlinear problem that had 
ever been conceived of—one that would challenge the 
capabilities of the fastest computing devices for many 
years.” Indeed, weather forecasting has remained a 
grand challenge for computing ever since.

In May 1946, a proposal to establish the Meteorology 
Project at the Institute for Advanced Study (IAS) in 
Princeton, New Jersey, was successful in attracting funds 
from the U.S. Navy’s Office of Research and Inventions 
[the proposal is reprinted in Thompson (1983)]. A 
conference on meteorology was arranged at IAS the 
following August, and many of the leaders of the field 
attended. At the time, Jule Charney was visiting Rossby, 
who arranged for him to participate in the conference. 
Perhaps the most significant consequence of this con-
ference was the opportunity for von Neumann to meet 
Charney. Von Neumann later persuaded Charney to 
lead the Meteorology Project, the primary goal of which 
was to investigate weather prediction by numerical 
means. The project ran from 1948 to 1956.

The initial plan was to integrate the primitive 
equations of the atmosphere, but the existence of 
high-speed gravity wave solutions meant that the 
volume of computation would exceed the capabilities 
of the available computers. The limitation, known 
as the Courant–Friedrichs–Lewy (CFL) criterion, 
restricts the maximum time step permitted for 
stable numerical integrations (Courant et al. 1928). 
There was also a more fundamental difficulty: the 

impossibility of accurately calculating the divergence 
from the observations. The key paper, “On a physical 
basis for numerical prediction of large-scale motions 
in the atmosphere” (Charney 1949), addresses some 
crucially important issues. In this paper, Charney 
considered the means of dealing with high-frequency 
noise, proposing a hierarchy of filtered models. In his 
baroclinic instability study, Charney had derived a 
mathematically tractable equation for the unstable 
waves “by eliminating from consideration at the 
outset the meteorologically unimportant acoustic 
and shearing-gravitational oscillations” (Charney 
1947). He realized that a general filtering principle 
was desirable. Such a system would have dramatic 
consequences for numerical integration. The time 
step dictated by the CFL criterion varies inversely 
with the speed of the fastest solution—fast gravity 
waves imply a very short time step, and the removal 
of these waves leads to a far less stringent limitation, 
allowing a much larger time step to be used.

An account of the filtered system was published 
in the paper “On the scale of atmospheric motions” 
(Charney 1948); this paper was to have a profound 
impact on the subsequent development of dynamic 
meteorology. Charney analyzed the primitive equa-
tions using the technique of scale analysis. He was 
able to simplify the system in such a way that the 
gravity wave solutions were completely eliminated. 
The resulting equations are known as the quasi-
geostrophic equations. The system boils down to a 
single prognostic equation for the quasigeostrophic 
potential vorticity. All that is required by way of 
initial data to solve this equation is a knowledge of 
the three-dimensional pressure field (and appropriate 
boundary conditions).

In the special case of horizontal f low with con-
stant static stability, the vertical variation can be 
separated out and the quasigeostrophic potential 
vorticity  equation reduces to the nondivergent baro-
tropic vorticity equation [BVE; see appendix A, (A1)]. 
This equation represents the conservation of absolute 
vorticity, the sum of the vorticity of the flow, and the 
vorticity resulting from the Earth’s spin. The baro-
tropic equation had, of course, been used by Rossby 
in his analytical study of atmospheric waves (Rossby 
1939), but the scientific view was that it was incapable 
of producing a quantitatively accurate prediction of 
atmospheric f low. We will describe the pioneering 
achievement of the group that carried out the first 
numerical integration of this simple equation, and 
will present the results of repeating the forecasts 
using initial data derived from the NCEP–NCAR 
50-year reanalysis.
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INTO ACTION. The original integrations, which 
were the first computer weather forecasts ever made, 
are described in the much-cited paper of CFvN. This 
paper gives a complete account of the computational 
algorithm and discusses four forecast cases, all from 
initial data in 1949. The paper caused quite a stir when 
it appeared. A close study of it is recommended to 
readers wishing to have a deeper understanding of this 
pioneering work, because we must omit many details.

The authors outlined their reasons for starting 
with the barotropic equation as follows: the large-
scale motions of the atmosphere are predominantly 
barotropic; the simple model could serve as a valuable 
pilot study for more complex integrations; and, if the 
results proved to be sufficiently accurate, barotropic 
forecasts could be utilized in an operational context. 
In fact, few if any people anticipated the enormous 
practical value of this simple model and the leading 
role it was to play in operational prediction for many 
years to come (Platzman 1979).

The ENIAC, which had been completed in 1945, 
was the first multipurpose electronic digital computer 
ever built. It was installed at the U.S. Army’s Ballistics 
Research Laboratories at Aberdeen, Maryland. 
ENIAC was gigantic, weighing 30 tons, with 18,000 
thermionic valves, massive banks of switches, and 
large plug boards with tangled skeins of connecting 
wires, filling a large room and consuming some 
140 kW of power. Program commands were specified 
by setting the positions of a multi-
tude of 10-pole rotary switches on 
large arrays called function tables, 
and input and output were generated 
by means of punch cards. The time 
between machine failures was typi-
cally a few hours, making the use of 
the computer a wearisome task for 
those operating it. McCartney (1999) 
provides an absorbing account of 
the origins, design, development, 
and destiny of ENIAC. Figure 1 
shows some of the key personalities 
associated with the first computer 
forecasts.

The derivation of the basic pre-
diction equation and the numerical 
algorithm used to solve it are fully 
described in appendix A. The equa-
tion chosen by CFvN was formulated 
using the geopotential height as the 
prognostic variable. The advection 
term was expressed as a Jacobian. 
The lateral boundary conditions 

required to solve the BVE were investigated. It tran-
spires that, to determine the motion, it is necessary 
and sufficient to specify the height on the whole 
boundary and the vorticity over that part where the 
flow is inward.

Initial data for the forecasts were taken from the 
manual 500-hPa analysis of the U.S. Weather Bureau, 
discretized to a grid of 19 × 16 points (Fig. 2). The 
grid interval was 736 km at the North Pole (494 km 
at 20°N), corresponding to 8° longitude at 45°N. 
Centered spatial finite differences and a leapfrog 
time scheme were used. The boundary heights were 
held constant, at their initial values, throughout each 
24-h integration. The BVE gives an expression for the 
rate of change of the Laplacian of geopotential height 
in terms of the advection (the Jacobian term). Once 
this quantity is calculated, the tendency of the height 
field is obtained by solving a Poisson equation with 
homogeneous boundary conditions. The height may 
then be advanced to the next time level. This cycle 
may be repeated as often as required.

As the construction of von Neumann’s computer 
at IAS was delayed, permission was obtained to use 
ENIAC. This was arranged through the offices of 
Francis Reichelderfer, Chief of the Weather Bureau. 
The story of the mission to Aberdeen was recounted 
by George Platzman (1979) in his Victor P. Starr 
Memorial Lecture. The venture began on 5 March 
1950 when “an eager band of five meteorologists 

FIG. 2. Computation grid used for the ENIAC forecasts. One line is 
omitted from the southern edge and two lines from the remaining 
edges (from CFvN).
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arrived in Aberdeen, Maryland, to play their roles 
in a remarkable exploit.” The five players were 
Jule Charney, Ragnar Fjørtoft, John Freeman, 
George Platzman, and Joseph Smagorinsky. The 
work continued for 33 days and nights, with only 
brief interruptions. The trials and tribulations of 
this intrepid troupe were described in Platzman’s 
lecture. There were the usual blunders familiar to 
programmers. The difficulties were exacerbated by 
the primitive machine language, the requirement to 
set numerous switches manually, the assignment of 
scale factors necessitated by the fixed-point nature 
of ENIAC, and the tedious and intricate card-deck 
operations (about 100,000 cards were punched during 

the month). Despite these difficulties, the expedition 
ended in triumph. Four 24-h forecasts were made, 
and the results clearly indicated that the large-scale 
features of the midtropospheric flow could be fore-
cast barotropically with a reasonable resemblance 
to reality.

The forecast starting at 0300 UTC 5 January 1949 
is shown in Fig. 3. Figure 3a is the analysis of 500-hPa 
geopotential and absolute vorticity, based on the U.S. 
Weather Bureau manual analysis. Figure 3b is the cor-
responding analysis 24 h later. The forecast height and 
vorticity are shown in Fig. 3d. This prediction was, 
according to CFvN, “uniformly poor.” The feature of 
primary interest was an intense depression over the 

FIG. 3. Forecast of CFvN from 5 Jan 1949. (a) Analysis of 500-hPa geopotential height (thick lines) and absolute 
vorticity (thin lines) for 0300 UTC 5 Jan. (b) Analysis for 0300 UTC 6 Jan. (c) Observed change (solid) and fore-
cast change (dashed). (d) Forecast height and vorticity valid at 0300 UTC 6 Jan (from CFvN). Height units are 
hundreds of feet, contour interval is 200 ft. Vorticity units and contour interval (10–5 s–1).
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United States. This deepened and moved northeast 
to the 90°W meridian in 24 h. The forecast displace-
ment was too slow and the shape of the depression 
was distorted. Also, the low center over the Gulf of 
California in the verifying analysis is absent in the 
forecast (but, as we will see, it is also absent in the 
reanalysis).

CFvN considered the causes of the errors in their 
forecasts, and attempted to distinguish between the 
following various factors: spatial truncation, limita-
tions of the model formulation, and the effects of 
baroclinicity versus barotropy. We will not pursue 
this line; however, those interested may easily investi-
gate the effects of truncation by rerunning the model 
with a higher spatial resolution; both the model and 
data are available (see appendix B).

THE NCEP–NCAR REANALYSIS. The initial 
fields for the four ENIAC forecasts were valid for 
5 January, 30–31 January, and 13 February 1949, 
predating automated data assimilation and numerical 
prediction, so no objective analyses were produced in 
real time. Thus, when a reconstruction of the fore-
casts was first conceived, a laborious digitization of 
hand-drawn charts from the pre-NWP era appeared 
necessary. However, a retrospective global analysis 
of the atmosphere, covering more than 50 years, has 
been undertaken by NCEP and NCAR. Because the 
reanalysis extends back to 1948, it includes the period 
chosen for the ENIAC integrations. The NCEP–NCAR 
50-year reanalysis is described by Kistler et al. (2001); 
it is a development from an earlier 40-year reanalysis 
(Kalnay et al. 1996). The products are freely available 
from NCEP, NCAR, and the National Oceanic and 
Atmospheric Administration (NOAA).

The reanalysis project used a three-dimensional 
variational data assimilation (3DVAR) scheme called 
spectral statistical interpolation (Parrish and Derber 
1992). The spectral representation had a triangular 
truncation of 62 waves, corresponding to a horizontal 
resolution of about 210 km. Prior to the International 
Geophysical Year in 1957, upper-air observations 
were generally made at 0300 and 1500 UTC, and 
occasionally at 0900 and 2100 UTC. For this reason, 
the reanalysis for the first decade (1948–57) was 
performed at 0300, 0900, 1500, and 2100 UTC. 
This is ideal, because the initial time for each of 
the four ENIAC forecasts was 0300 UTC. The data 
are available on a 2.5° × 2.5° grid. While relatively 
coarse by modern standards, this is far above the 
resolution used in the ENIAC runs, which had a grid 
spacing of about 8° longitude (at 45°N). The 500-hPa 
analyses were downloaded from the NCEP–NCAR 

reanalysis Web site, converted from Gridded Binary 
(GRIB) to American Standard Code for Information 
Interchange (ASCII), and interpolated to the ENIAC 
grid.

RECREATING THE FORECASTS. At the time 
of the ENIAC experiment, computer programming 
was at an embryonic stage of development. Given the 
limitations of the hardware, with just a dozen or so 
internal registers for data storage, the solution of the 
equations had to be broken down into elementary, 
discrete steps. The results of each computation 
were punched onto cards, and these punch cards 
provided the inputs for the following steps. The 
programming was at the level of machine code; 
high-level languages such as FORTRAN were still 
in the future. In recreating the forecasts, we have 
the luxury of using powerful, user-friendly coding 
languages. The MATLAB system has been selected 
because it is simple to learn, is widely available, and 
has an embedded graphical system. (Free software 
similar to MATLAB is available; www.gnu.org/

software/octave/.)
The CFvN paper provides a full description of the 

solution algorithm. The program eniac.m was con-
structed following the original algorithm precisely, 
including the specification of the boundary condi-
tions and the Fourier transform solution method 
for the Poisson equation. Hence, given initial data 
identical to that used in CFvN, the recreated fore-
casts should be identical to those made in 1950. Of 
course, the reanalyzed fields are not identical to 
those originally used, and the verification analyses 
are also different. Thus, the expectation of an exact 
replication of the original forecasts is unrealistic. 
Nevertheless, we will see that the original and new 
results are very similar.

Figure 4 is the reconstructed forecast for 0300 UTC 
6 January. The layout is as for Fig. 3. The main 
features of the analyses are in broad agreement with 
the originals. Also, the forecast shows the inad-
equate speed of movement of the low center and its 
distortion, as in the original forecast. Despite their 
similarities, the original and reanalyzed fields have 
marked differences. Note, for example, the low center 
over the Gulf of California in the original verifying 
analysis (Fig. 3b), which is absent in the reanalysis. 
We may recall the dearth of upper-air observations 
in 1949, especially over the oceans, which resulted in 
significant uncertainties in the analysis.

Objective verification scores for the four recon-
structed forecasts are presented in Table 1. There is 
a substantial bias error in all the forecasts; the mean 
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errors greatly exceed those of a persistence forecast. 
The root-mean-square (RMS) error is greater than 
persistence in case 1, less in case 2, and about equal 
in the remaining cases. The S1 score, introduced at 
an early stage of NWP (Teweles and Wobus 1954), 
measures skill in predicting gradients that are 
meteorologically significant. The S1 score is about the 
same as that of persistence for case 1 and significantly 
better for the other three cases. On the basis of this 
score, all four forecasts have some skill.

In CFvN it is noted that the computation time for 
a 24-h forecast was about 24 h, that is, the team could 
just keep pace with the weather provided ENIAC 
did not fail. This time included offline operations: 
reading, punching, and interfiling punch cards. Von 
Neumann estimated that it would have taken five 
hand-computer years to duplicate the ENIAC com-

putations (Nebeker 1995). Addressing the National 
Academy of Sciences, Charney said, “It mattered 
little that the twenty-four-hour prediction was 
twenty-four hours in the making. That was purely a 
technological problem. Two years later we were able 
to make the same prediction on our own machine 
[von Neumann’s IAS computer] in five minutes” 
(Charney 1955).

During his Starr Lecture, George Platzman 
arranged with IBM to repeat one of the ENIAC 
forecasts. The algorithm of CFvN was coded on an 
IBM 5110, a desktop machine then called a portable 
computer or “PC” (having a tiny fraction of the 
power of a modern PC). The program execution 
was completed within the hour or so of Platzman’s 
lecture. This implies a 24-fold speedup over the best 
rate achievable for ENIAC. The program eniac.m 

FIG. 4. Reconstructed forecast for 5 Jan 1949: (a) analysis of 500-hPa geopotential height (thick lines) for 
0300 UTC 5 Jan, (b) analysis for 0300 UTC 6 Jan, (c) observed change (solid) and forecast change (dashed), and 
(d) forecast height valid at 0300 UTC 6 Jan. Height contour interval is 50 m.
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was run on a Sony Vaio (model VGN-TX2XP) with 
MATLAB version 6. The main loop of the 24-h fore-
cast ran in about 30 ms. One may question the precise 
significance of the time ratio—about three million to 
one—but it certainly indicates the dramatic increase 
in computing power over the past half-century.

INTO OPERATIONS. In an interview with 
George Platzman, Charney said “I think we were 
all rather surprised that the predictions were as 
good as they were” (Platzman 1990). Reviewing 
Charney’s inf luence on meteorology some years 
later, Norman Phillips wrote that the success of 
the ENIAC integrations was so clear that “the 
idea of numerical prediction began to be accepted 
immediately by the meteorological community” 
(Phillips 1990). The encouraging initial results of 
the Princeton team generated widespread interest 
and raised expectations that operationally use-
ful computer forecasts would soon be a reality. 
Within a few years research groups were active in 
several universities and national weather services. 
The striking success of the barotropic forecasts 
had come as a surprise to most meteorologists. The 
barotropic vorticity equation simply states that the 
absolute vorticity of a f luid parcel is constant along 
its trajectory; the equation seemed too idealized to 
have any potential for operational use. The richness 
and power encapsulated in its nonlinear advection 
were greatly underestimated. Evidence that even 
the rudimentary barotropic model was capable of 
producing forecasts comparable in accuracy to those 
produced by conventional manual means rapidly 
accumulated. Indeed, baroclinic models used for 
early NWP operations were found to perform poorly, 
and the single-level model was reintroduced. The 
humble barotropic vorticity equation continued to 
provide useful guidance for almost a decade.

A SIMPLE ENHANCEMENT. A commemora-
tive symposium was held in Potsdam, Germany, in 
March 2000 to mark the 50th anniversary of NWP. 
In his address at this gathering, Norman Phillips 
expressed the view that quasigeostrophic models 
might have been more productive if a streamfunction 
had been used in place of the geopotential (Phillips 
2000). Use of the streamfunction form avoids the 
omission of a term involving the gradient of the 
Coriolis parameter (the beta term), yielding a more 
accurate equation (see appendix A). Phillips had good 
reason for his claim: much earlier, he had rerun a 
forecast of the famous Thanksgiving storm, a major 
cyclonic development in the eastern United States in 

November 1950. This storm became a popular case 
study, because it brought unusually severe weather 
and had not been well predicted in real time.1 It was 
believed that baroclinic processes, which are not rep-
resented in the single-level model, were an essential 
factor in the rapid development of the storm. Phillips 
found, using a two-level filtered model, that there 
were large errors associated with the excess of the 
geostrophic wind over the true wind and that the 
streamfunction formulation resulted in a marked 
improvement in the forecast. In that paper (Phillips 
1958), published in Festschrift for the 60th birthday 
of Erik Palmén, Phillips remarked that operational 
experience with the streamfunction equation “has 
appreciably improved the forecasts.” In a similar 
vein, George Cressman, the first director of the Joint 
Numerical Weather Prediction Unit, established in 
1954, recalled that the spurious distortion of the 
flow in low latitudes was partly resolved by using the 
streamfunction equation (Cressman 1996). Thus, it 
is of interest to rerun the four ENIAC integrations 
using this equation and then compare them to the 
original forecasts.

The four forecasts were repeated using the 
streamfunction equation [appendix A, (A5)]; the 
initial streamfunction was obtained by dividing the 
geopotential height by a constant mean-latitude value 
of the Coriolis parameter. The verification scores are 
given in Table 2. The bias is more negative in all cases 
and substantially smaller in all but case 3. The RMS 
error is smaller in all cases. The S1 score, averaged 
over all four cases, has improved by about a point. We 
conclude from this admittedly limited evidence that 
the streamfunction form of the BVE is superior.

TABLE 1. Mean error (bias), RMS error (m), and 
S1 score for the four forecasts (Fcst) and for 
corresponding persistence forecasts (Pers). In each 
case, bold type indicates whether the forecast or 
persistence is better.

Case

Mean error RMS error S1 score

Fcst Pers Fcst Pers Fcst Pers

1 56 –9 113 95 61 62

2 31 6 99 115 46 63

3 –35 20 93 89 46 58

4 39 1 82 81 39 50

1 The Thanksgiving storm has been successfully predicted 
using a modern NWP system and data from the NCEP–
NCAR 50-year reanalysis, yielding a remarkably accurate 
4-day forecast (Kistler et al. 2001).
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The pioneers who performed the ENIAC integra-
tions might have used this equation and obtained 
better results. But, the initial data were for heights, 
and this must have seemed a more natural choice of 
variable. The determination of the initial streamfunc-
tion via the crude geostrophic relationship would 
not have appeared promising, and a more accurate 
relationship between the mass and wind fields, the 
nonlinear balance equation, would have been difficult 
to solve on ENIAC. Moreover, CFvN did not have the 
luxury of testing alternative formulations without 
considerable effort.

EPILOGUE: DOROTHY’S VIEW. CFvN were 
greatly inspired by the earlier attempt by Lewis 
Fry Richardson to predict atmospheric changes 
(Richardson 1922). Richardson’s experiment produced 
outlandish results, for reasons that are examined in 
depth by Lynch (2006). It is gratifying that Richardson 
was made aware of the success in Princeton; Charney 
sent him copies of several reports, including the 
paper on the ENIAC integrations (Platzman 1968). 
Richardson congratulated Charney and his collabora-
tors “on the remarkable progress which has been made 
in Princeton; and on the prospects for further improve-
ment which you indicate.” He then described a “tiny 
psychological experiment” on the diagrams in the 
Tellus paper, which he had performed with the help of 
his wife Dorothy. For each of the four forecasts, he asked 
her opinion as to whether a prediction of persistence 
was better or worse than the numerical prediction. 
Dorothy’s view, tabulated in detail in Platzman (1968), 
was that the numerical prediction was, on average, 
better, though only marginally. The case that Dorothy 
identified as definitely better was the forecast starting 
from the 31 January analysis. This was also identified 
by Charney as “surprisingly good” (Platzman 1979). 
Richardson concluded that the ENIAC results were 
“an enormous scientific advance” on his own forecast, 
which was completely unrealistic. Indeed, they were not 

only an advance, but the beginning of 
an onward march that is continuing 
to this day.
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APPENDIX A. SOLUTION OF THE BARO-
TROPIC VORTICITY EQUATION. The method 
chosen by CFvN to solve the barotropic vorticity 
equation,

  (A1)

was based on using geopotential height as the prog-
nostic variable.A1 If the wind is taken to be both 
geostrophic and nondivergent, we have

 V = (g/ƒ)k × z; V = k × ψ.

The vorticity is given by ζ = 2ψ. These relationships 
lead to the linear balance equation

 ζ =  · (g/ƒ) z = (g/ƒ) 2z + βu/ƒ. (A2)

CFvN ignored the β term, which can be shown by 
scaling arguments to be small. They then expressed 
the advection term as a Jacobian,

  (A3)

Now, using (A2) and (A3) in (A1), they arrived at

  
(A4)

This was taken as their basic equation [Eq. (8) in 
CFvN]. It is interesting to observe that, had they 

TABLE 2. Mean error (bias), RMS error (m), and S1 score for the 
four forecasts using the height equation (z EQN) and the stream-
function equation (ψ EQN). In each case, bold type indicates 
which forecast is better.

Case

Mean error RMS error S1 score

z EQN ψ EQN z EQN ψ EQN z EQN ψ EQN

1 56 44 113 107 61 61

2 31 23 99 89 46 44

3 –35 –40 93 88 46 45

4 39 20 82 72 39 37

A1 All mathematical notation in this appendix is in accordance 
with standard meteorological usage and is consistent with 
CFvN.
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chosen the streamfunction rather than the geopo-
tential as the dependent variable, they could have 
used the equation

  (A5)

thereby avoiding the neglect 
of the β term in (A2). The 
boundary conditions required 
to solve (A4) were investigated. 
It transpires that to determine 
the motion it is necessary and 
sufficient to specify z on the 
whole boundary and ζ over that part where the flow 
is inward.

The vorticity equation was transformed to a polar 
stereographic projection; this introduces a map factor 
m = 2/(1 + sinφ), where φ is the latitude (Haltiner and 
Williams 1980, 10–14). The Laplacian and Jacobian 
operators on the map and on the globe are related 
through this factor,

 2
globe = m2 2

map  and  Jglobe = m2Jmap.

Initial data were taken from the manual 500-hPa 
analysis of the U.S. Weather Bureau, discretized to 
a grid of 19 × 16 points (Fig. 2) with a grid interval 
corresponding to 8° longitude at 45°N (736 km at the 
North Pole and 494 km at 20°N). Centered spatial 
finite differences and a leapfrog time scheme were 
used. The boundary conditions were held constant 
throughout each 24-h integration. Equation (A4) is 
equivalent to the system

  (A6)

  (A7)

where ξ = 2z. The tendency of ξ is computed from 
(A6). Then, the Poisson equation [(A7)] is solved 
with homogeneous boundary conditions for the 
tendency of z, after which z and ξ are updated to 
the next time level. This cycle may be repeated as 
often as required. Time steps of 1, 2, and 3 h were 
all tried; with such a coarse spatial grid, even the 
longest time step produced stable integrations. 
For all forecast reconstructions, a time step of 1 h 
was used.

The Poisson equation [(A7)] was solved using 
a direct method devised by von Neumann. This 
method was more suited to the ENIAC than itera-
tive relaxation methods, such as that of Richardson. 
Each step required four one-dimensional Fourier 
transforms. For a grid of (K + 1) × (L + 1) points, the 
solution may be written as

(complete details may be found in CFvN). For the 
integration of (A5), the initial streamfunction was 
defined as ψ = gz/f0, where f0 is the Coriolis parameter 
evaluated at 45°N.

APPENDIX B. STRUCTURE OF THE 
MATLAB PROGRAM ENIAC.M. CFvN pro-
vide a full description of the solution algorithm. The 
data-handling and computing operations involved 
for each time step are shown schematically in Fig. B1 
(from Platzman 1979). Each row indicates a program 
specification by setting upward of 5,000 switches 
(column 1), computing (column 2), punching 
out cards (column 3), and manipulating cards on 
offline equipment (column 4). Fourteen punch card 
operations were required for each time step because 
the internal memory of ENIAC was limited to 10 
registers. The first row of Fig. B1 represents a step 
forward in time; the next depicts the computation 
of the Jacobian; then follow four Fourier transforms, 
corresponding to the four-fold summation in (A8). 
The final row indicates housekeeping computations 
and manipulations in preparation for the next step.

The program eniac.m was constructed following 
the original algorithm of CFvN precisely, including 
the specification of the boundary conditions and 
the Fourier transform solution method for the 
Poisson equation. The main steps in the solution 
algorithm are given below; the order of operations 
corresponds broadly to the program eniac.m (which 
includes documentation in the form of copious inline 
comments):

1) The forecast case is specified. Parameters that 
determine the space and time discretization are 
given. The Coriolis parameter and map factor are 
computed.

2) The sine function matrices for the Poisson 
equation solver are computed.

(A8)



3) The initial and verifying analyses are read in and 
plotted.

4) The main time loop begins.
a) Spatial derivatives are computed by finite 

differences. The vorticity and Jacobian are 
determined. The tendency of the Laplacian 
of height ξ is given by the Jacobian.

b) Energ y and enstrophy are ca lcu lated 
(nonessential diagnostics).

c) The updated va lues of ξ  at the latera l 
boundaries are computed.

d) The values of ξ and of z at the next time step 
are calculated using the leapfrog method.

e)  Intermediate forecast height fields may be 
plotted.

f) Housekeeping operations complete the time 
step.

5) Energy and enstrophy are plotted (for diagnostic 
purposes).

6) The forecast height field is plotted. Forecast and 
observed height changes are computed and plotted 
in a format similar to that used in CFvN.

7) Verification scores are computed.

The MATLAB code of eniac.m is available on the 
author’s Web site (http://mathsci.ucd.ie/~plynch/

eniac/). The relevant analyses, on a global 2.5° × 2.5° 
grid are also obtainable there, together with a program 

FIG. B1. Flowchart showing the 16 operations required for each time step 
of the ENIAC forecast (from Platzman 1979).

PrepICs.m to interpolate them 
to a polar stereographic grid. 
Maps of the four original and 
recreated forecasts are also 
available, along with miscel-
laneous supplementary ma-
terial relating to the ENIAC 
integrations.
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