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Met Éireann, Dublin, Ireland

19 January 1996 and 27 June 1996

ABSTRACT

Analyzed data for numerical prediction can be effectively initialized by means of a digital filter. Computation
time is reduced by using an optimal filter. The construction of optimal filters involves the solution of a nonlinear
minimization problem using an iterative procedure. In this paper a simple filter based on the Dolph–Chebyshev
window, which has properties similar to those of an optimal filter, is described. It is shown to be optimal for
an appropriate choice of parameters. It has an explicit analytical expression and is easily implemented. Its
effectiveness is demonstrated by application to Richardson’s forecast: the initial pressure tendency is reduced
from 145 hPa per 6 h to 20.9 hPa per 6 h. Use of the filter is not restricted to initialization; it may also be
applied as a weak constraint in four-dimensional data assimilation.

1. Introduction

To eliminate spurious high-frequency oscillations, the
initial data for numerical weather prediction models
must be modified to reduce gravity wave components
to a realistic level. This process is called initialization.
Of the many methods of initialization that have been
developed, one of the simplest is based on digital fil-
tering (Lynch 1990). In Lynch and Huang (1992, here-
after LH92) an adiabatic initialization is performed by
carrying out two short model integrations, one forward
and one backward from the initial time. For each model
variable at each grid point and level, this produces a
sequence of values centered on the initial time. Each
sequence is processed with a simple low-pass filter, and
the initialized data comprises the resulting values. In
LH92 a filter based on the Fourier transform of an ideal
frequency response function, modified by a Lanczos
window (defined below) was used. It was found that a
filter span of 6 h was required to achieve adequate sup-
pression of spurious oscillations.

The generalization of the filtering procedure to ac-
count for diabatic effects was demonstrated in Huang
and Lynch (1993, hereafter HL93). The idea is to in-
tegrate the model adiabatically backward for half the
span and use the terminal values so obtained as initial
data for a forward diabatic integration over the total
span. The sequences of values produced by the forward
integration are centered on the initial time, and they
may be low-pass filtered to produce the initialized data.
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This paper also showed how a more efficient initiali-
zation is possible using an optimal filter: the total filter
span was reduced from 6 to 3 h.

The theoretical background for the design of optimal
filters is the Chebyshev alternation theorem (Oppenheim
and Schafer 1989). The construction of the optimal filter
involves the solution of a nonlinear minimization prob-
lem using an iterative procedure called the Remez ex-
change algorithm (Esch 1990). In this note we describe
a simple filter based on the Dolph–Chebyshev window,
which gives results similar to those achieved with the
optimal filter but which is much simpler to implement.

2. The Dolph–Chebyshev window

The function to be described is constructed using the
well-known Chebyshev polynomials and was first used
by Dolph (1946) to solve the problem of designing a
radio antenna having optimal directional characteristics
(Kraus 1988). The Chebyshev polynomials are defined
by the equations

21cos(n cos x), zxz # 1;
T (x) 5n 5 21cosh(n cosh x), zxz . 1.

From the definition, the following recurrence relation
follows immediately:

T (x) 5 1, T (x) 5 x,0 1

T (x) 5 2xT (x) 2 T (x), n $ 2.n n21 n22

The following properties are easily derived from the
definition: Tn(x) is an nth-order polynomial in x, even
or odd accordingly as n is even or odd; Tn(x) has n zeros
in the open interval (21, 11) and n 1 1 extrema in the
closed interval [21, 11]; Tn(x) oscillates between 21
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FIG. 1. Frequency response (dB) for Dolph filter with ripple ratio r
5 0.1 for filter orders N 5 2M 1 1 with M 5 2, 4, 8, and 16.

FIG. 2. Frequency response (dB) for Dolph filter with stop-band
edge ts 5 3 h (us ø 1.05) for filter orders N 5 2M 1 1 with M 5
2, 3, and 4.

and 11 for x in [21, 11]; Tn(x) . 1 if x . 1; for large
x, Tn(x) ø 2n21xn.

Now consider the function defined in the frequency
domain by

T [x cos(u/2)]2M 0W(u) 5 , (1)
T (x )2M 0

where x0 . 1. Let us be such that x0 cos(us/2) 5 1. As
u varies from 0 to us, W(u) falls from 1 to r 5 1/T2M(x0).
For us # u # p, W(u) oscillates in the range 6r. Clearly,
W(u) is symmetric about the origin. Thus, the form of
W(u) is that required of the response function of a low-
pass filter: a maximum at u 5 0 and small values as u
→ 6p. The remarkable thing about W(u) is that it has
a finite Fourier transform. By means of the definition
of Tn(x) and basic trigonometric identities, W(u) can be
written as a finite expansion

1M

W(u) 5 w exp(2inu). (2)O n
n52M

The coefficients {wn} may be evaluated from the inverse
transform

M1 umw 5 1 1 2r T x cos cosmu , (3)On 2M 0 n1 2[ ]N 2m51

where znz # M, N 5 2M 1 1, and um 5 2pm/N (Antoniou
1993). Since W(u) is real and even, wn are also real and
w2n 5 wn. The weights {wn: 2M # n # 1M} define
the Dolph–Chebyshev or, for short, Dolph window. This
window may be used to modify the coefficients of a
low-pass filter, as was done with the Lanczos window
in LH92, to reduce Gibbs oscillations. Alternatively, the
window may be used directly as a low-pass filter, as
will be described below.

3. Design of low-pass filter

There are several ways to specify the Dolph window.
The order N 5 2M 1 1 and ripple ratio r may be chosen,

where r is defined as the maximum amplitude in the
stop band [us, p]. Then the width of the main lobe [2us,
us] can be computed from

1 1 1
21 21x 5 cosh cosh , u 5 2 cos . (4)0 s1 22M r x0

The resulting window has the minimum main-lobe
width (i.e., minimum us) for the given ripple ratio and
order N. The amplitude response was calculated for
filters of several orders N 5 2M 1 1 with r 5 0.1.
The results are plotted in Fig. 1; the response (dB) is
defined as

d 5 20 log10zW(u)z,

so the minimum attenuation in the stop band is 20 dB
(the energy of components with frequencies in the in-
terval [us, p] is reduced to 1% or less). Note from (4)
that x0 and us depend on M. In Fig. 1 we see that the
width of the pass band decreases as M increases; thus,
the order may be chosen to obtain the required frequency
selectivity.

An alternative procedure is to specify the filter order
N 5 2M 1 1 and stop-band edge us. Then x0 and r are
obtained from

1 u 1s 215 cos , 5 cosh(2M cosh x ). (5)0x 2 r0

The window thus defined has minimum ripple ratio for
given main-lobe width and filter order. Let us suppose
components with periods less than 3 h are to be elim-
inated (ts 5 3 h) and the time step is Dt 5 0.5 h. Then
us 5 2pDt/ts ø 1.05. The responses for filters of order
5, 7, and 9 (or M 5 2, 3, and 4) are plotted in Fig. 2.
We see that damping in the stop band increases with
filter order and that a filter of order N 5 7, or span T
5 2MDt 5 3 h, attenuates high-frequency components
by more than 20 dB.
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FIG. 3. Frequency response for low-pass filter with parameter val-
ues T 5 24 h, Dt 5 0.5 h, and tc 5 6 h (M 5 24 and uc ø 0.5)
modified by a Dolph window with stop-band edge us ∈ {p/M, 2p/
M, 4p/M} or ts ∈{T, T/2, T/4}.

FIG. 4. Frequency response for low-pass filter with parameter val-
ues T 5 24 h, Dt 5 0.5 h, and tc 5 6 h (M 5 24 and uc ø 0.5)
modified by uniform, Lanczos, Hamming, and Dolph windows.

Finally, we may specify the ripple ratio r and stop-
band edge us and determine what order filter is required
to achieve these. Solving (5) for M and eliminating x0,
we find

21cosh (1/r)
2M 5 .

21cosh (sec u /2)s

For us K p the denominator is close to us/2. It follows
immediately that the minimum required time span T 5
2MDt is given approximately by

t 1s 21T ø cosh . (6)min p r

For ts 5 3 h and r 5 0.1, this yields Tmin ø 2.86 h.

4. Comparison with other window functions

For initialization, we wish to keep the filter span as
short as possible to minimize computation. However, if
the filter is to be used as a constraint in four-dimensional
data assimilation, the time span is set to the period over
which data is to be assimilated. As the span increases
and, with it, the order N, closer approximation to the
ideal square-wave frequency response should be pos-
sible. For the Fourier expansion, this is so; but the am-
plitude of the Gibbs oscillations does not diminish with
increasing order of truncation, so windowing is still nec-
essary. For the optimal filter discussed below, excellent
approximation to the ideal is attainable for higher order:
it is possible to limit the approximation error in the pass
band 0 # u # up. As the Dolph function is monotonic
in the range 0 # u # us it is not possible to guarantee
a response in the pass band whose flatness increases
sufficiently quickly with increasing order. Thus, the
Dolph function may be unsuitable for direct use as a
filter; however, it can be used in the same way as other
windows, in combination with the truncated Fourier

transform of the response function for an ideal low-pass
filter, to control the Gibbs oscillations and achieve a
high accuracy of approximation to the ideal.

The coefficients for an ideal low-pass filter with fre-
quency cutoff uc are

uc1
h 5 exp(inu) du, 2` # n # 1`.n E2p

2uc

Application of a uniform window of length N 5 2M 1
1 corresponds to setting hn 5 0 for znz . M:

sinnuc , 2M # n # 1M.
h 5 np (7)n 50, znz . M.

Other windows wn are applied by multiplying hn point-
wise by the window value, wnhn; this corresponds to
convolution in the frequency domain. The Dolph–Che-
byshev function can be used in this way. The highest
frequency component present in H(u), the response
function corresponding to hn, is cosMu. To remove it,
a window with main-lobe width wider than the period
of this component is required. The main-lobe width of
the Dolph window is 2us; thus, us 5 2p/M should give
reasonable damping of Gibbs oscillations. We apply
three Dolph windows with differing values of us to the
filter given by (7) with span T 5 24 h, time step Dt 5
0.5 h, and cutoff period tc 5 6 h (so that M 5 24 and
uc ø 0.5); see Fig. 3. Clearly, the central value us 5
2p/M (or ts 5 T/2) gives adequate attenuation of high-
frequency oscillations. The smaller value of us is in-
sufficiently damping while the larger value widens the
transition band to an unacceptable degree.

A large number of windows are defined and compared
in Harris (1978), where their advantages and demerits
are discussed. The frequency responses for several win-
dows are compared in Fig. 4. The Lanczos window
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FIG. 5. Frequency response (dB) for Dolph filter with M 5 3 and
ts 5 3 h, and for optimal filters for tp 5 4 h, 6 h, 8 h, and 10 h.
Other parameters: T 5 3 h, Dt 5 0.5 h, and ts 5 3 h.

TABLE 1. Filter coefficients for a Dolph filter and for an optimal
filter with tp 5 15 h. In both cases the stop-band edge is ts 5 3 h,
the span T 5 3 h and Dt 5 300 s, so M 5 18 and N 5 37.

n Dolph Optimal

0
1
2
3
4
5
6
7
8
9

0.03380
0.03370
0.03342
0.03295
0.03230
0.03149
0.03049
0.02936
0.02809
0.02671

0.03379
0.03369
0.03342
0.03294
0.03230
0.03148
0.03049
0.02939
0.02811
0.02671

10
11
12
13
14
15
16
17
18

0.02522
0.02365
0.02201
0.02032
0.01860
0.01688
0.01517
0.01348
0.04928

0.02517
0.02366
0.02198
0.02030
0.01861
0.01688
0.01518
0.01348
0.04932

21sin[pn(M 1 1) ]
w 5n 21pn(M 1 1)

was used in LH92. Another frequently used window,
due to Hamming, is defined by

wn 5 a 1 (1 2 a)cos( )
pn

M

with a 5 0.54. In the cases depicted in Fig. 4, the
parameter values are T 5 24 h, Dt 5 0.5 h, and tc 5
6 h (so M 5 24 and uc ø 0.5) and, for the Dolph window,
ts 5 T/2. The Dolph and Hamming windows appear
very similar in effect. Closer examination shows that
the Dolph window gives better attenuation of high fre-
quencies: the minimum damping for u . us is 63 dB,
compared to 50 dB for the Hamming window.

5. Comparison with optimal filter

An optimal filter has the smallest maximum approx-
imation errors in the pass and stop bands for a prescribed
transition band. Once the filter order N, pass-band edge
up, and stop-band edge us are given, the optimal filter
coefficients may be calculated by an iterative numerical
procedure. The examples below were generated using
the code in McClellan et al. (1973). In Fig. 5 we com-
pare the optimal filter response for four values of the
pass-band edge, tp 5 4 h, 6 h, 8 h, and 10 h with the
Dolph filter. The fixed parameters are T 5 3 h, Dt 5
0.5 h, and ts 5 3 h. Thus M 5 3, us ø 1.05, and up

varies from about 0.75 to about 0.3. The response of
the optimal filter approaches that of the Dolph filter
(with the same values of M and us) as tp increases (or
up decreases): for tp 5 10 h, the two curves are indis-
tinguishable on the plot.

In HL93 the filter parameters used for the optimal
filter were T 5 3 h, Dt 5 360 s, ts 5 3 h, and tp 5
15 h (so M 5 15, us ø 0.2, and up ø 0.04). The response

of this filter (see Fig. 12 of HL93) was compared to the
Dolph filter with the same values of M and us: the results
(not shown here) were, for practical purposes, identical.

To further illustrate the close similarity between the
Dolph and optimal filters, Table 1 presents the filter
coefficients {hn: 0 # n # M} for two filters. In each
case the total span is T 5 3 h and the time step Dt 5
300 s, so that M 5 18 and N 5 37. The stop-band edge
is ts 5 3 h for each filter and the pass-band edge for
the optimal filter is tp 5 15 h. It can be seen from Table
1 that the coefficients agree to three significant figures:
for practical purposes the two filters may be considered
to be essentially equivalent.

The optimal filter is more general than the Dolph
filter: it can be designed to have multiple pass and stop
bands and may have ripples in the pass bands. The
Dolph window cannot replicate this behavior, as it is
monotone in the interval [0, us]. But for the parameter
values of interest here the Dolph filter gives comparable
results. Since the optimal filter is, by construction, the
best possible solution to minimizing the maximum de-
viation from the ideal in the pass and stop bands, the
Dolph filter shares this property provided the equiva-
lence holds. In the appendix it is proved that the Dolph
window is, in fact, an optimal filter whose pass-band
edge, up, is the solution of the equation W(u) 5 1 2 r.
Note the essential distinction: for the general optimal
filter, up can be freely chosen; for the Dolph window,
it is determined by the other parameters. The algorithm
for the optimal filter is complex, involving about one
thousand lines of code; calculation of the Dolph filter
coefficients is simplicity: the Chebyshev polynomials
are easily generated from the recurrence relation, and
the coefficients follow immediately from (3).
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FIG. 6. Evolution of the noise parameter N1 (1026 s21) for the first
3 h of forecasts from uninitialized data (solid), and data initialized
using the Lanczos filter (dashed) and the Dolph filter (dotted).

6. Application to initialization

An adiabatic initialization using a filter with weights
{wn: 2M # n # 1 M} is performed by carrying out
two short model integrations of length MDt, one forward
and one backward from the initial time. For each model
variable x at each grid point and level, this provides a
set of values {xn: 2M # n # 1 M}. The initialized
values are then defined as

M

x* 5 w x .O n n
n52M

This sum may be calculated cumulatively as the inte-
grations proceed; full details are provided in LH92. Gen-
eralization to include diabatic effects is discussed in
HL93.

In view of the practical indistinguishability of the
Dolph filter and the optimal filter for the parameter val-
ues chosen in HL93 (see Table 1), we may expect that
the results obtained by initializing with a Dolph filter
would be virtually identical to those reported in that
paper. Another application will be described here. Rich-
ardson (1922) calculated the pressure tendency using
observations valid at 0700 UTC 20 May 1910. Richard-
son’s data tables have been extended using original
sources, and a model based on his formulation of the
primitive equations has been written (Lynch 1994). For
the unmodified data, the initial pressure tendency at a
central point calculated using the model was 145 hPa
per 6 h, in agreement with Richardson’s value. When
an initialization was performed using a Lanczos win-
dowed filter with time step Dt 5 300 s, cutoff period
tc 5 6 h, and span T 5 6 h (as in LH92), the tendency
was drastically reduced to a value of 22.3 hPa per 6 h.
The same data was initialized using a Dolph filter with
a 3-h span and stop-band edge ts 5 3 h; the filter co-
efficients are shown in Table 1. The initial pressure ten-
dency was, in this case, further reduced to a value of
20.9 hPa per 6 h. Richardson reported observations for
the date and time in question showing that the barometer
was almost steady in the region of the central point.
Thus, the value produced with the Dolph filter is the
more realistic result.

The initial tendency at a central point is a useful
indicator of local gravity wave activity. A more global
measure is provided by the quantity N1, defined by

I J K1
N 5 (¹ ·V) ,O O O1 ) ijk)IJK i51 j51 k51

which is related to the absolute pressure tendency av-
eraged over the forecast area. The evolution of N1 for
three forecasts is depicted in Fig. 6. In all cases the time
step was Dt 5 300 s. For uninitialized data, the solid
line shows that N1 starts at a relatively high value of
about 4 3 1026 s21 and falls to around 1026 s21 within
3 h. The two initialized runs, one using the Lanczos
filter and one the Dolph filter, have much lower starting
values for N1, and this parameter remains small through-

out the forecasts. Although the span of the Dolph filter
is only half that of the Lanczos filter, there is essentially
no difference in noise levels between the two initiali-
zation methods.

7. Conclusions

The Dolph–Chebyshev window has properties similar
to those of an optimal filter: it has been shown to be
optimal for an appropriate choice of parameters. It has
an explicit analytical expression, making it especially
easy to implement. Its effectiveness has been demon-
strated by application to the forecast first made by Rich-
ardson. The initial pressure tendency was reduced from
an unrealistic to a reasonable level. The use of the filter
is not restricted to initialization; it may also be applied
as a weak constraint in four-dimensional data assimi-
lation. Preliminary four-dimensional variational assim-
ilation experiments with the HIRLAM model have been
made using the Dolph window as a weak constraint on
high-frequency components. The procedure was suc-
cessful in controlling gravity waves. A comparison with
the normal mode method is planned; this work will be
reported elsewhere.
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APPENDIX

Optimality of the Dolph Filter

Let J(u) be the frequency response of an ideal low-
pass filter with cutoff frequency uc. An optimal filter is



660 VOLUME 125M O N T H L Y W E A T H E R R E V I E W

defined by specifying pass and stop bands with edges
up and us such that up , uc , us and minimizing the
maximum deviation of the frequency response H(u)
from the ideal in these bands. Let e(u) 5 H(u) 2 J(u)
and define the maximum deviation as

d 5 max{ze(u)z: 0 # u # up or us # u # p}.

The extreme points are those for which e(u) 5 6d. The
function H(u) can be written as a polynomial of order M:

M M

H(u) 5 h 1 2h cos(nu) 5 h 1 2h T (x),O O0 n 0 n n
n51 n51

where x 5 cosu. The Chebyshev alternation theorem
(Oppenheim and Schafer 1989, 468–469) states that if
H(u) is a polynomial of order M that minimizes d, there
must be M 1 2 extreme points with alternately positive
and negative deviations. Moreover, H(u) is unique and
both up and us are extreme points.

The Dolph window W(u) 5 rT2M [x0 cos(u/2)] has M
zeros in us , u , p. There are M 1 1 extreme points
in us # u # p (these include us and p) for which W(u)
5 6r. If we define up such that W(up) 5 1 2 r, the
point up is a further extreme point, bringing the total to
M 1 2. Thus, W(u) fulfils the conditions of the alter-
nation theorem and must be the unique optimal solution
with the pass-band edge given by up.
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