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Laplace transform integration of the shallow water equations.
Part 1: Eulerian formulation and Kelvin waves
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A filtering integration scheme is developed, using a modification of the contour
used to invert the Laplace transform (LT). It is shown to eliminate components
with frequencies higher than a specified cut-off value. Thusit is valuable
for integrations of the equations governing atmospheric flow. The scheme is
implemented in a shallow water model with an Eulerian treatment of advection.
It is compared to a reference model using the semi-implicit (SI) scheme. The LT
scheme is shown to treat dynamically important Kelvin wavesmore accurately
than the SI scheme. Copyright c© 0000 Royal Meteorological Society

Key Words: Numerical weather prediction; Time integration; Filtering

Received . . .

Citation: . . .

1. Introduction

The purpose of this work is to investigate a filtering
integration technique suitable for application to a range
of physical problems, in particular to numerical weather
prediction. In operational NWP, efficiency is crucial, as we
must produce regular and timely forecasts. In integrating the
equations of motion, we need to use the longest timestep
possible while still retaining acceptable accuracy.

Explicit finite difference schemes are limited by the
CFL criterion, as stability is governed by the fastest
waves present in the system. Fully implicit methods
lead to complicated coupled nonlinear systems, which
are impractical to solve in an operational context. The
development of the semi-implicit method by Robert (1969)
was a major breakthrough. By averaging terms leading
to fast-moving gravity waves, Robert was able to achieve
acceptable accuracy using a time step considerably larger
than that required for explicit methods.

Despite these advances, there remain a number of
issues with the semi-implicit method. In particular, the
method maintains stability by slowing down the fast-
moving waves in the system (see, e.g., Lynch, 2006, pp. 85–
87). This may be problematic if we need to simulate
a phenomenon that is influenced by such waves. Every
discretisation technique invariably has its own strengths
and weaknesses and there is still no ‘perfect’ scheme.
It is important, therefore, that research into numerical
methods for atmospheric models is continued. With this

motivation we investigate a numerical scheme that offers
some significant advantages over existing schemes.

High frequency noise has been a problem throughout
the history of NWP. As outlined in Lynch (2006),
this was the main cause of the failure of Richardson’s
forecast. Various initialization techniques have been
developed to address this problem. One such method,
first presented in Lynch (1985a, 1985b), used a modified
inversion to the Laplace transform (LT) to remove high
frequency components from the initial conditions. The LT
initialization scheme was reviewed in Daley (1991). In Van
Isacker and Struylaert (1985), Lynch (1986) and Lynch
(1991), this method was extended beyond initialization and
a filtering time-stepping scheme was developed from the
idea. The work presented in this paper further develops
the LT discretisation as a viable numerical scheme for
NWP. The implementation of the scheme is described and
the benefits of the technique over existing schemes are
demonstrated by a combination of analytical and numerical
approaches.

This study is presented in two parts. In Part 1 we
implement an LT scheme in a model using Eulerian
advection and demonstrate its advantages for simulating
atmospheric waves, in particular Kelvin waves. In Part 2
(Clancy and Lynch, 2011) we combine the LT scheme with
a semi-Lagrangian advection scheme. We show that it is
accurate and that it is free from the problem of orographic
resonance that is found with semi-implicit schemes.
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2 C. Clancy and P. Lynch

In §2, the background theory and mathematical
formulation of the LT integration scheme is presented. After
these preliminaries, we test the LT method’s efficacy as
a numerical solver for the partial differential equations
governing the atmosphere. In§3, a spectral model using
the LT method for its temporal discretisation is developed,
using an existing shallow water model (STSWM) as a
basis and reference. The scheme is evaluated using various
standard test cases. Along with a linear analysis in a simple
oscillation equation, we perform shallow water simulations
of Kelvin waves to investigate the effect of the LT scheme
on phase speeds and, in§4, demonstrate its benefits over
the semi-implicit scheme. Finally, a summary of the main
results and conclusions is given in§5.

2. The Laplace transform integration method

2.1. Basic definitions

Given a functionf(t) with t ≥ 0, the Laplace transform
(LT) is defined as

f̂(s) ≡ L{f} =

∫ ∞

0

e−stf(t) dt (1)

The variables is complex. The inversion from a transformed
function back to the original is given by the contour integral

f(t) ≡ L
−1{f̂} =

1

2πi

∫

C

estf̂(s) ds (2)

where the contourC is a line parallel to the imaginary axis in
thes-plane, to the right of all the singularities of̂f . Further
theory and applications of the Laplace transform may be
found in Doetsch (1971).

The ability of the Laplace transform to filter high
frequencies is illustrated by the simple example of a
function consisting of a slow and a fast oscillation. We
define

f(t) = a ei νR t + Aei νG t

with |νR| ≪ |νG|. The LT of this function is given by

f̂(s) =
a

s − i νR
+

A

s − i νG
.

The functionf̂ has two simple poles on the imaginary axis,
at s = i νR ands = i νG. To invert this tof(t) we would
normally use the inversion integral (2) along the straight line
C shown in Figure 1 (left panel).

To remove the high frequency component, we choose
a positive real numberγ such that|νR| < γ < |νG|. Then
we define a closed contourC∗ as the circle centred at the
origin, with radiusγ, as depicted on the left in Figure 1. We
replaceC by C∗ in the integral in (2), yielding the modified
inversion

f∗(t) ≡ L
∗{f̂} =

1

2πi

∮

C∗

estf̂(s)ds (3)

The functionf∗(t) contains only contributions from the
poles lying withinC∗, that is, those with frequencies less
thanγ. From Cauchy’s Integral Formula we readily find that

f∗(t) = a ei νR t

Thus, the modified inversion integral (3) acts to filter high
frequency behaviour, as required.

2.2. Laplace transform integration

The LT method was originally used as an initialisation
technique (Lynch, 1985a,b). The extension to time
integration was studied in Van Isacker and Struylaert (1985,
1986) and Lynch (1986, 1991). The basic idea is to consider
the LT over a discrete interval of time∆t. The transforms
can be computed analytically and the modified inversion
operator (3) is applied to find a filtered value at the end
of the interval. We consider the transform of the general
equation

dX

dt
+ LX + N(X) = 0

where L is a linear operator andN a nonlinear vector
function, and rearrange to get

X̂ = (sI + L)−1[X0 − N
0/s] (4)

The initial value isX0 and we have held the nonlinear term
at its initial valueN

0. We apply the inversion operator at
time t = ∆t to get the filtered state at this time

X(∆t) = L
∗

{
X̂

} ∣∣∣
t=∆t

Having the solution att = ∆t we continue stepwise to
extend the forecast. In general we consider the time interval
[τ∆t, (τ + 1)∆t]. The filtered solution at time(τ + 1)∆t
is found by applying the modified inversion to the LT of the
equation. Over this general interval, the ‘initial condition’
in (4) will be taken at the beginning of the interval, that is,
X

τ ≡ X(τ∆t). The nonlinear terms are also evaluated at
this time. Thus the solution at time(τ + 1)∆t is

X
τ+1 = L

∗{(sI + L)−1[Xτ − N
τ/s]}

∣∣∣
t=∆t

Alternatively, a centred approach may be taken, where
we consider the interval[(τ − 1)∆t, (τ + 1)∆t] and the
nonlinear terms are evaluated at the centreτ∆t. The general
forecasting procedure is thus as follows:

X̂(s) = (sI + L)−1
[
X

τ−1 − N
τ/s

]

X
τ+1 = L

∗

{
X̂

} ∣∣∣
t=2∆t

(5)

Care must be taken to ensure that(sI + L)−1 exists. The
matrix sI + L is singular when we haves = −λ, for λ an
eigenvalue ofL. But |s| = γ, the radius of the contourC∗.
The problem can thus be avoided by a suitable choice ofγ,
the cutoff frequency.

2.3. Evaluating the contour integral

The inversion usingL∗ requires the complex integration in
(3), around the circleC∗. To apply the filter in practice,
we replaceC∗ by theN -sided polygonC∗

N to reduce the
integration to a summation. The length of each edge is∆sn

and the midpoints are labelledsn for n = 1, 2, . . . , N . The
right panel of Figure 1 shows the case withN = 8.

We can now define the numerical operator used for the
modified inversion as

L
∗

N{f̂} ≡
1

2πi

N∑

n=1

esntf̂(sn)∆sn
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Laplace transform integration 3

It was suggested in Van Isacker and Struylaert (1985) that
the exponential term in the expression for the numerical
inversion should be replaced by a Taylor series truncated
to N terms. We write

ezN =

N−1∑

j=0

zj

j!
(6)

If we divide the summation in the numerical inversion by

κ =
N

π
tan

π

N

then the inversion is exact for a constant function, and for
any power oft up to degreeN − 1 (Clancy, 2010).

As noted in Lynch (1991), it can be shown that

1/κ = (2πi/N) (sn/∆sn)

so the final form of the numerical filtering inversion integral
to be used is

L
∗

N{ f̂ } ≡
1

N

N∑

n=1

esnt
N f̂(sn) sn (7)

2.4. Filter response and stability

With the inversion operatorL∗

N defined by (7), we consider
the effect of the filtering operatorL∗

NL on a single wave
componentf(t) = eiωt. This was analysed by Van Isacker
and Struylaert (1985) and Lynch (1986), who showed that

L
∗

NL
{
eiωt

}
= HN (ω) ei ω t

N (8)

where

HN (ω) =
1

1 +

(
i ω

γ

)N
(9)

If we always choose a value forN that is a multiple of 4,
we ensure thatHN (ω) is real and|HN (ω)| ≤ 1. Thus its
effect is to damp the input, without a phase shift. In addition,
the operatorL∗

NL truncates the originalei ω t to N terms.
We note theHN is the square of the response function of a
Butterworth lowpass filter (Oppenheim and Schafer, 1989).

Lynch (1986) showed how, when the centred LT
method given by (5) is used, the response above yields the
sufficient stability criterion

∆t ≤
(N !)1/N

2γ
(10)

This is a very lenient condition. With typical valueN = 8
and a cut-off frequency defined by a periodτc = 6 hours,
we get a maximum timestep of around 1.8 hours, longer
than would normally be used in practice.

3. The spectral transform shallow water model

We now test the performance of the LT integration scheme
in a shallow water model. A key benefit of the LT method
is stability, with its potential to allow long timesteps to be
used. We will compare it with a reference semi-implicit
method.

When the shallow water equations are discretised with
a semi-implicit scheme, one obtains a Helmholtz equation
that needs to be solved at every timestep. Clearly an efficient
solver is essential. When the LT method is applied, we
encounter an analogous Helmholtz equation. Whereas the
semi-implicit method requires the solution of the equation
once every timestep, for the LT scheme we must solve it
at each of theN midpoints on anN -gon. It is vital that
the benefits of the LT scheme are not negated by the extra
computational overhead. This motivates the coupling of the
LT scheme with the spectral transform method, for which
the solution of a Helmholtz equation is simple and efficient.

The spectral transform method uses spherical harmon-
ics as basis functions for expansion of the model fields.
Spherical harmonics are the eigenfunctions of Laplace’s
equation and satisfy

∇2Y m
ℓ = −

ℓ(ℓ + 1)

a2
Y m

ℓ (11)

wherea is the radius of the Earth. Writingµ = sinφ, they
are defined byY m

ℓ (λ, µ) = eimλ Pm
ℓ (µ). ThePm

ℓ are the
associated Legendre functions. Washington and Parkinson
(2005) provide the further details of spherical harmonics
that are necessary for the spectral transform method.

Examining (11) we see that computing the Laplacian
of a series of spherical harmonics merely requires scalar
multiplications. The solution of a Helmholtz equation
is therefore computationally trivial. This provides the
motivation for using the spectral transform method with a
LT time integration.

3.1. STSWM: Basic equations

The Spectral Transform Shallow Water Model (STSWM)
is a freely available model developed at the National
Center for Atmospheric Research (NCAR) and described
in Hack and Jakob (1992). It is designed to solve the
shallow water equations using a spectral transform method
and specifically to consider the test suite of Williamson
et al. (1992). The original code is written in Fortran
77. An updated version in Fortran 90 was developed
by the ICON group at the Max Planck Institute for
Meteorology (MPI-M) and the Deutscher Wetterdienst
(DWD) [http://icon.enes.org/].

We now provide a brief overview of the model’s
discretisation. Full details are given in the report of Hack
and Jakob. Jakob et al. (1993) specifically describe the
changes needed to include orography in the model.

The shallow water equations are given in the form

∂η

∂t
= −

1

a(1 − µ2)

∂

∂λ
(Uη) −

1

a

∂

∂µ
(V η)

∂δ

∂t
=

1

a(1 − µ2)

∂

∂λ
(V η) −

1

a

∂

∂µ
(Uη)

−∇2

(
Φs + Φ′ +

U2 + V 2

2(1 − µ2)

)
(12)

∂Φ′

∂t
= −

1

a(1 − µ2)

∂

∂λ
(UΦ′) −

1

a

∂

∂µ
(V Φ′) − Φ̄∗δ

Here (U, V ) = (u cosφ, v cosφ) are the horizontal wind
images,µ = sin φ, η = ζ + f is the absolute vorticity and
δ is the horizontal divergence. The free surface geopotential
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4 C. Clancy and P. Lynch

has been written asΦ = Φ̄∗ + Φ′ + Φs, whereΦ̄∗ is a time-
independent spatial mean geopotential depth andΦs is the
geopotential of the surface of the Earth.

All of the fields are represented as truncated series
of spherical harmonics; for example, with a triangular
truncation,

η(λ, µ, t) =

L∑

ℓ=0

ℓ∑

m=−ℓ

ηm
ℓ (t) eimλ Pm

ℓ (µ)

Hereηm
ℓ are the time-dependent spectral coefficients. For

the spectral transform method, the nonlinear terms on the
right-hand side of (12) are computed in physical space and
the product is then expanded in a series. Orthogonality of
the spherical harmonics can then be used to obtain a series
of equations for the spectral coefficients. We are left with a
set of ordinary differential equations of the form

d

dt
ηm

ℓ = Nm
ℓ

d

dt
δm
ℓ = Dm

ℓ +
ℓ(ℓ + 1)

a2
Φm

ℓ (13)

d

dt
Φm

ℓ = Fm
ℓ − Φ̄∗ δm

ℓ

Note that theΦm
ℓ are the spectral coefficients of the

perturbation geopotentialΦ′; the prime has been dropped
for ease of notation.

3.2. STSWM: Semi-implicit scheme

We use the semi-implicit STSWM as the reference model in
this work. The discretisation of (13) is given by

{ηm
ℓ }τ+1 − {ηm

ℓ }τ−1

2 ∆ t
= {Nm

ℓ }τ

{δm
ℓ }τ+1 − {δm

ℓ }τ−1

2 ∆ t
= {Dm

ℓ }τ

+
ℓ(ℓ + 1)

a2

{Φm
ℓ }τ+1

+ {Φm
ℓ }τ−1

2

{Φm
ℓ }τ+1 − {Φm

ℓ }τ−1

2 ∆ t
= {Fm

ℓ }τ

− Φ̄∗
{δm

ℓ }τ+1
+ {δm

ℓ }τ−1

2

Here the superscriptτ represents the discrete time level
t = τ ∆t. The decoupling of the expressions for{δm

ℓ }τ+1

and{Φm
ℓ }τ+1 is simplified due to the spectral form of the

Laplacian operator. The final time-stepping procedure can
then be written as

{ηm
ℓ }τ+1

= {ηm
ℓ }τ−1

+ 2 ∆t {Nm
ℓ }τ

{δm
ℓ }τ+1

=
1

d

(
R + Q

ℓ(ℓ + 1)

a2
∆t

)
(14)

{Φm
ℓ }τ+1 =

1

d

(
Q−R Φ̄∗ ∆t

)

where

d = 1 + Φ̄∗
ℓ(ℓ + 1)

a2
∆t2

R = {δm
ℓ }τ−1 + 2 ∆t{Dm

ℓ }τ + ∆t
ℓ(ℓ + 1)

a2
{Φm

ℓ }τ−1

Q = {Φm
ℓ }τ−1 + 2 ∆t{Fm

ℓ }τ − ∆t Φ̄∗ {δm
ℓ }τ−1

3.3. STSWM: Laplace transform formulation

We now adapt the STSWM code to solve the shallow
water equations using the LT method. Again we consider
the system of equations (13) for the time-dependent
spectral coefficients. We take the Laplace transform of each
equation, as described in§2.2:

s η̂m
ℓ − {ηm

ℓ }τ−1
=

1

s
{Nm

ℓ }τ

s δ̂m
ℓ − {δm

ℓ }τ−1
=

1

s
{Dm

ℓ }τ
+

ℓ(ℓ + 1)

a2
Φ̂m

ℓ

s Φ̂m
ℓ − {Φm

ℓ }τ−1 =
1

s
{Fm

ℓ }τ − Φ̄∗ δ̂m
ℓ

As outlined previously, we are taking our ‘initial’ value
at the beginning of the time step, i.e. att = (τ − 1)∆t.
The nonlinear termsNm

ℓ , Dm
ℓ andFm

ℓ are evaluated at the
middle time levelτ . By taking the transforms of the linear
right-hand terms in the divergence and continuity equations,
we get a coupled system analogous to that for the semi-
implicit discretisation. We can solve it to get

s η̂m
ℓ = {ηm

ℓ }τ−1
+

1

s
{Nm

ℓ }τ

s δ̂m
ℓ =

1

d′

(
R′ +

1

s

ℓ(ℓ + 1)

a2
Q′

)
(15)

s Φ̂m
ℓ =

1

d′

(
Q′ −

1

s
Φ̄∗ R′

)

where

d′ = 1 + Φ̄∗ ℓ(ℓ + 1)

a2

1

s2

R′ = {δm
ℓ }τ−1

+
1

s
{Dm

ℓ }τ

Q′ = {Φm
ℓ }τ−1 +

1

s
{Fm

ℓ }τ

Comparing (14) and (15), we find close similarities between
the two discretisations. Once we have computed the terms
in (15), we use the inversion operatorL

∗

N to compute the
spectral coefficients at the new time(τ + 1)∆t, which is
at a time2 ∆t after the beginning of the time interval; for
example

{ηm
ℓ }τ+1

= L
∗

N

{
η̂m

ℓ

}∣∣∣
t=2∆t

=
1

N

N∑

n=1

sn η̂m
ℓ (sn) e2∆t sn

N

3.4. Numerical simulations

To compare the LT method with the reference semi-implicit
scheme, we use the test case suite of Williamson et
al. (1992). In particular we consider Case 1 (advection of
a cosine bell), Case 2 (steady zonal flow), Case 5 (flow over
a mountain) and Case 6 (Rossby-Haurwitz wave).

A number of normalised error measurements are
used for ease of comparison. Williamson et al. (1992)
recommend thel1(h), l2(h) and l∞(h) quantities, where
l1(h) is the mean absolute difference from the reference,
l2(h) is the root mean square difference, andl∞(h) is
the maximum absolute difference, each normalized by the
appropriate measure of the reference solution. Normalised
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Laplace transform integration 5

invariants for mass and for total energy are also used to
study the conservation properties of the schemes.

The LT version of STSWM was compared to the
original semi-implicit version (the reference model) using
the test cases outlined above. Unless otherwise stated,
tests were carried out at a spectral T42 resolution with a
1200 second timestep. The default cutoff period for the
LT method is τc = 6 hours. For the inversion we test
bothN = 8 andN = 16. For Cases 5 and 6, fourth order
diffusion is used in the semi-implicit runs, with the diffusion
coefficients recommended by Jakob et al. (1993): for T42
simulations this is5.0 × 1015m4 s−1.

For Cases 1 and 2, all schemes performed with high
accuracy, and all were of comparable precision (for details,
see Clancy (2010)). For Case 5, flow over an isolated
mountain, there is no analytical solution. We compute
errors by taking the ‘true’ solution from a T213∆t =
360s reference run with a diffusion coefficient of8.0 ×
1012m4 s−1. The errors for the T42 simulations for 15 days,
plotted in Figure 2 (left panel:l2 error; right panel:l∞
error), are of comparable magnitude for the reference and
for the two LT forecasts (usingN = 8 andN = 16 points).
The three forecasts showed an almost identical decrease in
mass, though at a negligible magnitude ofO(10−15) after
15 days. The deviation from energy conservation was also
negligible for the three forecasts (Clancy, 2010).

For the Rossby-Haurwitz wave of Case 6, Jakob et
al. (1993) recommend using shorter timesteps than for the
other cases, due to the strong winds involved. The high-
resolution ‘true’ solution is given by a T213 run with∆t =
180 seconds. The T42 simulations are run with a timestep
of 600 seconds for 14 days. Errors are plotted in Figure
3. In this case we also ran two more LT forecasts, again
usingN = 8 andN = 16 but with a shorter cutoff period
of 3 hours. We see that these forecasts are much closer to
the reference than those with the 6 hour cutoff. All runs
are comparable in terms of (negligible) mass loss. The LT
τc = 3 runs are best for energy conservation.

The value of the cutoff periodτc is selected on the basis
of numerical experimentation. There is no objective way
to fix a precise value for this, and the optimal choice may
vary with circumstances. However, the freedom to choose
τc gives the LT scheme additional flexibility, not available
in the semi-implicit scheme.

4. Simulation of Kelvin waves

Semi-implicit methods are popular due to their attractive
stability properties. This is achieved at the expense of a
slowing of the faster waves present in the system. This is
not a serious issue if we are interested only in slower modes.
There may, however, be cases where we wish to accurately
simulate some of the faster waves. In these situations the
semi-implicit approach may not be ideal. We investigate
the effect of semi-implicit averaging on phase speed in the
simplest context, and compare it to results using the LT
discretisation. We then confirm the analytical results by
simulating a Kelvin wave using the LT and semi-implicit
schemes.

4.1. Phase error analysis

We begin with the one-dimensional oscillation equation

du

dt
= i ν u (16)

We follow the approach of Durran (1999) when analysing
the two methods. We seek a numerical amplification factor,
A, such thatuτ+1 = Auτ . Writing A = |A| ei θ, a sufficient
criterion for stability is given by|A| ≤ 1. The phase is given
by θ = tan−1 (ℑ(A)/ℜ(A)). Following Durran, we define
a relative phase change

R =
θ

ν ∆t
(17)

A numerical scheme is decelerating ifR < 1.
We will compute the relative phase change for the

semi-implicit scheme

uτ+1 − uτ

∆t
= i ν

uτ+1 + uτ

2
.

Evaluating the relative phase changeRSI using (17) we get

RSI =
1

ν ∆t
tan−1

(
ν ∆t

1 − ν2∆t2/4

)

≈ 1 −
(ν ∆t)2

12
(18)

for small values ofν ∆t. Clearly, the semi-implicit scheme
decelerates waves.

We next apply the LT method to (16), to get

s û − uτ = i ν û

Inverting analytically with the full integralL−1 over a
∆t interval yields uτ+1 = uτ ei ν ∆t. Thus we have an
exact representation of the frequency. With the numerical
inversion operatorL∗

N we get

uτ+1 = uτ HN (ν) ei ν ∆t
N

The relative phase change is given by

RLT =
1

ν ∆t
tan−1

(
sinN (ν ∆t)

cosN (ν ∆t)

)
(19)

where cosN (ν ∆t) and sinN (ν ∆t) denote, respectively,
the real and imaginary parts ofei ν ∆t

N . Taking a Taylor series
yields

RLT ≈ 1 +
N

(N + 1)!
(ν ∆t)N (20)

The details are given in Clancy (2010). The LT method gives
a highly precise representation of phase speed, with an error
due only to the discretisation of the inversion operator. This
is clearly far more accurate than that for the semi-implicit
case in (18). If, for example, we useN = 8 we get

RLT ≈ 1 +
(ν ∆t)

8

45360

The scheme is marginally accelerating, but by a negligible
amount.

In the next subsection we will consider a Kelvin
wave with zonal wavenumber 5, with a period of about
6.7 hours. With a timestep of 30 minutes, the error in
the semi-implicit scheme is thenRSI ≈ 0.98 while a one
hour timestep yieldsRSI ≈ 0.92. For the LT scheme with
a 1800 second timestep, the error isRLT ≈ 1.00000005,
completely negligible.
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6 C. Clancy and P. Lynch

4.2. Numerical integration for the Kelvin wave

We now investigate the performance of semi-implicit and
LT schemes in simulating Kelvin waves. These are eastward
propagating waves, characterised by almost vanishing
meridional wind. They are symmetric about the equator
and decay with increasing latitude. They are known to play
an important role in a number of atmospheric phenomena.
Holton (1975) discusses their role in the dynamics of
the Quasi-Biennial Oscillation (QBO) in the stratosphere.
A comprehensive review may be found in Baldwin et
al. (2001). Kelvin waves have also been shown to be
important for the Madden-Julian Oscillation (Zhang, 2005).
It is clearly vital, therefore, that these waves are accurately
simulated.

Kasahara (1976) provides a description of the Hough
modes along with details and code of a numerical method to
produce them. This was used to generate initial conditions
for STSWM. Since Hough modes are eigenfunctions for the
linearised equations, they propagate almost linearly, without
change of form, for small amplitudes.

For varying zonal wavenumbersm we compute the
frequency of the Kelvin wave using the method of Kasahara.
We use this to plot the relative phase changes for the
semi-implicit and the LT method, given in (18) and (19)
respectively. Figure 4 shows the errors plotted against the
timestep for two wavenumbers:m = 1 andm = 5. For the
two cases, the LT method (heavy black solid and dashed
lines) are indistinguishable and appear to be almost exact.
The deceleration is evident in the semi-implicit method
(thin solid and dashed lines). As seen from (18), the slowing
effect increases with larger timesteps and for the higher
frequency of them = 5 wave.

We compared three numerical simulations of Kelvin
wave with zonal wave numberm = 5. A mean height of
10 km was used with a wave perturbation amplitude of
100 m. For this value, the period is approximately 6.7
hours. All runs were carried out at a T63 spectral resolution.
Figure 5 shows the hourly height at a single point close to
the equator, (0.0◦E, 0.9◦N), over the first 10 hours of the
forecasts at∆t = 1800s. Here the phase speed differences
are easily seen. The solid line marked ‘Exact’ is a sinusoidal
wave with a 6.7 hour period, representing the analytical
solution. Both LT forecasts,N = 8 (dashed line) andN =
16 (bold dashed), have nearly identical speeds closely
matching the analytical solution. The semi-implicit solution
(solid with circles) is visibly slowed.

From the previous analysis, we see that the amplifica-
tion factor for the LT scheme is not equal to one. However, it
is very close to one and no significant damping is observed
in Figure 5.

5. Conclusion

We have developed a time integration method based on a
modified inversion of the Laplace transform (LT). It can
be configured to simulate low frequency components of
the solution whilst eliminating unwanted high frequency
oscillations. The method was compared to the semi-implicit
(SI) approach. The SI method stabilizes high frequency
gravity waves by averaging them. This has the effect of
reducing the phase speed of the waves. The LT scheme
has been shown to have smaller phase errors than the SI
scheme when simulating a Kelvin wave. Since these waves
are dynamically important, this is a significant advantage.

In this study we have combined the LT scheme with
an Eulerian treatment of advection. Thus, the time step is
limited by the strength of the ambient flow. In Part 2 we will
combine the LT scheme with semi-Lagrangian advection,
and show that it has additional important advantages over
the semi-implicit method.
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Figure 1. Left: The contourC∗ replacesC for the modified LT inversion. Right: The numerical inversion is performed usingC∗

N
. (From Lynch (1991),

c©Amer. Met. Soc.)
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Figure 2. Case 5 at T42 and∆t = 1200s. l2 error (left panel) andl∞ error (right panel).
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