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Laplace transform integration of the shallow water equatians.
Part 1: Eulerian formulation and Kelvin waves
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A filtering integration scheme is developed, using a modifidéon of the contour

used to invert the Laplace transform (LT). It is shown to eliminate components
with frequencies higher than a specified cut-off value. Thust is valuable

for integrations of the equations governing atmospheric flae. The scheme is
implemented in a shallow water model with an Eulerian treatment of advection.

Itis compared to a reference model using the semi-implicit$l) scheme. The LT
scheme is shown to treat dynamically important Kelvin wavesnore accurately

than the S| scheme. Copyright© 0000 Royal Meteorological Society
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1. Introduction motivation we investigate a numerical scheme that offers
some significant advantages over existing schemes.

The purpose of this work is to investigate a filtering  High frequency noise has been a problem throughout
integration technique suitable for application to a rangge history of NWP. As outlined in Lynch (2006),

of physical problems, in particular to numerical weath@is was the main cause of the failure of Richardson’s
prediction. In operational NWP, efficiency is crucial, as Weecast. Various initialization techniques have been
must produce regular and timely forecasts. In integratieg tdeveloped to address this problem. One such method,

equations of motion, we need to use the longest imesiep; hresented in Lynch (1985a, 1985h), used a modified
possible while still retaining acceptable accuracy. inversion to the Laplace transform (LT) to remove high
Explicit finite difference schemes are limited by thgeqency components from the initial conditions. The LT
CFL criterion, as stability is governed_ by. Fhe fas'[e(?ﬁitialization scheme was reviewed in Daley (1991). In Van
waves present in the system. Fl.J”y implicit metho_ acker and Struylaert (1985), Lynch (1986) and Lynch
Iaereeldiéoprggﬁgllcﬁegolsguﬂegn nggg?;%nzrfgm;tw'?l 1 91), this method was extended beyond initialization and
development of the semi-implicit method by Robert (196 :{Iﬂt.er_ll_r;]ge t:/%?ksfrgzgr?t;;r;ﬁrrt]k?iswszp(je?V]‘elJl :)tﬁg(rj ;ré)vrglg)gi

it LT discretisation as a viable numerical scheme for

to fast-moving gravity waves, Robert was able to aChieKRNP The implementation of the scheme is described and
acceptable accuracy using a time step considerably Iarﬁ;]er y

than that required for explicit methods. e benefits of the tech_qu_Je over existing schemes_are
. . danonstrated by a combination of analytical and numerical
Despite these advances, there remain a number_g

issues with the semi-implicit method. In particular, th%pproaches.

method maintains stability by slowing down the fast- This study is presented in two parts. In Part 1 we
moving waves in the system (see, e.g., Lynch, 2006, pp. 88plement an LT scheme in a model using Eulerian
87). This may be problematic if we need to simuladvection and demonstrate its advantages for simulating
a phenomenon that is influenced by such waves. Evatynospheric waves, in particular Kelvin waves. In Part 2
discretisation technique invariably has its own strengt{fslancy and Lynch, 2011) we combine the LT scheme with
and weaknesses and there is still no ‘perfect’ schenaesemi-Lagrangian advection scheme. We show that it is
It is important, therefore, that research into numericatcurate and that it is free from the problem of orographic
methods for atmospheric models is continued. With thissonance that is found with semi-implicit schemes.
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2 C. Clancy and P. Lynch

In §2, the background theory and mathematical2. Laplace transform integration
formulation of the LT integration scheme is presented. Afte
these preliminaries, we test the LT method’s efficacy a§€ LT method was originally used as an initialisation
a numerical solver for the partial differential equatiori¢chnique (Lynch, 1985a,b). The extension to time
governing the atmosphere. §8, a spectral model usingintegration was studied in Van Isacker and Struylaert (1985
the LT method for its temporal discretisation is developet986) and Lynch (1986, 1991). The basic idea is to consider
using an existing shallow water model (STSWM) as the LT over a discrete interval of timat. The transforms
basis and reference. The scheme is evaluated using varzars be computed analytically and the modified inversion
standard test cases. Along with a linear analysis in a simpfeerator (3) is applied to find a filtered value at the end
oscillation equation, we perform shallow water simulagior®f the interval. We consider the transform of the general
of Kelvin waves to investigate the effect of the LT schengguation

on phase speeds and, 4, demonstrate its benefits over dX +LX + N(X) =0
the semi-implicit scheme. Finally, a summary of the main dt
results and conclusions is givenga. where L is a linear operator andN a nonlinear vector

) _ function, and rearrange to get
2. The Laplace transform integration method g g

Y — —11y0 0
2.1. Basic definitions X = (sI+ L) [X" = N/s| (4)
Given a functionf(t) with ¢ > 0, the Laplace transform The initial value isX? and we have held the nonlinear term
(LT) is defined as - at its initial valueIN°. We apply the inversion operator at
timet = At to get the filtered state at this time

o~

for=etn=[ e @) e
o X(a0 = {X}|
The variables is complex. The inversion from a transformed

function back to the original is given by the contour intégrilaving the solution at = At we continue stepwise to
extend the forecast. In general we consider the time interva

a1y 1 st 7 [TAt, (7 + 1)At]. The filtered solution at timér + 1)At
F)=L71{f} = omi /C e f(s)ds @) is found by applying the modified inversion to the LT of the
S ) ) ~_equation. Over this general interval, the ‘initial conaliti
where the contouf is a line parallel to the imaginary axis inin (4) will be taken at the beginning of the interval, that is,
the s-plane, to the right of all the singularities ¢f Further X7 = X(7At). The nonlinear terms are also evaluated at
theory and applications of the Laplace transform may bis time. Thus the solution at tinfe + 1) At is
found in Doetsch (1971).
The ability of the Laplace transform to filter high T+l _ ax —T N7
frequencies is illustrated by the simple example of a X I+ L)X = NT/s]} t=At
function consisting of a slow and a fast oscillation.

W
define xlternatively, a centred approach may be taken, where

F(t) =aelvrt 4 Acivet we consider the interval(t — 1)At, (7 + 1)At] and the
) ) o nonlinear terms are evaluated at the centke¢. The general
with [vg| < |ve|. The LT of this function is given by forecasting procedure is thus as follows:

Fls) = —2— 4 A X(s) = (sT+L)~ [X7"1 = N7 /]

s—ivp S—ivg -
X7+ = gt {X}

®)

The functionfhas two simple poles on the imaginary axis, t=2At
ats =ivg ands = ivg. To invert this tof(¢) we would

gosrrr]rtl;alllr)]/ il#]sgi;huerénze(lr;?g;r:‘tggral (2) along the straiget| matrix sI + L is singular when we have= —J, for A an

To remove the high frequency component, we choa envalue ofL. But |s| = 1, the radius of t_he contouﬁ*.
a positive real numbe?; sucr? thadZR| < 2 < |ve|. Then $Ee problem can thus be avoided by a suitable choicg of
we define a closed contodr as the circle centred at the'® Cutoff frequency.

origin, with radiusy, as depicted on the left in Figure 1. We _ .

replaceC by C* in the integral in (2), yielding the modified2-3-  Evaluating the contour integral

inversion

Care must be taken to ensure tiiaf + L)~! exists. The

The inversion using>* requires the complex integration in
N S | ot (3), around the circle*. To apply the filter in practice,
=24 = omi 7£ e* f(s)ds ) we replaceC* by the N-sided polygorC}, to reduce the
integration to a summation. The length of each edg®ss
The function f*(t) contains only contributions from theand the midpoints are labellegl forn =1,2,..., N. The
poles lying withinC*, that is, those with frequencies lessight panel of Figure 1 shows the case with= 8.
thany. From Cauchy’s Integral Formula we readily find that  We can now define the numerical operator used for the
. ivmt modified inversion as
() =ae'"r

N
Thus, the modified inversion integral (3) acts to filter high o R = e snt Flg VA
frequency behaviour, as required. i} 27i ; e f(sn) Asn
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Laplace transform integration 3

It was suggested in Van Isacker and Struylaert (1985) that When the shallow water equations are discretised with
the exponential term in the expression for the numeri@kemi-implicit scheme, one obtains a Helmholtz equation
inversion should be replaced by a Taylor series truncatbdt needs to be solved at every timestep. Clearly an efficien
to V terms. We write solver is essential. When the LT method is applied, we
N1 encounter an analogous Helmholtz equation. Whereas the
=
j=0

semi-implicit method requires the solution of the equation
If we divide the summation in the numerical inversion by

| I\

J
1 ) once every timestep, for the LT scheme we must solve it
at each of thelV midpoints on anN-gon. It is vital that
the benefits of the LT scheme are not negated by the extra
computational overhead. This motivates the coupling of the
N - LT scheme with the spectral transform method, for which
k= — tan — the solution of a Helmholtz equation is simple and efficient.
& N The spectral transform method uses spherical harmon-
then the inversion is exact for a constant function, and #§# @s basis functions for expansion of the model fields.
any power oft up to degreeV — 1 (Clancy, 2010). Spherical harmonics are the eigenfunctions of Laplace’s
As noted in Lynch (1991), it can be shown that equation and satisfy

J!

1/k = (27wi/N) (sn/Asy) VQYZm _ 76(6—21)}/2771 (11)
a
so the final form of the numerical filtering inversion intelgra ) ) i )
to be used is wherea is the radius of the Earth. Writing = sin ¢, they
are defined by (), ) = e™™* PI"(u). The P;* are the
R 1 X P associated Legendre functions. Washington and Parkinson
Nif=—= Z ef\," f(sn) sn (7) (2005) provide the further details of spherical harmonics
N n=1 that are necessary for the spectral transform method.
Examining (11) we see that computing the Laplacian
2.4. Filter response and stability of a series of spherical harmonics merely requires scalar
_ _ ) ] _ . multiplications. The solution of a Helmholtz equation
With the inversion operataty, defined by (7), we considers therefore computationally trivial. This provides the

the effect of the filtering operataty, £ on a single wave motjvation for using the spectral transform method with a
componentf(t) = ¢“’*. This was analysed by Van Isacke[ T time integration.

and Struylaert (1985) and Lynch (1986), who showed that
3.1. STSWM: Basic equations

ehe{e™'} = Hy(w) e%th (8)
The Spectral Transform Shallow Water Model (STSWM)
where 1 is a freely available model developed at the National
Hy(w) = —— (9) Center for Atmospheric Research (NCAR) and described
1 tw in Hack and Jakob (1992). It is designed to solve the
+ | — . /
shallow water equations using a spectral transform method

and specifically to consider the test suite of Williamson
" et al. (1992). The original code is written in Fortran
77. An updated version in Fortran 90 was developed
by the ICON group at the Max Planck Institute for

We note thel y is the square of the response function OfMeteorology (MPI-M) and the Deutscher Wetterdienst

; . WD) [http://icon.enes.org/].
Butterworth lowpass filter (Oppenheim and Schafer, 1989). : ; ; ;
Lynch (1986) showed how, when the centred Lﬁ}ﬁ We now provide a brief overview of the model's

) X . iscretisation. Full details are given in the report of Hack
method given by (5) is used, the response above yields d Jakob. Jakob et al (1993) specifically describe the
sufficient stability criterion : )

changes needed to include orography in the model.
The shallow water equations are given in the form

If we always choose a value fd¥ that is a multiple of 4
we ensure that{y (w) is real and Hy (w)| < 1. Thus its
effectis to damp the input, without a phase shift. In additio
the operator£}, £ truncates the original*“? to N terms.

1\1/N
(N!) (10)
2y om 1 d 19

=———— 37 Un)—=—5-(Vn)
This is a very lenient condition. With typical valug = 8 ot a(l - p?) OX a dp
and a cut-off frequency defined by a periad= 6 hours, 96 1 9 (V) 19 (Un)

At <

we get a maximum timestep of around 1.8 hours, longer 8t  a(1 — p2) OA adp
than would normally be used in practice. U2 4+ V2
—V? (@S + @ + m) (12)
3. The spectral transform shallow water model o ) 9 . l;
. . = (UY) - = (VD) — D%}
We now test the performance of the LT integration scheme 9t a(l — p?) OA ( ) a o ( )

in a shallow water model. A key benefit of the LT method

is stability, with its potential to allow long timesteps te bHere (U, V') = (ucos ¢, v cos ¢) are the horizontal wind
used. We will compare it with a reference semi-implicimages,. = sin¢, n = ( + f is the absolute vorticity and
method. 0 is the horizontal divergence. The free surface geopotentia
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4 C. Clancy and P. Lynch

has been written aB = ®* + ®’ 4 &, whered* isatime- 3.3. STSWM: Laplace transform formulation
independent spatial mean geopotential depth&nds the
geopotential of the surface of the Earth. We now adapt the STSWM code to solve the shallow
All of the fields are represented as truncated seriggter equations using the LT method. Again we consider
of spherical harmonics; for example, with a trianguldhe system of equations (13) for the time-dependent
truncation, spectral coefficients. We take the Laplace transform of each
equation, as described §2.2:

ey ) PP )
. gz;mz_z o Ty =y

1 0 + 1)

Heren)* are the time-dependent spectral coefficients. For 1_
: s — {67} = S {DF) +

the spectral transform method, the nonlinear terms on the
right-hand side of (12) are computed in physical space and o o - L=

the product is then expanded in a series. Orthogonality of s @y — {27} =5 {F"} — oo

the spherical harmonics can then be used to obtain a series

of equations for the spectral coefficients. We are left withAs outlined previously, we are taking our ‘initial’ value

P
®;

set of ordinary differential equations of the form at the beginning of the time step, i.e. @& (1 — 1) At.
d The nonlinear terma/;™, Dj* and ;" are evaluated at the
—n =N middle time levelr. By taking the transforms of the linear
dt right-hand terms in the divergence and continuity equation
_5271 =DP 4 e+ om (13) We geta coupled system analogous to that for the semi-
dt 2 implicit discretisation. We can solve it to get

d _
o=y »
o st ={n" Y+ < {Nm}
Note that the®}* are the spectral coefficients of the
perturbation geopotentia?’; the prime has been dropped 86m _ (R’ 1 6(6 +1) Q ) (15)
for ease of notation. d s a?
— 1
3.2. STSWM: Semi-implicit scheme sOp = (Q' . - P R’)
We use the semi-implicit STSWM as the reference model in
this work. The discretisation of (13) is given by where
T+1 miT—1 = 1)1
i U0 N v—1va P2
2At ¢ a . s
O e Ui R = {5} + - {Dp"Y
2A¢ = {Dr} ’
- maT— I myT—1 - mi T
+th) (O} 4 {opy ! QO ={e}  + A"}
a 2
{(I)m}T+1 _ {(I)m}T—l Comparing (14) and (15), we find close similarities between
£ At £ ={F"} the two discretisations. Once we have computed the terms
Tl Tl in (15), we use the inversion operatf}, to compute the
g O {0} spectral coefficients at the new tinte + 1) A¢, which is
2 at a time2 At after the beginning of the time interval; for

Here the superscript represents the discrete time levéPx@mple
t = 7 At. The decoupling of the expressions f{ﬁm}”l

N
T+1
ﬁnd {®77}7 " is simplified due to the spectral form of theii V= o {7713 } an TP (50) 225
aplacian operator. The final time-stepping procedure c =24t —
then be written as
(™ = {nm}‘rfl F2AE{NYT 3.4. Numerical simulations
Tl _ (f + 1) To compare the LT method with the reference semi-implicit
tor'y d <R +Q At) (14) scheme, we use the test case suite of Williamson et
i1 -, al. (1992). In particular we consider Case 1 (advection of
{or" " = E (Q-R®"Al) a cosine bell), Case 2 (steady zonal flow), Case 5 (flow over
a mountain) and Case 6 (Rossby-Haurwitz wave).
where A number of normalised error measurements are
. g(u 1) o used for ease of comparison. Williamson et al. (1992)
d=1+® At recommend thé, (), I>(h) and i (h) quantities, where
0+ 1) l1(h) is the mean absolute difference from the reference,

R ={6"Y "+ 2AH{D}"}" + At {®7'}"~1  Iy(h) is the root mean square difference, ahd(h) is
the maximum absolute difference, each normalized by the

Q= {0y} +2AH{F"} — At {op" )} appropriate measure of the reference solution. Normalised
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Laplace transform integration 5

invariants for mass and for total energy are also usedWe follow the approach of Durran (1999) when analysing
study the conservation properties of the schemes. the two methods. We seek a numerical amplification factor,
The LT version of STSWM was compared to thel, suchthat™*! = Au™. Writing A = |A| ¢*?, a sufficient
original semi-implicit version (the reference model) gsincriterion for stability is given byA| < 1. The phase is given
the test cases outlined above. Unless otherwise statgdd = tan=' (3(A4)/R(A)). Following Durran, we define
tests were carried out at a spectral T42 resolution withaaelative phase change
1200 second timestep. The default cutoff period for the
LT method is 1. = 6 hours. For the inversion we test R— 0 (17)
both N =8 and N = 16. For Cases 5 and 6, fourth order v At
diffusionis used in the semi-implicit runs, with the diffas . . .
coefficients recommended by Jakob et al. (1993): for TAhumerical scheme is deceleratingif< 1.
simulations this i$.0 x 10Pm%s—1. We will compute the relative phase change for the
For Cases 1 and 2, all schemes performed with highmi-implicit scheme
accuracy, and all were of comparable precision (for details 1 il o
. U —u U +u
see Clancy (2010)). For Case 5, flow over an isolated Zz " =T
mountain, there is no analytical solution. We compute At 2
errors by taking the ‘true’ solution from a T21A¢ = ; ; ;
360s reference run with a diffusion coefficient 8f0 x Evaluating the relative phase change; using (17) we get
10*?m? s~1. The errors for the T42 simulations for 15 days, 1 ) v AL
plotted in Figure 2 (left panelly error; right panel: Rsy = AL tan (T)
g v At 1—v2At2/4
error), are of comparable magnitude for the reference and
for the two LT forecasts (usiny = 8 andN = 16 points).
The three forecasts showed an almost identical decrease in 12
mass, though at a negligible magnitude@fL0~1°) after S
15 days. The deviation from energy conservation was af86 Small values oir At. Clearly, the semi-implicit scheme
negligible for the three forecasts (Clancy, 2010). decelerates waves.
For the Rossby-Haurwitz wave of Case 6, Jakob et Ve nextapply the LT method to (16), to get
al. (1993) recommend using shorter timesteps than for the .
other cases, due to the strong winds involved. The high- su—u =ivu
resolution ‘true’ solution is given by a T213 run witkt = Inverting analytically with the full integralc=! over a
180 seconds. The T42 simulations are run with a timestep, - 9 o4 X 1 iU At 9
R interval yieldsu™ =u"e . Thus we have an
of 600 seconds for 14 days. Errors are plotted in F'gu&act representation of the frequency. With the numerical
3. In this case we also ran two more LT forecasts, ag?ﬁr\]/ersior?o eratof*. we get a Y-
using N = 8 and N = 16 but with a shorter cutoff period P N 9
of 3 hours. We see that these forecasts are much closer to
the reference than those with the 6 hour cutoff. All runs
are comparable in terms of (negligible) mass loss. The
T. = 3 runs are best for energy conservation.
The value of the cutoff period. is selected on the basis 1 _1 ((siny (v At)
of numerical experimentation. There is no objective way Rpr = AL tan (7&)
to fix a precise value for this, and the optimal choice may v cosy (v At)
vary with circumstances. However, the freedom to cho
7. gives the LT scheme additional flexibility, not avaiIab(l)\ﬂ?,’?zerreea(lj(:rf(’j
in the semi-implicit scheme. yields

¢
—
\

(18)

Wt =u" Hy (v) 63\;/ At

Iﬂ;e relative phase change is given by
(19)

(v At) andsiny (v At) denote, respectively,
imaginary parts e ~*. Taking a Taylor series

4. Simulation of Kelvin waves Rir~1+ ' (v At)N (20)

N
(N+1)
Semi-implicit methods are popular due to their attractivhe details are given in Clancy (2010). The LT method gives
stability properties. This is achieved at the expense ohajghly precise representation of phase speed, with an erro
slowing of the faster waves present in the system. Thisgge only to the discretisation of the inversion operatoisTh

nota serious issue if we are interested only in slower modRSelearly far more accurate than that for the semi-implicit
There may, however, be cases where we wish to accuraigi¥e in (18). If, for example, we ugé = 8 we get

simulate some of the faster waves. In these situations the

semi-implicit approach may not be ideal. We investigate (v Aﬁ)8
the effect of semi-implicit averaging on phase speed in the Rpr~1+ 15360
simplest context, and compare it to results using the LT 0
discretisation. We then confirm the analytical results ihe scheme is marginally accelerating, but by a negligible
simulating a Kelvin wave using the LT and semi-impliciamount.

schemes. In the next subsection we will consider a Kelvin
. wave with zonal wavenumber 5, with a period of about
4.1. Phase error analysis 6.7 hours. With a timestep of 30 minutes, the error in

the semi-implicit scheme is theRg; ~ 0.98 while a one

We begin with the one-dimensional oscillation equation hour timestep yieldss; ~ 0.92. For the LT scheme with

du a 1800 second timestep, the errorRg ~ 1.00000005,
priakidy (16) completely negligible.
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6 C. Clancy and P. Lynch

4.2. Numerical integration for the Kelvin wave In this study we have combined the LT scheme with
an Eulerian treatment of advection. Thus, the time step is

We now investigate the performance of semi-implicit angited by the strength of the ambient flow. In Part 2 we will
LT schemes in simulating Kelvin waves. These are eastwaghbine the LT scheme with semi-Lagrangian advection,
propagating waves, characterised by almost vanishiggd show that it has additional important advantages over
meridional wind. They are symmetric about the equatgfe semi-implicit method.
and decay with increasing latitude. They are known to play
an important role in a number of atmospheric phenomepgknowledgements
Holton (1975) discusses their role in the dynamics of
the Quasi-Biennial Oscillation (QBO) in the stratospheréhe STSWM model was originally developed at
A comprehensive review may be found in Baldwin eiICAR by J.J. Hack and R. Jakob and is available at
al. (2001). Kelvin waves have also been shown to bet p://www. csm ornl . gov/ chanmp/ st swn .
important for the Madden-Julian Oscillation (Zhang, 2005Fhe Fortran 90 version used in this work is available from
It is clearly vital, therefore, that these waves are acelyatthe ICON group athtt p: // www. i con. enes. or g/ .
simulated. This research was funded by the Irish Research

Kasahara (1976) provides a description of the Hou@ouncil for Science, Engineering and Technology Post-
modes along with details and code of a numerical method@pgaduate Scholarship Scheme and a UCD Research
produce them. This was used to generate initial conditioDemonstratorship.
for STSWM. Since Hough modes are eigenfunctions for the
linearised equations, they propagate almost linearlauit References
change of form, for small amplitudes.

For varying zonal wavenumbers we compute the BwXVinH'\/llth GJTSV'AIl Dugkef't%‘ THJ_v "t'arri'g’n_Kv H?}Y”TGSJPH' %‘g

H H , Aolton , Alexanader , Alrota 1, Rorinoucni |, Jones

I/r\(/eeqL:JesréC)':r?ifsﬂ:g I;el(l)\{[lr][r\:\é avreelgiil\?g tgﬁanggtrgzgr?;gssfao?atrha%inne‘rsley JS, Marquardt C, Sato K, Takahashi M. 2001. Thasu

o L . . iennial OscillationRev. Geophy39: 179-229
semi-implicit and the LT method, given in (18) and (19ancy c. 2010. A Laplace Transform Filtering  Inte-
respectively. Figure 4 shows the errors plotted against thgraton Scheme  for  Numerical ~ Weather  Prediction
timestep for two wavenumbers: = 1 andm = 5. Forthe ~ PhD  Thesis, University College Dublin  (Sept. 2010)
two cases, the LT method (heavy black solid and dashebittp:// mathsci . ucd. i e/ ~pl ynch/candl . htni .
lines) are indistinguishable and appear to be almost ex&dgncy C, Lynch P. 2011. Laplace transform integration efshallow

The deceleration is evident in the semi-implicit methodwaterequations. Part 2: Semi-Lagrangian formulation andraphic
resonance. Submitted @. J. R. Meteorol. Soc.

(thin solid and dashed lines). As seen from (18), the SIO\N'Bgley R. 1991Atmospheric Data Analysi€ambridge University Press

effect increases with larger timesteps and for the h'ghﬁfetsch G. 1971Guide to the Applications of the Laplace and Z

frequency of then = 5 wave. Transforms Van Nostrand Reinhold
We compared three numerical simulations of Kelviburran DR. 1999. Numerical Methods for Wave Equations in

wave with zonal wave numben = 5. A mean height of  Geophysical Fluid Dynamic$pringer
10 km was used with a wave perturbation amplitude bfck JJ, Jakob R. 1992Description of a Global Shallow Water
100 m. For this value, the period is approximately 6.7Model Based on the Spectral Transform MethoBchnical Note
hours. All runs were carried out at a T63 spectral resolutiq_rﬂNCAR/ TN-343+STR. National Center for Atmospheric Resbarc
Figure 5 shows the hourlv heiaht at a sinale point close toIton JR. 1975The Dynamic Meteorology of the Stratosphere and

g y g - g'e p Cf\/lesosphem—:-MeteoIoroIoglcaI Monographs, Volume 15, Number 37,
the equator,(.0°E, 0.9°N), over the first 10 hours of the american Meteorological Society
forecasts ai\t = 1800s. Here the phase speed differenc@skob R, Hack JJ, Williamson DL. 19935olutions to the Shallow
are easily seen. The solid line marked ‘Exact’ is a sinugoidawater Test Set Using the Spectral Transform Meth@echnical Note
wave with a 6.7 hour period, representing the ana|ytica|\lCAR/TN-388+STR. National Center for Atmospheric Resharc
solution. Both LT forecastsy = 8 (dashed line) andv = Kasahara A. 1976. Normal Modes of Ultralong Waves in the
16 (bold dashed), have nearly identical speeds cloself}mosphereMon. Weather Re04 669690

. . . . s e Lynch P. 1985a. Initialization using Laplace Transforng. J. R.
matching the analytical solution. The semi-implicit sadat ~ -~ = 5.1 543 558

(solid with circles) ',S visibly SIO_Wed' .. Lynch P. 1985b. Initialization of a Barotropic Limited-AxeModel
From the previous analysis, we see that the amplificaysing the Laplace Transform Techniqudon. Weather Rev113

tion factor for the LT scheme is not equal to one. However, it1338-1344

is very close to one and no significant damping is observadch P. 1986.‘Numerical Forecasting using Laplace Transforms:
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Figure 4. Relative phase errors for the semi-implicit (SI) and LT noels$y
for Kelvin waves of zonal wavenumberns = 1 andm = 5. The errors in
both LT runs are negligible.
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Figure 1. Left: The contourC* replace<C for the modified LT inversion. Right: The numerical inversiis performed usingy, . (From Lynch (1991),
(©Amer. Met. Soc.)
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