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Pedro Nunes and the Retrogression of the Sun

PETER LYNCH

What has been will be again, what has been done will be done again;

there is nothing new under the sun. Ecclestiastes 1:9

Introduction

In northern latitudes we are used to the Sun rising in the East,
following a smooth and even course through the southern sky and
setting in the West. The idea that the compass bearing of the Sun
might reverse seems fanciful. But that was precisely what Portuguese
mathematician Pedro Nunes showed in 1537. Nunes made an amaz-
ing prediction: in certain circumstances, the shadow cast by the
gnomon of a sun dial moves backwards.

Nunes’ prediction was counter-intuitive. We are all familiar with
the steady progress of the Sun across the sky and we expect the az-
imuthal angle or compass bearing to increase steadily. If the shadow
on the sun dial moves backwards, the Sun must reverse direction or
retrogress. Nunes’ discovery came long before Newton or Galileo or
Kepler, and Copernicus had not yet published his heliocentric the-
ory. The retrogression had never been seen by anyone and it was a
remarkable example of the power of mathematics to predict physical
behaviour. Nunes himself had not seen the effect, nor had any of the
tropical navigators or explorers whom he asked.

Nunes was aware of the link between solar regression and the
biblical episode of the sun dial of Ahaz (Isaiah, 38:7–9). However,
what he predicted was a natural phenomenon, requiring no miracle.
It was several centuries before anyone claimed to have observed the
reversal (Leitão, 2017). In a book published in Lisbon (Nunes, 1537),
Nunes showed how, under certain circumstances, the azimuth of the
Sun changes direction twice during the day, moving first forwards,
then backwards and finally forwards again. To witness this, the
observer must be located at a latitude lower than that of the Sun,
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that is, in the tropics with the Sun closer to the pole. Nunes was
completely confident about his prediction:

“This is something surprising but it cannot be denied
because it is demonstrated with mathematical cer-
tainty and evidence.” (Quoted from Leitão, 2017).

Leitão, who has made a detailed study of Nunes’ works, reviewed
the method used by him. While Nunes’ arguments are mathemati-
cally sound, they are difficult to follow, so we will demonstrate the
retrogression in a more transparent way below. But first, let us look
at Pedro Nunes himself.

Pedro Nunes (1502–1578)

Pedro Nunes (also known as Petrus Nonius), a Portuguese cos-
mographer and one of the greatest mathematicians of his time, is
best known for his contributions to navigation and to cartography.
Nunes studied at the University of Salamanca in Spain, a university
already 300 years old at that time. He returned to Lisbon and was
later appointed Professor of Mathematics at the University of Coim-
bra. In 1533 he qualified as a doctor of medicine and in 1547 he was
appointed Chief Royal Cosmographer.

Nunes had great skill in solving problems in spherical trigonome-
try. This enabled him to introduce improvements to the Ptolemaic
system of astronomy, which was still current at that time (Coperni-
cus did not publish his theory until just before his death in 1543).
Nunes also worked on problems in mechanics.

Much of Nunes’ research was in the area of navigation, a subject of
great importance in Portugal during that period: sea trade was the
main source of Portuguese wealth. Nunes understood how a ship
sailing on a fixed compass bearing would not follow a great circle
route but a spiraling course called a loxodrome or rhumb line that
winds in decreasing loops towards the pole. Nunes taught navigation
skills to some of the great Portuguese explorers. He has a place
of prominence on the Monument to the Portuguese Discoveries in
Lisbon, which shows several famous navigators (Figs. 1 and 2).

Analysis of Solar Retrogression

Nunes demonstrated the retrogression using spherical trigonom-
etry. This was long before Newton’s laws or differential calculus
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Figure 1. Monument to the Portuguese Discover-
ies, Lisbon.

were available. In this section we derive the condition for the phe-
nomenon, using a simple transformation and elementary differential
calculus. An expression is found for the azimuth of the Sun as a
function of the time. For reversal to occur, the derivative of this
function must vanish. The condition follows immediately from this.
The result has been known for centuries (e.g., Morrison, 1898) but
the derivation below is simpler than most previous accounts.

Frames of Reference. We begin with a cartesian frame (x, y, z) fixed
relative to Earth and rotating with it. The origin is at the centre of
the Earth and the x-axis passes through the point where the prime
meridian intersects the equator. There is an associated polar coordi-
nate frame (r, θ, λ) with colatitude θ and longitude λ. The latitude
is φ = π

2
− θ.

We assume that the Sun is at a fixed latitude φS . If its longitude
at Noon is λO, then its longitude at time t is λS = λO − Ω(t − tO)
where Ω is the angular velocity of Earth. Given the distance A from
Earth to Sun, the cartesian coordinates of the Sun are

(xS , yS , zS) = (A cosλS cosφS , A sinλS cosφS , A sinφS) . (1)

The coordinates of the observation point PO are (xO, yO, zO) and
from these the polar coordinates are easily found: (a, θO, λO) where
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Figure 2. Pedro Nunes (1502–1578) (detail of
Monument to Portuguese Discoveries, Lisbon).

a is the Earth’s radius. There is no loss of generality in assuming
that the observatory is on the prime meridian. Then its latitude and
longitude are (φO, λO) = (π

2
− θO, 0).

We define local cartesian coordinates (X,Y, Z) at the observation
point by rotating the (x, y, z) frame about the y-axis through an
angle equal to the colatitude θO. The Z-axis then points vertically
upward through PO. Moving the origin to PO, the (X,Y ) plane be-
comes tangent to the Earth at this point. The cartesian coordinates
of the Sun in the new system are given by the affine transformation





XS

YS

ZS



 =





cos θO 0 − sin θO
0 1 0

sin θO 0 cos θO









xS

yS
zS



−





0
0
a



 .

In fact, since the distance to the Sun is enormous relative to the
radius of the Earth, we can omit the last term (0, 0, a)T without
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significant error. Then, in terms of the latitude of the observation
point, the solar coordinates are





XS

YS

ZS



 =





sinφO 0 − cosφO

0 1 0
cosφO 0 sinφO









xS

yS
zS



 . (2)

The latitude and longitude of the Sun in the rotated system are

ΦS = arcsin[ZS/A] , ΛS = arctan[YS/XS] (3)

and the azimuth and elevation (or altitude) of the Sun are

α = π − ΛS , e = ΦS . (4)

Variation of the Azimuthal Angle. To demonstrate the circumstances
in which retrogression of the Sun occurs, we take the time derivative
of the azimuthal angle of the Sun. This is given by (4). We use (3)
to express the Sun’s latitude and longitude in the rotated cartesian
frame and then the transformation (2) for the original cartesian co-
ordinates. Finally, (1) gives an expression for the azimuth in terms
of the variables {λS , φS , φO}. The two latitudes are fixed in time
while the longitude λS varies as λS = −Ω(t − tO), where tO is the
time at Noon.

If the Sun is to retrogress, the time derivative of the azimuth must
vanish. We find that

tanΛS =
YS

XS

=
sinλS cosφS

cosλS cosφS sinφO − sinφS cosφO

The vanishing of the derivative leads, after some manipulation, to
the equation

cosλS =
tanφO

tanφS

(5)

Clearly, there will be an azimuth at which the derivative vanishes
only if the right hand side is less than unity, that is, if

φO < φS .

This means that retrogression will be seen only if the observation
point is between the Equator and the latitude of the Sun. In par-
ticular, it must be in the tropics. Eq. (5) corresponds to Eq. (5) in
Morrison (1898).
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Figure 3. Path of the Sun at the Summer solstice
for a observation point at 40◦N. The angular coor-
dinate is the azimuth or compass bearing, α. The
radial coordinate is the zenith angle (the comple-
ment of the elevation). SR: Sunrise; SS: Sunset.

Numerical Results. We consider the daily path of the Sun at the
time of the Summer solstice (φS = 23.5◦N) for observations from
an extra-tropical point (φO = 40◦N) and a point within the trop-
ics (φO = 20◦N). The elevation and azimuth are easily computed
from the formulae above. We plot the zenith angle (the complement
of the elevation) and azimuth for the extra-tropical observation in
Fig. 3. The observation point is at the centre, and the course of the
Sun is shown by the curve. It is clear that the azimuth increases
monotonically from sunrise to sunset, as we would expect.

In Fig. 4 we plot the zenith angle and azimuth for the observation
point within the tropics (φO = 20◦N). At Noon, the Sun is to the
North of the central point and the azimuthal angle is decreasing

rapidly. This is the retrogression phenomenon.
The azimuth and elevation of the Sun are plotted in Fig. 5 for the

two observation points. It is clear that when φO = 40◦ (top right
panel) the azimuth increases monotonically, while when φO = 20◦

(bottom right panel) the azimuth increases from sunrise until about
10:00, then decreases until 14:00 and finally increases until sunset.
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Figure 4. Path of the Sun at the Summer solstice
for a observation point at 20◦N. The angular coor-
dinate is the azimuth or compass bearing, α. The
radial coordinate is the zenith angle (the comple-
ment of the elevation). SR: Sunrise; SS: Sunset.

To give more fine detail, we plot the Sun’s course during the
morning, as seen from the tropical observatory, in Fig. 6. The radial
lines are spaced 2.5 degrees apart, and we see that the azimuth at
sunrise is close to 65◦. It increases to around 77◦ by mid-morning
and then decreases to zero at Noon. For the specific values φO = 20◦

and φS = 23.5◦, the condition (5) gives the turning longitude as
λS = 33.17◦ corresponding to an azimuth of 77.4◦ and an elevation
of 59.1◦. This is in excellent agreement with the numerical solution
shown in Fig. 6.
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Figure 5. Solar elevation and azimuth, as func-
tions of time from sunrise to sunset, for observation
points at 40◦N (top row) and 20◦N (bottom row).
Left: Solar elevation. Right: Solar azimuth.
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Figure 6. Path of the Sun at the Summer solstice
for a observation point at 20◦N. Angular coordinate
is the azimuth or compass bearing. Radial coordi-
nate is the zenith angle. SR: Sunrise. Only the
morning segment of the Sun’s track is shown.
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