The Swinging Spring: A Simple Model
of Atmospheric Balance

Peter Lynch, Met Ez’reann, Dublin, Ireland

This simple system looks like a toy at best, but its be-
haviour is astonishingly complex, with many facets of more
than academic lustre (Breitenberger and Mueller, 1981).

1 Introduction

1.1 Résumé

The linear normal modes of the atmosphere fall into two categories, the low
frequency Rossby waves and the high frequency gravity waves. The elastic
pendulum is a simple mechanical system having low frequency and high fre-
quency oscillations. Its motion is governed by four coupled nonlinear ordinary
differential equations. We study the dynamics of this system, drawing analo-
gies between its behaviour and that of the atmosphere. The linear normal
mode structure of the system is analysed, the procedure of initialization is
described and the existence and character of the slow manifold is discussed.

1.2 Prologue

The concepts of initialization, filtering and the slow manifold can be clearly
illustrated by considering the dynamics of a simple mechanical system gov-
erned by a set of ordinary differential equations. The elastic pendulum or
swinging spring depicted in Fig. 1 comprises a heavy bob suspended by a
light elastic spring which may stretch but not bend. The bob is free to move
in a vertical plane. The oscillations of this system are of two types, distin-
guished by their physical restoring mechanisms. For an appropriate choice
of parameters, the elastic oscillations have much higher frequency than the
rotation or libration of the bob. We consider the elastic oscillations to be
analogues of the high frequency gravity waves in the atmosphere. Similarly,
the low frequency rotational motions are considered to correspond to the ro-
tational or Rossby-Haurwitz waves. We will refer to the elastic and rotational
motions as “fast” and “slow” respectively.

The linear analysis of this mechanical system is straightforward. When non-
linear effects are included there is coupling between the two types of motion,
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and analytical methods are incapable of providing the solution. To obtain in-
sight into the characteristics of the motion in this case we must turn to some
powerful and general results from dynamical systems theory. The pendulum
equations contain a small parameter, €, the ratio of the frequencies of the
slow and fast oscillations. The problem may be formulated in terms of a per-
turbed Hamiltonian, the size of the perturbation depending on e. Then the
Kolmogorov-Arnold-Moser or KAM theorem implies certain restraints on the
nature of the solution. The validity of the conclusions drawn will be supported
by numerical simulations.

Lorenz (1986) constructed a highly simplified model, comprising five or-
dinary differential equations, based on a truncated spectral expansion of the
shallow water equations. He identified the variables corresponding to the high
frequency oscillations as representing the gravity wave activity and defined
the slow manifold to be an invariant sub-manifold of the five-dimensional
phase space in which high frequency oscillations are permanently absent. In
Bokhove and Shepherd (1996: BS96) Lorenz’s model is further reduced, to
a system of four ordinary differential equations. A similar reduction is made
by Camassa (1995). These equations are structurally similar to the equations
for a nonlinear pendulum coupled to a linear harmonic oscillator. The sys-
tem is amenable to the application of Hamiltonian perturbation theory. For
small values of the perturbation or coupling parameter, one may identify an
invariant manifold on which the high frequency activity is unequivocally zero.
This manifold is nonlinearly stable: a small gravity wave disturbance about
it will remain permanently bounded. However, the manifold is not defined
continuously throughout phase space, but is fractal (actually, Cantor-like) in
structure. Numerical experiments in BS96 showed that, as the perturbation
parameter increases, the extent of the manifold decreases until, ultimately, it
disappears entirely.

It turns out that the simple mechanical system considered in this report
is governed by mathematical equations having a structure very similar to
Lorenz’s model. Both can be described in terms of a system with two modes
of behaviour, a linear harmonic oscillator and a nonlinear pendulum. The
precise details of the coupling between the oscillator and pendulum differ
in the two cases; but the conclusions of the KAM theorem do not depend
upon these details. Therefore, much of the discussion in BS96—in particular,
their conclusions about the existence of a slowest invariant manifold—can be
applied directly to the elastic pendulum considered herein.

1.3 Outline of Contents

In Section 2 the Hamiltonian equations for the elastic pendulum are set down.
The linear solutions are examined and the procedures for linear and nonlinear
initialization are discussed. The concept of the slow manifold is introduced
and illustrated by some numerical integrations. In Section 3 the ideas underly-
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ing the KAM theorem are presented and its main conclusions are summarised.
Some general consequences of the theorem—in celestial mechanics, particle
physics and statistical mechanics—are briefly described. The application of
KAM to the elastic pendulum occupies Section 4. The implications for the
existence of a slow manifold for this system are discussed. We conclude that,
for small values of the frequency ratio e, it is possible, for almost all values of
the slow variables, to define appropriate values of the fast variables in such
a way that the solution has no high frequency oscillations. The exceptional
cases give the slow manifold a fractal structure; but, for small ¢, they form a
set of negligible measure. These conclusions are supported by numerical ex-
periments which are described in Section 5. Poincaré sections showing regions
of regular motion and regions of chaos are plotted. For small € the solutions
are predominantly regular and the core solution representing purely slow mo-
tion can be clearly seen. As e grows the solutions become more complex, until
a stage is reached where the distinction between fast and slow time scales no
longer makes sense. In Section 6 we digress to consider the case of resonance
when the fast and slow time scales are in the ratio two-to-one, and show
how energy is transformed back and forth periodically between the swinging
and springing modes. In the final part of the paper, Section 7, we discuss
miscellaneous aspects of the problem and touch upon some unresolved issues.

1.4 Previous Studies

The earliest substantial paper on the elastic pendulum seems to have been
that of Vitt and Gorelik (1933). This study was motivated by the value of the
system as a simple classical analogue for the quantum phenomenon of Fermi
resonance in the infra-red spectrum of carbon dioxide. The paper discusses the
recurrence phenomenon in which energy is converted back and forth between
the elastic and pendular modes. A perturbation analysis led the authors to
the discovery of two special “purely periodic” solutions with parabolic trajec-
tories, for which the energy transfer vanishes, and to a formula for the period
of recurrence in terms of an elliptic integral.

Heinbockel and Struble (1963) derived asymptotic solutions for small am-
plitude in both the resonant and non-resonant cases. They showed that for
resonance the amplitude envelope is expressible in terms of Jacobian elliptic
functions. They derived an expression for the range for which resonance oc-
curs, showing how it increases with increasing energy. They also identified, but
did not discuss, special solutions for which energy transfer vanishes (these par-
ticular solutions are the parabolic orbits of Vitt and Gorelik). Van der Burgh
(1968) employed the asymptotic method of Krylov, Bogoliubov and Mitropol-
sky to analyse the small amplitude motions. He derived a single equation for
the amplitude of the spring motion and deduced explicit expressions for the
trajectories of the slow amplitudes. He showed that when the initial energy is
predominantly elastic the period of vacillation is inversely proportional to the
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amplitude. His analytical results were compared with analog computations.
Kane and Kahn (1968) used Floquet theory to derive a criterion for resonance
for a general class of systems which includes the elastic pendulum. They car-
ried out a perturbation analysis based on the Hamilton-Jacobi equation to
study the character of the resonant solutions. They confirmed their results by
means of numerical integration of the full nonlinear equations.

Nayfeh (1973) re-examined the resonance phenomenon for the elastic pen-
dulum — which he called the swinging spring — from several points of
view. He considered the canonical variable approach of Kane and Kahn, 1968
(p 185), applied the method of Lie transforms (p 214) and performed a per-
turbation analysis using the method of multiple time-scales (p 262). However,
his interest was primarily in illustrating the different perturbation methods
and he did not go beyond the point of deriving equations for the slowly
varying amplitudes. Breitenberger and Mueller (1981), in a comprehensive
study, applied the ‘slow fluctuation’ technique: they introduced a canonical
transformation to action-angle variables, developed the interaction term as a
trigonometric series and kept only the slowly-varying part. This is equivalent
to the averaged Hamiltonian technique (Nayfeh, 1973, p185). They showed
that there are two constants of the motion and derived explicit solutions in
terms on elliptic integrals. Their perturbation solutions were shown to have
high accuracy compared to numerical solutions of the unapproximated sys-
tem.

Nufiez-Yépez et al. (1990) examine by numerical means the onset of chaos
in an extensible pendulum at resonance. They find that for very small or very
large total energy the motion is regular, but for a broad intermediate range
of energies it is chaotic. They present their results in terms of Poincaré sec-
tions and maximum Lyapunov exponents. Cuerno et al. (1992) provide a good
introduction to the study of regular and chaotic motions of the elastic pendu-
lum. They discuss the applicability of the KAM theorem to this system, and
confirm their speculations with numerical results. They show how the motion
can be characterised by studying several indicators in combination. These are
the Poincaré section, the maximum Lyapunov exponent, the autocorrelation
function and the power spectrum. Simultaneous use of these four indicators is
useful, as they serve to complement each other. Anié¢in et al. (1993) outline the
phenomenon of parametric resonance and present arguments that this occurs
only in one case, wg = 2wg. They use the Ince-Strutt diagram of instabilities
of the Mathieu equation to show how the parameter range for instability and
the growth-rate depend on the amplitude. Carretero-Gonzalez et al. (1994)
present a good general discussion on chaos in Hamiltonian systems. They
discuss the resonance of the elastic pendulum as an analogue for the quan-
tum phenomenon of Fermi resonance of triatomic molecules. They illustrate
the regular and chaotic behaviour of the system by numerical integrations,
discussing the results in terms of Poincaré sections, Liapunov exponents and
autocorrelation functions.
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In Banerjee and Bajaj (1996), a general set of four first-order amplitude
equations, valid for any forced, damped system with two degrees of freedom,
is derived by the method of averaging. The parameter range for which chaotic
dynamics exists, is calculated using Melnikov’s method, a global perturbation
technique. The results are discussed in the context of a damped, forced system
equivalent ot that of Georgiou and Schwartz (1996). Davidovi¢ et al. (1996)
briefly review a large number of earlier papers on the elastic pendulum. They
investigate the libration limits of the pendulum in exact resonance by using
parabolic coordinates. They show that the representative point in coordinate
space is confined within a lemon-shaped or crescent-shaped region (depending
on the initial conditions) whose boundary is defined by three parabolae.

Several books which provided valuable background information for this
study should be mentioned. Newton’s Clock: Chaos in the Solar System, by
Ivars Peterson (1993), is a general history of the study of planetary stability
since ancient times, with emphasis on recent developments. Celestial Encoun-
ters: the Origins of Chaos and Stability, by Florin Diacu and Philip Holmes
(1996), tells the fascinating story of how chaos theory emerged, starting with
Poincaré’s dramatic discoveries in celestial mechanics, and including an ex-
cellent chapter on KAM theory. The Genesis of Simulation in Dynamics:
Pursuing the Fermi-Pasta-Ulam Problem, by Thomas P. Weissert (1997), re-
views the influence of the FPU problem on the development of dynamical
systems theory and discusses how the KAM theorem bears on the surprising
results of Fermi, et al. Michael Berry’s review paper, Regular and irregu-
lar motion, provides an accessible, comprehensive introduction to KAM. Of
numerous textbooks on modern dynamics, the following were found to be es-
pecially useful: Jackson’s (1991) Perspectives of Nonlinear Dynamics, Licht-
enberg and Lieberman’s (1992) Regular and Chaotic Dynamics, Ott’s (1993)
Chaos in Dynamical Systems and Tabor’s (1989) Chaos and Integrability in
Nonlinear Dynamics.

2 The Dynamic Equations for the Elastic
Pendulum

2.1 The Hamiltonian Equations

Let ¢y be the unstretched length of the spring, £ its elasticity or stiffness and
m the mass of the bob. At equilibrium (Fig. 1(a)) the elastic restoring force
is balanced by the weight

k(£ —t)=mg or L=/ (1 + @) . (1)
k£

It is convenient to write the dynamic equations in Hamilton’s canonical form.
If the total energy H is expressed in terms of the coordinates ¢, and momenta
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Pn, these equations are

dan _ OH — dp. _ OH
dt ~ Opn’ dt — Ogn

(2)

In the present case polar coordinates ¢, = r and g = 6 are used, and the
radial and angular momenta are p, = ms and pg = mr26. The total energy is
a sum of kinetic, elastic potential and gravitational potential energy:

1 2 pg
H=%<r+r_z + 3k(r — €)? — mgr cos 6. (3)

The dynamical equations (2) may now be written explicitly

0 = po/mi? (4a)
pp = —mgrsinf (4b)
ro= p/m (4c)
pr = pi/mr® —k(r — £y) +mgcosf (4d)
These equations may also be written symbolically in vector form
X +LX+NX)=0 (5)

where X = (0,pg,7,p-)", L is the matrix of coefficients of the linear terms
and N is a nonlinear vector function. The state vector X specifies a point
in phase space (here, 4-dimensional) which defines the state of the system at
any time; the motion is represented by the trajectory traced out by X as it
moves through phase space.

2.2 Linear Normal Modes

Let us now suppose that the amplitude of the motion is small, so that |r'| =
|r — ¢ < £ and |f#] < 1. The equations may be linearized and written in
matrix form

0 0 1mf 0 0 9
d | pe _ | —mgt 0 0 0 Do (6)
dt | ' 0 0 0 1/m r!

Dr 0 0 -k 0 Dr

We see clearly how the matrix is block-diagonal so that the equations split
into two subsystems. The state vector X is comprised of two sub-vectors:

X:(Y>, where Y:(o) and Zz(r),
Z Do Pr
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and the linear dynamics of these components evolve independently:
o 0 1/m#? - (0 1/m
Y_<—mgé 0 )Y’ Z_(—k 0 )Z'

We call the motion described by Y the rotational component and that de-
scribed by Z the elastic component. The rotational equations may be com-
bined to yield )

0+ (g/0)0 =0 (7a)

which is the equation for a simple (anelastic) pendulum having oscillatory
solutions with frequency 4/¢/¢. The remaining two equations yield

i+ (k/m)r' =0, (7b)

the equations for elastic oscillations with frequency \/k/m. The solutions of
(7a) and (7b) are called the linear normal modes. We define the rotational
and elastic frequencies and their ratio by

g k WR

It follows from (1) that the rotational frequency is always less than the elastic:

m 14
2 = k—g - (1 - %) <1, so that lwr| < |wg| . (8)

Except in §6 below, we assume that the parameters are such that ¢ < 1.
Then ¢ = {;, and we define ¢y = \/mg/kly, noting that

e="9_ (€ ) e
0 kg() 1—¢2 )

In this case the linear normal modes are clearly distinct: the rotational mode
has low frequency (LF) and the elastic mode has high frequency (HF).

2.3 Linear and Nonlinear Initialization

For small amplitude motions, for which the nonlinear terms are negligible,
the LF and HF oscillations are completely independent of each other and
evolve without interaction. We can suppress the HF component completely
by setting its initial amplitude to zero:

!
Z:<7’)=0 at t=0.
pr

This procedure is called linear initialization. When the amplitude is large,
nonlinear terms are no longer negligible and the LF and HF motions interact.
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It is clear from the equations (4) that linear initialization will not ensure
permanent absence of HF motions: the nonlinear LF terms generate radial
momentum. Machenhauer (1977) proposed an effective means of minimizing
HF oscillations in such systems: set the initial tendency of the HF components
to zero: )
Z:(?"):o at t=0, 9)
This procedure is called nonlinear initialization. For the pendulum, we can
deduce explicit expressions for the initial conditions by using (9) in (4c) and
(4d):
Lo(1 + €4 cost
r(0) =rp = ol “0 ) ,
1—(6/we)?

Thus, given arbitrary initial conditions X = (6, ps,7,p.)", we replace Z =
(r,p,)T by Zg = (rp,0)". The rotational component Y = (#,py)" remains
unchanged. If, for simplicity, we assume that the angular momentum py van-
ishes at ¢ = 0, the condition r = rp defines a curve in the (r, #)-plane:

pr(o) =0. (10)

r = Ly(1+ € cosf) . (11)

This is one of the classical ‘special curves’, called the limacon of Pascal, named
after Etienne, father of Blaise Pascal (Wells, 1991). A set of such curves, for
a selection of values of ¢ is shown in Fig. 2.

2.4 The Slow Manifold and the Slow Equations

The linear initialization condition Z = 0 defines a two-dimensional subspace
of phase-space, the plane surface ) through the origin given by r = p, = 0.
The full space is a direct sum of linear slow and fast spaces, V @ Z. For
purely linear motion, points in the subspace ) will remain in it. However, for
nonlinear motion a point initially in this plane will not remain therein. The
nonlinear initialization condition Z = 0 defines a two-dimensional nonlinear
subset, the surface &; given by r = rg, p, = 0. We say that the fast variables
are slaved to the slow ones by r = rg(f,py) and p, = 0. The surface S; may
be considered as a first-order approximation to the slow manifold (Leith,
1980). The slow manifold, S, is a putative invariant sub-manifold of total
phase space, of lower dimension than the full space, upon which solutions are
constrained to evolve free from high-frequency oscillations. The primary goal
of initialization is to find a point which is close both to the manifold S and
to the given initial data. While a point initially on &; is not guaranteed to
remain on it, we find that points initially close to &; remain close to it for
all time: S; acts like a guiding centre for the motion. Nonlinear initialization
ensures that the initial point is on &;. In the case of the elastic pendulum
the manifold &; can be represented as a surface in three-space, since p, = 0
(see Fig. 3). The cross-section through the plane ps = 0 is the limagon r =
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lo(1 + €2 cos#). Limagon, meaning snail, is a happily apposite appellation for
a curve circumscribing the slow manifold.

We can impose the condition that the motion evolves on the manifold &;
by modifying, or filtering, the dynamical equations. We replace the prognostic
equations for the radial motion by the diagnostic equations Z=0o0rZ =
Zy. This yields the slow equations (Daley, 1980; Lynch, 1989). The system
becomes

0 = pg/mr? (12a)
Pp = —mgrsind (12b)
0 = p/m (12¢)
0 = pa/mr® —k(r —4£) +mgcosf (12d)

The slow equations have linear normal mode solutions corresponding to the
rotational motions, with frequency wr = 4/g/f. There are no HF normal

modes; they have been filtered out by the condition Z = 0. The slow equations
describe dynamics on the manifold &;. It must be stressed that the solutions
of this system are not an exact representation of the dynamics of the elastic
pendulum, but they are a close approximation to the full dynamics provided
€o is small (so that the omitted terms are negligible) and the amplitude of
the HF component is small (so that the trajectory remains close to Sy).

2.5 Numerical Solutions

We shall further elucidate the dynamics of the elastic pendulum by presenting
results of numerical integrations of the governing equations (4) and of their
‘slow’ counterparts (12). The parameter values are m = 1kg, {y = 1m, g =
72 ms~2 and k = 10072 kgs~2 so that ¢¢ = 107! and ¢ = 101 cm. The linear
rotational mode has frequency wr = 7 and the frequency of the elastic mode
is ten times greater.

The system (4) is solved by the Bulirsch-Stoer method (Press, et al., 1992,
subroutine BSSTEP) which is a modern implementation of Richardson’s de-
ferred approach to the limit (Richardson and Gaunt, 1927). The slow system
(12) is integrated in the same way but the diagnostic components must be
solved at each step. The equation for p, is trivial; r is deduced by an iterative
procedure originally due to Picard:

Pj

kmrj’-’ ’

ro = £o(1 + €5 cos §) Tjt+1 = To + (13)

which converges rapidly. The requirement to solve nonlinear diagnostic equa-
tions is characteristic of filtered systems. The numerical integration of such
systems is generally more intricate than that of their unfiltered ancestors.
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The initial conditions are chosen to be
XO = (0(0)7p0(0)7 T(O)vpr(o))T = ( - %7 Oa E: O)T .

These satisfy the condition of linear initialization Z = (r',p,)" = 0 at ¢t = 0.
Two integrations of (4) are performed, one from the initial conditions X, and
one after nonlinear initialization (10) (which yields 7(0) = rg =~ 1.00878).
They will be denoted respectively by LIN and NLI. They were compared to
the solution of the slow system, denoted SLO. The results are presented in
Fig. 4. The variation of § with time is shown in Fig. 4(a). The rotational
frequency wr = m corresponds to one cycle every two seconds; the results
are plotted for this time interval. The three graphs are so close as to be
indistinguishable on the plot. The radial amplitude 7 = —r' = £ — r appears
in Fig. 4(b) (7 is shown rather than r’ so that the graph is low when the bob is
low). The HF component is clearly visible for the linearly initialized run; note
that wg = 107 means five cycles per second. The amplitude is small—about
1.2mm-—due to the linear initialization, but still much larger than for the
other runs. The NLI and SLO curves have variations with period of about
one second: the nonlinear centrifugal force stretches the pendulum when the
angular momentum is large; this happens twice in each rotational cycle or
about once per second. These two runs are largely free from higher frequency
variations but they are not coincident.

The energy (3) may be partitioned into rotational and elastic components

2
Hy = Py _ mgr cos 0 + mgl

272n7“2

Dy
HE = % + %k(’l‘ — £0)2 — %k(£ - €0)2 .

The elastic energy for the NLI and SLO integrations, together with the differ-
ence scaled by ten, is shown in Fig. 4(c). The NLI curve appears to oscillate
about that of the slow run. This is confirmed by spectral analysis of the en-
ergy (Fig. 4(d)). Both runs have a major peak at one cycle per second, but
the peak at five cycles per second seen for the NLI solution is not found for
the SLO solution. The nonlinearly initialized solution oscillates around the
manifold §; with a frequency corresponding to that of the elastic waves. It
must be stressed that the amplitude of these oscillations is very small—thanks
to the initialization—but some oscillation is evident. A fundamental question
now arises: does the complete system (4) have any solutions which are totally
free from HF components, as the slow system (12) does? In other words, is
there a slow manifold S for (12)? We investigate this in the following sections.

2.6 Singular Perturbation Expansion

The slow equations, derived above in an ad hoc manner can also be justified
by means of more systematic scaling arguments (Lynch, 1989). We assume
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as above that there is a separation of time-scales between the rotational and
elastic motions, and the ratio € = wgr/wg is a small parameter. We first non-
dimensionalize the canonical equations (4) by specifying mass and length
scales m and £ and selecting the time-scale wg ' of the slow rotational motion.
The equations then become

0 = po/7?

pg = —rsinf

ro= DPr )

} r—1

Dr = —( 3 )+lp—g+cosﬁl
€ r

where all variables are now dimensionless. We next re-scale the radial vari-

ables:
r—1 _ 1
I pp - eopr ’

p=
€6

(Georgiou and Schwartz, 1996) and the canonical equations assume the fol-
lowing form:

0 = po/(1+cop)’

pp = —(1+e€p)sinf
€p = o )
€pp, = —p+ S
(1+€5p)?

This system is in singular perturbation form. If ¢, vanishes, the radial equa-
tions reduce to algebraic relationships which determine p and p, in terms of
the angular quantities @ and py. If quantities of order ¢, are neglected, and
the system is re-dimensionalized, the angular equations (the first pair) are

0= po/mi; Py = —mglysin 0

which govern the motion of a simple pendulum. The radial equations (the
second pair) imply that the radial momentum p, vanishes and the radius
vector is given by .
2

r=14{ ll—i— (?—Z) cosH—i—ﬁ—%] ) (14)
This is equivalent, up to O(e?), to the equation (10) for the manifold S;. The
primary effect of ignoring O(€) terms in the dynamical equations is the omis-
sion of the tendencies of the fast variables. This is precisely the approximation
which we made above to derive the slow equations. Note that, at this order of
approximation, the slow rotational motion is uninfluenced by the fast elastic
motion. Colloquially, the slow motion generates a balanced fast component,
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but the fast motion does not impinge upon the slow evolution. The time-scale
of variations in r is the slow time-scale.

We remark that it is possible to define successively higher order balance
relationships by requiring higher time derivatives of the fast variables to van-
ish. We can construct a hierarchy of models, the n-th-order balanced model

satisfying
dn dn—|—1
T r = 0, TR r = 0
()= (i)

(Hinkelmann, 1969). The slow equations defined above are the first-order
approximation in this series. The diagnostic relationships become increasingly
complicated for increasing n.

3 An Outline of KAM Theory

3.1 Completely Integrable Hamiltonian Systems

Let us consider a conservative system with n degrees of freedom. The phase-
space for the system is 2n-dimensional with points specified by the canonical
coordinates (g;, p;). Once initial conditions (¢;(0), p;(0)) are given, Hamilton’s

canonical equations
o0H ) OH

= a3 Pk = —5—
Opx, 0q

determine the motion, which may be represented by a trajectory (g;(t), pi(t))
in phase-space. Since the system is conservative, the energy is a constant of the
motion. The equation H (g;, p;) = E specifies a 2n—1-dimensional sub-manifold
£ called the energy manifold. Thus, the available portion of phase-space is of
dimension 2n — 1. For each additional constant of the motion which we can
find, the dimensionality of the available region of phase-space is reduced by
one. The key to integrating a Hamiltonian system with n degrees of freedom is
to find n independent constants of motion. Suppose now that we have found
n such constants, Iy (one of which is the energy). We define a canonical
transformation to new coordinates, treating I, as the new momenta, and
denoting the new conjugate position coordinates as ¢,. One way of doing this
is to define a generating function F'(g;, I;) for which the following relationships
hold:

dk (15)

_OF _OF
N afk Pk = (')qk
(see, e.g., Percival and Richards, 1982). Now, since the new momentum vari-
ables I are constant, Hamilton’s equations imply

o

OH

=54 =

0,
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so the Hamiltonian is independent of the position coordinates ¢,. Further-
more, we have

b= 00 =

k
so that each position coordinate ¢, = wyt+0, evolves linearly with time. Thus,
the canonical equations are trivial to solve in this case; the system is described
as completely integrable (we omit certain technicalities). The trajectories are
confined to an n-dimensional manifold M of the 2n-dimensional phase space.
For bounded motion the manifold M may be shown to have the topology of
an n-torus, that is, the cartesian product of n circles. The initial conditions
determine the torus upon which the motion lies. Each torus M is an invariant
manifold: a trajectory which starts in M will remain therein forever. The
totality of invariant tori is said to foliate the phase space.

wr  (constant)

There is a particular system of coordinates, known as action-angle coor-
dinates, which are especially convenient for integrable systems. It is possible
to find n topologically independent closed curves C; on the torus M, none
of which can be deformed into another or shrunk to a point. One defines the
action variables by integrals around each of these curves:

Ck m—1

From the generating function F' = F'(g;, I;) of the associated canonical trans-
formation one then obtains the corresponding angle variables ¢, = 0F/0I.
Alternatively, they may be calculated directly from

(qh 7Qn) n

(Percival and Richards, 1982). Since the action variables are constant, they
are determined by the initial conditions. They label the particular torus upon
which the trajectory lies. The angle variables ¢, then give the position as a
function of time.

As a concrete example, consider the harmonic oscillator with Hamiltonian
H = 1(p?/m~+mw?q?). The trajectories are ellipses centred at the origin. The
action variable is given by

1 Gmax
z—%pdq = —/ 2Em—mw2 qu
27—‘- qmln
E
= / \/I—QQdQ—— 00520d0:—,
—7/2 w

or [ = E/w. Thus, the Hamiltonian is H = H(I) = wl, a function only of the
new momentum coordinate /. The angle variable follows immediately, upon
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expressing p in terms of ¢ and I:

$ = 61/p q_/ a?dq_\/;/ \/7

= sin

Wi dQ L
WA

The original variables are then given in terms of the new ones by

21
q={/——sing, p=V2Imwcos¢. (18)
mw

The explicit form of the generating function F'(g, I) is given in Percival and
Richards (loc. cit., p113). The canonical equations reduce to

H . H
I:—a—zo, ¢—a——w,constant

o
so that the solution is immediately obvious: the action I remains constant on
the trajectory and the angle variable ¢ increases linearly with time.

For n = 2 the tori are embedded in the 3-dimensional energy manifold
& given by H(Iy,I;) = E, and each torus divides it into inside and outside
regions. Although the image is not strictly accurate, we may visualise each
torus as a 2-dimensional surface in 3-dimensional euclidean space. We can
define geographic coordinates ¢; in the longitudinal direction and ¢, in the
meridional direction and take the (longest) equatorial circle as C; and any
meridional circle as Cy. The trajectory on a particular torus winds around
the longitudinal and meridional directions with frequencies w; = 0H/dI; and

= 0H/0I,. If the frequencies are rationally related (that is, if 3k, € 7 :
kﬁ # 0, kw; 4+ fwy = 0) the motion returns eventually to its starting point and
is periodic. In this situation—called the resonant case—the trajectory is a
closed orbit. If the frequencies are not rationally related (the usual case, since
the real numbers are non-denumerable) the motion never repeats itself but
traces out a trajectory which is dense in M (it is ergodic: the time average
over the trajectory equals the space average over the torus). This situation is
described as quasi-periodic or conditionally periodic.

A completely integrable system is non-degenerate if the frequencies vary
from one torus to another, as is usual for a nonlinear system. This is guaran-
teed by the following condition:

Ow;
8Ik

0’ H
1,01,

Dl = det (19)

e

Then in a given energy shell some tori will have closed orbits (the resonant
case of rationally related frequencies) whereas others will have quasi-periodic
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orbits which never close. The set of resonant tori form a set which is dense
in the energy manifold £, but which is of measure zero (this follows from the
countability of the rationals).

What happens when a completely integrable system is slightly perturbed
in such a way that integrability no longer holds? Are the toroidal structures
simply disturbed slightly or do they disintegrate completely? This fundamen-
tal question was answered in the early 1960s as we shall shortly see.

3.2 Canonical Perturbations and Small Divisors

Although completely integrable Hamiltonians are quite exceptional, they are
important in providing a first approximation to more general systems. The
most notable example is in celestial mechanics. The question of the stability
of the solar system has been a concern of scientists since the time of Newton.
To a first approximation the orbits of the planets are Keplerian ellipses with
the Sun at a focus. These orbits are unchanging in time. However, the planets
exert small attractions upon each other. It is conceivable that, over a long
time, the effects of these secondary attractions may accumulate to such an
extent that some of the orbits become greatly distorted. This could result
in a planetary collision or in a planet crashing into the Sun or being ejected
from the solar system. The Hamiltonian for the solar system may be written
formally as

H(pi,q;) = Ho(pi, ¢;) + €H1(pi, q;)

where H, represents the uncoupled motions of the planets governed only by
the Sun, which is assumed to be stationary, and e€H; accounts for all the
interactions between the planets. The system is integrable for ¢ = 0; the
solution is completely known. In general, the planetary interactions are very
small; for example, the mean force of Jupiter on Venus is less than 2 x 1075
times that of the Sun. Thus, the solution of the full problem may be sought
by means of perturbation theory.

Let us now confine attention to systems with two degrees of freedom and

assume that the unperturbed motion is integrable so that, with action-angle
variables, the Hamiltonian may be written in the form

H = Hy(I1, ) + eH (11, Is, ¢1, ¢2) . (20)

The basic idea of canonical perturbation theory is to find a new set of action-
angle variables (J1, Jo, 11, 12) for the perturbed system such that the Hamil-
tonian becomes

H(Ilal% ¢1a¢2) = K(Jl, JQ)

(Goldstein has suggested the name Kamiltonian for K!). If this can be done,
the full system becomes completely integrable. We introduce a new generating
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function S(¢, Ji) depending on the old angle and new action variables, such

that 95 95
67%; 77/%:6—‘],67 k=1,2.

Next S is expanded in a perturbation series

Iy =

S = S() + 651 + 0(62)

where the leading term Sy = (¢1J; + ¢J5) represents the identity transfor-
mation. After some algebraic manipulation we find that

H,;, yexpli(kdy + £s)]
S1(p1, b2, J1, Jo) = ZZ [kwy + fws] (21)

L

where H ,%,Z are the expansion coefficients of the first order Hamiltonian and
the w’s are the frequencies of the unperturbed motion: w;(ly) = 0Hy /05
and wo(I1) = 0Hy/0I,. A major problem now arises: if the w’s are rationally
related the denominator will vanish for certain (&, £); and even if the w’s are
incommensurable there are values of (k, £) for which [kw; + fws) is arbitrarily
small. Thus, the perturbation series cannot be shown to converge. This is the
notorious problem of small divisors, which hampered progress in celestial me-
chanics for so long. The greatest mathematicians were unable to circumvent
or resolve the small divisor problem and produce convergent perturbation
expansions. Poincaré called it the fundamental problem of dynamics. The
resolution came in the early 1960s with the demonstration of the celebrated
Kolmogorov-Arnold-Moser or KAM theorem.

3.3 The Kolmogorov-Arnold-Moser Theorem

What the KAM theorem says, in plain language, is that most of the original
tori persist in the case of small perturbations. They are topologically distorted
but not destroyed. Thus, for most initial conditions, the trajectory remains
in a manifold of dimension n and it is possible to define n action variables Jj
which are constants of the motion. In this case, the motion is not qualitatively
changed by a small perturbation. The exceptional cases comprise a set whose
measure tends to zero with the perturbation size. The proof of the KAM
theorem is long and intricate, but the key ideas are accessible and will be
reviewed here.

The achievement of KAM is pivoted upon two crucial ideas. The first is
to transform the perturbation series in such a way that convergence can be
demonstrated under specific conditions. The result of this procedure is a series
which is super-convergent. The method is to base the approximation at each
stage on the best estimate available at that point, rather than on the initial
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series; it is closely analogous to the iterative Newton-Raphson root-finding
technique. Instead of the standard perturbation series

S=2S8+eS;+€eSy+eSs+e*Sy+ -+ €S, + -

one considers a series transformed in such a way that the terms decrease
quadratically:

S=8 +eS +S +e' S+ 85+ + €S 4ot

The convergence of this series for small € is breath-takingly rapid. The ac-
celerated convergence enables circumvention of the small divisor problem in
most circumstances and is a cornerstone in the proof of the KAM theorem. A
clear outline of the procedure is presented in Berry (1978) and Tabor (1989),
and full details may be found in the original paper of Arnold (1963).

The other central idea is that one can surround each rational point on the
real line by a finite interval and yet leave points uncovered by the union of
all the intervals. This result is apparently paradoxical and decidedly counter-
intuitive. You might argue that, since the rationals are dense on the real line,
the union of a set of intervals surrounding them must be exhaustive, i.e., must
cover the entire real line. But you would be wrong! Consider the unit interval
[0, 1]. Surround each rational m/n by an interval of width K/n”. Since there
are n — 1 rationals with denominator n, the total length L of all the intervals
is bounded above:

L<§(n 1)K <K§: L
=2 nb e TP
For p > 2 this infinite series is convergent. If its sum is 0,_;, the total length
of all the intervals is less than Ko, 1. Thus, provided we choose K < 1/0, 4
the total length L is less than unity, and the intervals cannot cover [0, 1]. If K
is chosen very small, the coverage of the intervals is correspondingly meagre
and the ‘majority’ of points are not included in their union. As K — 0, the
measure of the union of all the intervals which have been removed tends to
zero so the residual set tends to one of full measure.

The KAM theorem shows that tori whose frequencies are rationally related
are destroyed by even the smallest perturbation. Moreover, tori which are
close to these resonant tori also disintegrate in the presence of a perturbation.
However, this ‘closeness’ depends on the order of the resonance. We consider
the case of two degrees of freedom (so that the 2d-tori are embedded in a
3d-energy manifold in 4d-phase-space). Suppose the frequencies are such that
nw; — mwy = 0 for some integers m and n. Then w;/wy is rational so the
torus will be destroyed. Furthermore, nearby tori whose frequency ratios are
close to m/n are also destroyed; but the range of values of tori which perish
decreases sharply as the denominator n increases. KAM proved convergence
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of the accelerated perturbation series for all tori whose frequency ratio is
sufficiently irrational for the following inequality to hold:

K(e)

n2-5 ’

w1

Vm,n € Z.

n
-—|>
Wo n
Here K (e) is not specified precisely, but it is independent of m and n and
tends to zero with e. Thus, tori which do not survive the perturbation must

satisfy
K{(e)

n2-5

W1

m
Wa n
As we have seen, the relative measure of the union of these intervals is
K(€)oy5. As € — 0 the measure of the set of destroyed tori in any bounded
interval diminishes to zero. For finite € the gaps resulting from low-order
resonances (small n) are relatively wide and give rise to observable effects.
The surviving tori—those not destroyed by the perturbation—comprise a set
which becomes of full measure as the perturbation size vanishes. It is in this
precise sense that the KAM theorem says that, for a small perturbation, most
of the tori are preserved. The theorem requires € to be very small indeed. The
initial estimate was of the order of 10~*%. However, numerical experiments
indicate that the qualitative character of the motion is preserved under much
larger perturbations than are strictly permitted by the theorem.

The KAM theorem says nothing about the fate of the resonant tori, other
than that their structure is annihilated by the perturbation. In fact, it is the
destruction of these tori which is linked intimately with the genesis of chaotic
behaviour. The pattern of behaviour near the rational tori which are destroyed
by a perturbation is both complex and fascinating. We can describe only the
essentials here; for a fuller discussion see, for example, Berry (1978), Jackson
(1991), Ott (1993) or Tabor (1989). For regular motion the intersection of the
torus with a plane is a closed curve. When the perturbation reaches such a size
that this torus looses its integrity, the closed curve becomes a succession of
alternating elliptic and hyperbolic points, the number of each being equal to
the order of the resonance (the denominator of w; /ws in the present case). The
trajectories near the hyperbolic points form intricate interweaving patterns
called homoclinic and heteroclinic tangles. The elliptic points form a series of
regions of preserved tori—island chains—representing order in the midst of
chaos. Near each elliptic point there is a repetition of this splitting of resonant
trajectories on ever smaller scales, the pattern repeating itself without limit.
The overall structure is a tapestry of astonishing complexity and beauty.

We now summarise the main results of the KAM theorem. For the Hamil-
tonian

H(1;, ¢;) = Ho(I;) + eH (1;, ¢;)

the nondegeneracy condition D; # 0 (which implies smoothly-varying fre-
quencies) guarantees the preservation of most invariant tori under small per-
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turbations (e < 1). The condition of isoenergetic nondegeneracy

0*’H 0H
D, = det EgHE I; 0L #0. (22)
oI;

(which implies smoothly varying frequency ratios) guarantees that the total
measure of the destroyed tori vanishes in the limit ¢ — 0. In an isoener-
getically nondegenerate system the sets of resonant and nonresonant tori of
the unperturbed system are both dense on each energy level. The former has
measure approaching zero with € and the latter is of full measure in this limit.
The union of the tori preserved under perturbation is called the Kolmogorov
set. The measure of the complement of this set does not exceed a quantity
of order y/e. The perturbed system is completely integrable on a Cantor set.
For systems with two degrees of freedom, sharper results are available. This
is because the tori partition the energy shell so that trajectories cannot cross
them and chaotic orbits are sandwiched between adjacent stable tori. Subject
to technical restrictions, both of the action variables remain within a distance
of order € from their initial values and the measure of the destroyed tori is
exponentially small (O(e~*/¢)). For a complete summary of results see Arnold
et al., 1988.

3.4 Some Consequences of the KAM Theorem

In the following sections we shall apply the KAM theory to the simple prob-
lem of the elastic pendulum. But its implications are vastly more profound.
The initial impetus for the theory came from the desire to understand the
stability characteristics of the solar system. There are many near-resonances;
for example, the frequency ratio for Jupiter and Saturn is about 5/2, and this
has a detectable effect on the orbit of Jupiter, inducing an oscillation with a
period of about 900 years. While we are still far short of a complete answer to
the stability problem, KAM has led to great insight into the behaviour of the
planetary system. Classical perturbation theory allows us to make accurate
predictions far in advance, for example, to predict solar eclipses for the next
millenium. But it breaks down ultimately and tells us nothing about the sta-
bility over an indefinite time range. The power of the KAM theorem is that
its conclusions are valid for unlimited time.

The theorem has enabled us to predict the stability of protons orbiting in a
particle accelerator. Particles may rotate up to one trillion (10'?) times in the
course of an experiment. Reguarding one orbit as a year, this is about the age
of the Earth. Analysis by classical perturbations or by direct computation is
unfeasible for such a problem but KAM theory permits the conclusion that the
system is stable. The theory has also been used to explain the distribution of
asteroids orbiting between Mars and Jupiter. There are clear gaps at distances
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corresponding to low-order resonances with Jupiter, just where one would
expect the most unstable orbits. A similar analysis has successfully accounted
for the gaps in Saturn’s rings. These gaps occur at locations corresponding
to strong resonances with the inner satellites of Saturn. In both these cases
the distribution expected from theory accords well with observations.

The KAM theorem has deep implications for statistical mechanics. Here we
are concerned with macroscopic properties, such as temperature, and make
no attempt to follow the details of the motion of individual components of
the system. Conclusions frequently depend on the validity of the ergodic hy-
pothesis: this assumes that the motion explores the entire region of phase
space energetically available to it, ultimately covering it in a uniform way.
Then time-averages can be replaced by averages over the energy level. For
integrable systems only an infinitesimal portion of the energy surface is cov-
ered by the motion. It was earlier thought that the smallest perturbation of
such systems would suffice to render them ergodic, but this is now known to
be false. The KAM theorem implies that ergodicity does not hold in general.
If time-means are to be estimated from spatial averages, the latter must be
calculated over an appropriate sub-manifold of the energy shell.

4 Application of KAM to the Elastic Pendu-
lum

4.1 Hamiltonian in Perturbation Form

We are interested in the case where there is a separation of time-scales between
the rotational and elastic motions, so that the terms “slow” and “fast” make
sense. In this case the ratio € = wg /wg is a small parameter. The Hamiltonian
may be expressed in such a form that the zeroth- and first-order problems
are exactly soluble. We may then apply standard Hamiltonian perturbation
theory to demonstrate some properties of the system which hold in general
for small e.

We first non-dimensionalise the canonical equations (4) by specifying mass
and length scales m and £, and the fast time-scale 1/wg. The equations then
become

0 = po/r? (23a)
Py = —€rsing (23b)
o= pr (23c)
pr = —(r—1)+pj/r®+ e cosb (23d)

where all variables are now dimensionless. We write » = 147'. Assuming that
the amplitude of the elastic motions is small, we introduce the scaling

r' = 61/2,0, br = 61/2pp:
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so that p = O(1) and p, = O(1). Then noting that # = O(1) whereas py =
O(e), since we have nondimensionalised with the fast time-scale, we define
6 = ¥ and py = epy. Now the equations may be written in scaled form (with

all variables O(1)):

D = epg(l+€l2p)2 (24a)
ps = —esind(1+€/?p) (24b)
p = Dp (24c)
Py = —p+e? [p,%(l +€'/2p) 7% + cos 19] (24d)

Using the nondimensionalisation and scaling introduced above, the nondi-
mensional Hamiltonian may now be written as H = eH, where

H =5 (o) +0") +e[305(1+€7p)7 = (1+€/2p) cos ] .

Collecting terms of equal power in € this becomes

A

H = Ho(p,p,) + eH.(9,pg) + > Hy(p, pp, 9, po; €)
= [%(pf, + p?)] + €[3p3 — cos 9] + €/2H,.

The zeroth-order Hamiltonian is degenerate: it involves only the fast variables
(p,p,)- The first-order perturbation removes this degeneracy without destroy-
ing integrability: the fast and slow variables are still uncoupled at this order.
For the Hamiltonian H = Hy + eHy, the system is completely integrable and
can be solved exactly.

4.2 Action and Angle Variables

For bounded motion of conservative Hamiltonians the analysis is greatly facil-
itated by the introduction of action-angle variables (Lichtenberg and Lieber-
man, 1992). We introduced these variables in §3.3 and considered, as an ex-
ample, the coordinate transformation for a harmonic oscillator. For a one-
dimensional system we defined a canonical transformation from the original
conjugate variables (p, g) to the action and angle variables (I, ¢) by

1 0 r4
I—%]{pdq, cb—a/opdq, (25)

where the first integration is over a complete cycle. The Hamiltonian is then
independent of ¢ and the canonical equations imply that the action I is
constant (I = —9H/8¢ = 0) and the angle varies linearly with time (w =
¢ = OH /I, constant). We can now specify the action-angle variables for the
oscillator and pendulum. For the oscillator H = §(p% 4 p?) they are simply
I, = H, and ¢, = t. The original variables are given by

p=/21,cos¢,, Pp =1/21,sin ¢,,
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and Hy(p,p,) = Ho(I,) depend only on the action variable (these results were
1

shown in §3.1). For the pendulum (H = $pj — cos?)) the transformation is
less trivial but is a standard problem in dynamics. As is well known, the two-
dimensional phase space for the pendulum is separated into two domains by
the separatrix £ = 1 (where F = H is the total energy). If E' < 1, the motion
is a libration, oscillating between limits —,,, and ¥, where cos Uy = — F.
For E > 1, the motion is rotational with the pendulum revolving completely

around its point of suspension.

We assume here that the motion is libratory. The period of oscillation is given
by

Irmax dv
T=2[ -
Imax [2(E + cos V)]

As Umax — 7/2 the period tends to infinity. The action-angle variables are
different for each regime; for libratory motion they are

ﬂmax
I(E) =2 [ 208+ cos 0)) a0

™

Pl 6) = <5—]§> 7 /019 2(E +iis 9)]'/2

These may be transformed into standard elliptic integrals (see Lichtenberg
and Lieberman, 1992 for fuller details and for the rotatory case).

The Hamiltonian of the elastic pendulum may now be written in terms of
the action-angle variables:

E[ = H()(Ip) + GHl(Iﬂ) + 63/2H2(Ip7 ¢pa 1197 ¢19a 6) N (26)

The first two terms describe uncoupled motion of the oscillator and pendulum.
This system is integrable: both Hy and H; are constants, their values being
determined by the initial conditions. The Hamiltonian

Hunc = HO(Ip) + 6PII(L?) (27)

is independent of the angle variables. The motion for given actions I, and Iy
is described by a trajectory lying in a torus 7 which is the product of closed
curves:

T Ly, Iy) = {1, 0,) : 0 < P, <21} x {(Lg, Pp) : 0 < py < 27} .

The trajectories may densely cover the torus with the angle variables running
around the two directions of the surface (this is the typical case); or, in
the exceptional case of commensurate frequencies (when the quotient of the
frequencies is rational), they may form closed curves winding around each
direction an integral number of times. The exceptional case is referred to as
resonance.
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The total Hamiltonian is a perturbation of this system, and may be de-
scribed as near-integrable. In the case of two degrees of freedom the generic
character of the motion for such systems is well understood. The trajectory
lies on a three-dimensional constant energy surface £ embedded in the four-
dimensional phase space. There are regions of regular motion and regions of
stochasticity or chaos. The two species of solution are closely intermingled,
with regular trajectories separating chaotic regions. (For more degrees of free-
dom the regular trajectories no longer separate the chaotic regions, which are
connected in a single complex structure called the Arnold web).

4.3 Implications of the KAM Theorem

We wish to apply the results of the Kolmogorov-Arnold-Moser theorem, as
presented in §3.3 above, to the problem of the elastic pendulum. The discus-
sion in this section owes much to the work of Bokhove and Shepherd, 1996
(BS96), who discussed the behaviour, for small values of the coupling pa-
rameter €, of the Lorenz model. The relationship between the Hamiltonian
for the elastic pendulum and the system studied in BS96 is indicated by the
following relationships (their notation on rhs):

V=2q, ps=2p1, p=q, Pp =DP2,

with 4¢ = £ and parameter values C' = % and b = % Then the Hamiltonian
becomes

~

H = Hy(q2,p2) + €H1(q1,p1) + 53/2H2(q1,p1, 42, P2 €)

with Hy = $(p3 + ¢3) and H; = 3(p} — Ccos2g;), which is identical to
order € with (13) in BS96. Of course, the coupling terms, embodied in the
function H,, are not identical for their model and for the elastic pendulum,
but the precise details of these terms do not affect the general character of
the solutions for small e. We therefore find that the conclusions of Bokhove
and Shepherd are also valid in the present case.

A condition for applicability of the KAM result is that the first-order or
uncoupled Hamiltonian H,,. = Hy + €H; be isoenergetically nondegenerate
(Arnold, 1978). Recall that this requires the nonvanishing of the determinant
D,. In the present case we obtain

9?Hync 9?Hync OHync a(")p 80)19
BI2 91,01y I, IR 1, oL 1, Wy 0 0 Wy
— | ®Hue OHyne OHune | _ _ Owy
Dy = | Gn,01 Tt o | = | 0w Owg o =10 ar, wo
OHunc OHync 0 1’19 I’ﬂ w w’ﬂ 0
aly oly Wy Wy 0 P

(we have written w, = wg and wy = wg for the unperturbed fast and slow
frequencies, respectively). The condition requires that the frequency ratio
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wgr/wg varies from torus to torus. This is so in the present case because,
although wg is constant, the frequency of the (nonlinear) pendulum varies
with the action variable, so we have Dy = —wg Owy /01y # 0. At the separatrix
of the pendulum, when the period tends to infinity and the frequency to zero,
the condition fails.

Provided we avoid the separatrix, the conclusions of the KAM theorem
(Arnold, et al., 1988) are applicable in the present case. For small ¢ most of
phase-space is filled by invariant tori that are smooth deformations of the
invariant tori 7 (I,,Iy) of the uncoupled system. Most of the original tori
persist for a small enough perturbation and the solution remains regular on
these tori. They are dense in £ — the measure of the complement of their
union vanishes as ¢ —+ 0 — and they tend smoothly to the unperturbed tori
which foliate the corresponding level surface of £ in this limit. There are thin
regions of chaotic motion around resonant tori. However, the theory ensures
that the measure of these regions tends to zero exponentially fast—like e =%/¢—
as € = 0. The preserved two-dimensional tori partition the three-dimensional
accessible portion of phase space and trajectories cannot cross them. Thus,
chaotic orbits are tightly confined between adjacent regular tori.

In terms of slow mode—fast mode interactions (analogous to Rossby wave—
gravity wave interactions in the atmosphere), this result means that if most of
the energy is initially in the slow mode, i.e., if the starting state is initialized,
only an amount proportional to the coupling constant € can be transferred to
the fast oscillations. It would be gratifying if we could draw the following con-
clusion for the Rossby wave-gravity wave interactions in the real atmosphere:
if most of the energy is initially in the Rossby waves, i.e., if the starting state
18 initialized, only an amount proportional to the coupling constant € can be
transferred to the gravity waves. Unfortunately, such a conclusion is unjusti-
fied: it must be stressed that the above result is rigorously valid only for a
model with two spatial dimensions. In higher dimensional phase spaces the
tori do not isolate the surfaces of constant energy and transfer of energy be-
tween modes by the process of Arnold diffusion is possible. However, this
process is very weak and occurs over a long time scale, so that, in practice,
the statement italicised above may indeed be valid.

5 Numerical Investigation of Regular and
Chaotic Motions

5.1 Poincaré Sections

To gain further insight into the nature of the motion for small €, a series of
numerical integrations of the canonical equations were performed. The results
will be presented in this section. The trajectories are one-dimensional curves
on a three-dimensional energy manifold in four-dimensional phase space. The
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best means of depicting such curves on paper is not immediately obvious.
However, Poincaré proposed a simple method which is particularly attractive
for autonomous systems with two degrees of freedom. To visualise the motion,
we choose a two-dimensional surface and plot the intersection of a trajectory
each time it passes through the surface in a particular direction. The result
is called a Poincaré section. Two especially convenient choices are the ‘slow’
or (9, py) plane with p = 0,p, > 0 and the ‘fast’ or (p,p,) plane with ¥ =
0,py > 0. The distribution of points on the section can reveal whether or
not the motion is integrable. If it is, the trajectory lies on a torus which
cuts the section in a smooth curve. For non-integrable motion the system
explores a three-dimensional region of the energy level, whose intersection
with a plane is an area rather than a curve. Thus, for regular motion the
set of trajectory intersections lies on a closed invariant curve, covering it
densely. In the exceptional case of rational ratio of frequencies the section
comprises a finite number of points. For chaotic motion the representative
points fill a finite area of the section. We recall that strict applicability of the
KAM theorem requires that the perturbation parameter € be extremely small
(typically about O(1048)). This is far below the range of practical interest.
Thus, numerical experimentation is required to investigate the solutions for
more reasonable values of €. Although the KAM results may not apply for
such values, it is found that Poincaré sections interpreted in the spirit of the
KAM theorem can be very illuminating and instructive.

5.2 Numerical Solutions

Numerical integrations of the canonical equations have been carried out using
a modified explicit symplectic integrator (Yoshida, 1990). It was found con-
venient to rescale the system (24) using the slow time-scale wg . The Yoshida
scheme is applicable for Hamiltonians of the form

H(p,q)=T(p)+V(a).

As the Hamiltonian for the elastic pendulum is not of this form, a modifi-
cation of the scheme was required. It was possible to preserve second-order
accuracy for the modified scheme (Onno Bokhove, personal communication).
The scheme executes each forward time step as a canonical transformation,
preserving phase space volume elements. The total energy is also conserved
to very high accuracy: for a time step At = 0.0001, the energy varied by less
than ten parts per million.

The rescaled equations (24) were solved for two values of the total en-
ergy, £ =0 and F = 1.8. For each energy, some twelve different choices
of initial conditions were used, each choice partitioning the energy differ-
ently between rotational and elastic components. For each total energy, the
equations were integrated for an increasing set of values of ¢, six in all:
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e € {0.025,0.05,0.1,0.25,0.325,0.4}. For smaller perturbation values (¢ < 1)
the coupling is weak and we expect behaviour similar to that of the uncou-
pled system. For the largest values the separation of time scales is no longer
clear-cut, the coupling is strong and we must expect the interaction between
the rotational and elastic components to be significant.

The results for the two choices of energy are shown in Fig. 6 (E = 0)
and Fig. 7 (E = 1.8). For each set of integrations (each fixed F and €) two
sections are shown, the section in the slow variables (1, py) above and the
section in the fast variables (p, p,) below. Each trajectory leaves a signature
in both planes. Since F is fixed, the high energy orbits in the slow plane must
correspond to the low energy ones in the fast plane, and vice versa.

We consider first the low energy case £ = 0. For this value of E, the
trajectories are within the separatrix for all partitions between rotational
and elastic energy. The three panels in the top row of Fig. 6 show the slow-
plane section for the three low values of €. The panels in the second row are
the corresponding sections in the fast plane. The slow sections are similar
to those of a simple pendulum in libratory motion (Fig. 5). The fast section
curves resemble the elliptic trajectories of a harmonic oscillator. The central
point represents a solution for which there is no high frequency activity. As
€ increases, this ‘core’ point moves from the origin along the positive p-axis.
This is in accordance with our discussion of nonlinear initialization, where we
found that the solution is expected to have minimal high frequency activity
when (r,p,) = (rg,0). Recall from (14) that rg = £(1 + O(€?)) so that p =
O(€%/?) and the core point should move away from the origin of the fast plane
as € increases. For the core solution we see that p, ~ 0, in agreement with
§2.3.

For the small values of € the phase portraits are very similar to those of
a simple pendulum (panels a—c) and a harmonic oscillator (panels d—f). As
€ increases—panels g1 of Fig. 6 are for e € {0.25,0.325,0.4}—some of the
toroidal structures are seen to disintegrate into chaotic regions. For € = 0.25
a fourth-order resonance is clear (panel g, third row). For € = 0.325 (panel h)
a third-order resonance is seen nearer the centre. When ¢ = 0.4 the solution
begins to appear chaotic, with the points appearing to fill an area near the
centre. Complex patterns of island chains are evident in the section (panel i,
third row). For higher rotational—and lower elastic—energy, the motion still
appears to be regular at this perturbation level.

When F = 1.8 and the elastic energy is small, the motion of the pendulum
is rotatory, lying entirely outside the separatrix (see Fig. 7). If relatively more
energy resides in the elastic oscillation, the pendulum motion is libratory
(within the separatrix). For some initial conditions the solution is close to the
separatrix; this is the situation in which we may expect chaotic behaviour
to first become evident as € increases. For small e (first two rows, Fig. 7)
the solution is again close to the uncoupled solution. By € = 0.25 we see the
beginning of chaotic motion near the separatrix (panel g, third row) together
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with a fourth-order resonance. For larger ¢ the dynamics are predominantly
chaotic; the regions of regular motion are relatively small. A correspondence
can be made between regions of regular motion in the fast and slow planes;
and also between the chaotic regimes in the two planes.

5.3 Existence of the Slow Manifold

The existence of a slow manifold is intimately related to the following ques-
tion: given an initial state (Z3(0), ¢9(0), 1,(0), ¢,(0)), can we modify the fast
variables (1,(0), ¢,(0)) in such a way that fast oscillations are absent from the
solution for all time? In the uncoupled case, we eliminate all fast oscillations
by setting the initial fast action I,(0) to zero. This corresponds to linear ini-
tialization and ensures that the fast action remains zero in perpetuity. In this
special case, the torus is replaced by a simple closed curve. We call this the
core solution (following Bokhove and Shepherd, 1996). The Poincaré section
in the fast plane then collapses to a single point at the origin. The question
now is: for non-zero perturbation €, can we define new action-angle variables
(J,,1,) such that there is a core solution with J, = 07 If so, the fast varia-
tions can be eliminated. The KAM theorem guarantees that for most initial
conditions (the exceptional cases being of measure zero) the toroidal topology
of the uncoupled solution is preserved for sufficiently small perturbations. We
can find toroidal sections arbitrarily close to the core solution (I, = 0) in the
fast plane whose structure is preserved for small €. For non-zero € the core
point is no longer at the origin—the fast variables are not identically zero—
but the trajectory still reduces to a single point in the fast plane. Thus, there
is no high frequency variability in the solution. (Strictly, it must be confirmed
that this is still true after transformation back to the original variables; see
BS96). This situation corresponds to a nonlinear initialization which ensures
complete absence of free high frequency motions for all time. Unfortunately,
although the KAM theorem assures us of the existence of such initial values, it
gives us no inkling of how to find them, and alternative methods must be used
(see, e.g., Lorenz, 1986). Most initialization schemes control high frequency
noise but do not remove it entirely.

The numerical results presented above increase our confidence that a core
solution exists for small €. Looking at Figs. 6-7, we can see that evidence
of trajectories whose fingerprint in the fast plane is just a single point. As €
increases it becomes more difficult to unequivocally identify a core solution.
Thus, it seems there is a perturbation size beyond which it is no longer possible
to define initial conditions which guarantee regular, slow evolution.

In summary, for small € there is a slow manifold, a sub-manifold of phase
space which is invariant and devoid of free high frequency oscillations. It is
not simply connected but has a complex topology, being perforated by ex-
ceptional points corresponding to breakup of invariant tori near resonances
(BS96). However, the exceptional points amount to a set of exponentially
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small measure. For large € the distinction between slow and fast motion be-
comes unclear, the coupling becomes strong and it is no longer possible to
define initial conditions which guarantee absence of ‘fast’ variations.

6 Resonance of the Elastic Pendulum

In general, the coupling between the elastic and rotational motions of the
pendulum is weak and undramatic. There is a special case in which this is
not so: when the frequency of the elastic oscillations is approximately twice
that of the rotational motion, an extraordinary interaction occurs, in which
energy is transferred back and forth periodically between the two kinds of mo-
tion. Indeed, it is fascinating to watch the behaviour of a physical pendulum
oscillating in this way. The dynamics of this nonlinear resonance phenomenon
will be discussed in this section.

6.1 Parametric Resonance

The solution of a linear system which has a sinusoidal character for constant
parameter values can grow exponentially if a parameter varies periodically
with time. This phenomenon is called parametric resonance (Landau and
Lifshitz, 1969; Minorsky, 1962). It can be demonstrated easily by holding
the string of a pendulum lightly in the fingers of one hand while pulling
with the other as it passes through the vertical and releasing as it reaches
the extremities. A more dramatic example of the phenomenon is the incense
burner in Santiago de Compostella (Berry, 1978). Perhaps the simplest and
best known example occurs when a child alternately stands and squats on a
swing. If the centre of mass is thus raised and lowered with a period twice
the natural period, a swinging motion of growing amplitude can be induced
(Curry, 1976).

We consider a pendulum with periodically varying length. We assume the
string remains taut throughout the motion. The Lagrangian for the angular
motion of the system may be written as:

L=T-V = %mr292+mgr0050

where the length r = r(t) is prescribed. The equation for the pendular motion
is

é—i-ﬁ—f—gsin(?:O.
r r
If we define ¥ = rf/¢, the equation becomes
v§+gsin <@> - Z19=O.

/¢ r r
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We now assume the length varies sinusoidally with frequency €2:
r=4(1+mncos).

Moreover, we assume that n and ¢ are small. Then the equation may be
written )
U+ [w2 — n(w? — Q?) cos Qt] 9=0, (28)

where w = y/g// is the frequency for the unperturbed case (n = 0). This may
be expressed as Mathieu’s equation in the canonical form
d*9

W+[a—2qcos27']19:0, (29)

where the quantities 7, ¢ and ¢ are defined as follows:
2 2
=g a= () a=m(go).

Growing solutions of Mathieu’s equation are known to exist for certain pa-
rameter values. We can see this heuristically by treating the small term in
(28) as a forcing term:

9+ w? = 1gQ%(cos Q1)1

For ¢ = 0 the solution is ¥ = A cos(wt — ). Substituting this, the right-hand
side becomes

iAqQQ{ cos[(€2 + w)t — Y] + cos[(Q —w)t — T/J]} '

Clearly, this acts as a resonant forcing if (2 —w) = w or Q = 2w. Thus, if the
parametric variation is at twice the ‘natural’ frequency w, a growing solution
may be expected; this is parametric resonance.

The solutions of Mathieu’s equation have been studied intensively; the
standard reference is McLachlan (1947). The general theory of equations with
periodic coefficients is called Floquet theory. They have solutions of the form
exp(7t)¢(t), where «y is real or complex depending on the values of the pa-
rameters and ¢ is periodic, with period 7 or 27. Thus, the character of the
solutions of Mathieu’s equation depends strongly on the values of the param-
eters. The a—g-plane is divided by transition curves into stable and unstable
regions. In the former, the solutions remain bounded for large 7. In the lat-
ter, one of the solutions grows exponentially. On the transition curves the
solutions are periodic.

Nayfeh (1973) applied several perturbation techniques to derive approxi-
mate expressions for the transition curves. For small values of ¢, the solutions
are stable except for thin regions near where qa is a perfect square. The widest
region and the fastest rate of exponential growth occur for the case a = 1,
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corresponding to {2 = 2w. Thus, if the length of the pendulum is varied with
small amplitude at a frequency twice the natural frequency of oscillation, the
amplitude of the swinging motion can grow exponentially. As the amplitude
increases, the approximations made are violated, the characteristic period in-
creases and resonance no longer obtains. Thus, the system equilibrates at a
finite amplitude.

Parametric resonance has important consequences in plasma physics, solid-
state physics, nonlinear optics and electronics. We have mentioned the quan-
tum phenomenon of Fermi resonance found, for example, in the infra-red
spectrum of CO,. The elastic pendulum provides a classical analogue for
this; indeed, it was this problem which prompted the Russian physicist Man-
dlestam to propose the study of the simple mechanical system to Vitt and
Gorelik (1933). Parametric resonance is relevant for the stability of orbits in
particle accelerators. It can also result in catastrophic instability of mechan-
ical systems. For example, it has long been known that a ship for which the
natural frequencies for heave and roll are in the ratio 2:1 can have undesir-
able dynamical characteristics. Paulling and Rosenberg (1959) have applied
the concept of parametric resonance to analyse unstable ship motions result-
ing from nonlinear coupling. The instability was confirmed by construction
and testing of a model. Their analysis highlights the inadequacy of linear
stability analysis in ship design.

6.2 The Small Amplitude Approximation

We now study small amplitude solutions, keeping only linear and quadratic
terms in the equations of motion. We can approximate the equations directly,
but it is more convenient to expand the potential energy, keeping terms to
cubic order. We employ cartesian coordinates with horizontal and vertical
axes x and z originating at the point of equilibrium of the pendulum. For
small amplitudes, these coordinates yield equations equivalent to but less
clumsy than the apparently more natural polar coordinates which we have
used above. The kinetic and potential energies are

T = im(i® + %), V = 2k(r — o) + mygz,

where 72 = 22 + (2 — £)? is the instantaneous length of the pendulum (Davi-
dovié et al., 1996). The equations of motion can be written immediately:

f+wg(r—eo)§ =0 (30)

z+w§(r—eo)§+g=o. (31)

We can simplify considerably in the case of small amplitude motion. Expand-
ing r to cubic order we find that

(|1 Z—i— i +x2z
r= — =+ — +
£ 202 203
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This is substituted into the potential energy function to obtain, to third order,
V = tmwia® + wiz® — A2z + Vy

where \ = (wi — w3)/l = wily/F? and V; is a constant. If quadratic terms
only are retained, the equi-potential lines are ellipses, corresponding to two
decoupled harmonic oscillators. The cubic term distorts them into banana-
shaped curves (see Fig. 8). The equations of motion now become

i+wir = Azz (32)

Ptwhz = 2%, (33)

Omitting the small right-hand terms, the horizontal and vertical motions are
x = Acos(wrt — ) z = Bcos(wgt — x) -

In the special case wg = 2wg, the effect of the quadratic terms is pro-
found. We shall examine this in more detail. First, consider the case where
the spring mode of oscillation is dominant, |z| < |z|. The vertical motion is
given approximately by z = B cos(wgt — x). Then the z-equation is

i+ [wi — ABcos(wgt — x)]z = 0.

Defining 7 = $(wrt — X), @ = (2wr/wg)? = 4€* and ¢ = 24,B/¢* = 2(1 —
€2)B/L, we get

d2—x+[a—2 cos 27|z = 0

dr? 1 -

This is Mathieu’s equation and we know from the discussion on parametric
resonance that there is an unstable region near ¢ = 1 or wg = 2wg. Thus, a
vertical motion will induce an exponentially growing horizontal motion if the
ratio of the frequencies is two-to-one.

Next we assume that the pendulum mode is dominant (|z| > |z|) and
consider the vertical equation. The horizontal motion is given approximately
by & = Acos(wrt — ) so the z-equation may be written

i+ whz = FAA[1 + cos 2(wrt — ¥)] .

The first right-hand term induces a constant deflection. The second gives rise
in general to a response at the forcing frequency 2wg. But if this corresponds
to the natural frequency, i.e., if 2wg = wg, there is resonance and the z-
solution grows linearly with time.

In summary, in the resonant case—where the frequency of the spring mo-
tion is twice that of the pendular motion—a vertical oscillation of the pen-
dulum will induce a horizontal one, and vice versa.
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6.3 General Analysis of Resonance

In the resonant case there is a periodic exchange of energy between the two
modes of oscillation, a slow recurrence or vacillation. This cannot be seen from
the above simple discussion but requires a deeper examination. Perturbation
analyses have been carried out using a variety of techniques. The first fairly
complete analysis was by Vitt and Gorelik (1933), who deduced expressions
for the slowly-varying amplitudes and for the period of recurrence in terms
of elliptic functions and integrals. Van der Burgh (1968) applied the method
of averaging, obtaining similar results. Kane and Kahn (1968) performed a
perturbation analysis of the Hamilton-Jacobi equation, confirming their re-
sults by numerical integrations. Nayfeh (1973) examined the problem from
several viewpoints, deriving equations for the slowly-varying terms but not
discussing their consequences. Breitenberger and Mueller (1981) analysed the
system using the slow-fluctuation approximation, which is similar to the aver-
aged Lagrangian technique. Cayton (1977), Rusbridge (1980) and Lai (1984)
applied the stroboscopic method of Minorsky (1962). Falk (1978) carried out a
multiple time-scale analysis, but his paper contains a serious error, as pointed
out by Lai (1984), and the results are wrong.

We shall not present a full perturbation analysis here but shall state some
of the principal results (the discussion below is based mainly on Lai, 1984).
Let us seek a solution of (32)—(33) in the form

x = A(t) cos(wrt + ¥(1)), z = B(t) cos(wrt + x(t)),

where the amplitudes A(t),b(¢f) and phases ¥(t), x(t) are presumed to be
slowly varying. By means of a multiple time-scale analysis (or other pertur-
bation technique), we may derive a system of equations for the slow variables:

= —kABsin(2¢ — x) (34)
+1kAZsin(2¢) — x) (35)
—kBcos(2¢Y — x) (36)
—3#(A%/B) cos(2 — ) (37)

PO Sl uy i N
Il

where x = 3wr/4/ is a constant. The phase equations may be combined into
a single equation for v = 29 — x:

A?
Y= —k|2B — — .
04 m( 4B>c0s7

Eliminating ~ from the amplitude equations we derive a constant of the mo-
tion:

A? +4B% = M .
This is a consequence of conservation of energy. Next, multiplying the phase
equation by tan+y and using the amplitude equations, we deduce a second
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constant:
A’Bcosy = Ny.
Since there are two independent constants of the motion, the system is com-

pletely integrable (but recall that this depends on various small amplitude
approximations). We may deduce a single equation for o = A%/M¢:

d?o
dt?
and the solution may be expressed in terms of a Jacobian elliptic function.

The period of the elliptic function is the period of vacillation of energy; it
depends strongly on the amplitude of the motion.

+ (%KM(?) ala—2)=0, (38)

We note that the above perturbation analysis is valid only for small am-
plitudes. Nufez-Yépez, et al. (1990) have shown in a numerical study that
the system goes from regular to chaotic and back to regular behaviour as the
total energy is increased.

We illustrate the vacillating solution by a simple example. The parameter
values are m = 1, g = 72, k = 4w? and £ = 1 (all ST units), so that ¢ = 0.5 and
the periods of the swinging and springing motions are respectively v = 2s
and 7r = 1s. The initial conditions are vanishing velocity (¢ = z = 0), with
z(0) = 0.005 and z(0) € {0.05,0.1} (over 99% of the energy is initially in
the elastic component). The exact equations are integrated over a period of
140 seconds, and the amplitudes of the horizontal and vertical components
of motion are shown in Fig. 9. The slow vacillation of energy back and forth
between springy and swingy motion is clear. Fig. 9(a) is for the smaller energy,
z(0) = 0.05 and has a vacillation period of about 70s. Fig. 9(b), for the larger
energy (z(0) = 0.1), has a significantly faster vacillation, the period now being
about 40s. The envelop of the amplitudes may be closely approximated by
elliptic functions. The total energy was checked during the integrations, and
found to be constant to within 0.001%.

A physical spring pendulum, not constrained to a single plane, shows an
interesting effect: when started with predominantly vertical motion, it moves
in different vertical planes during successive horizontal excursions, in an ap-
parently random fashion. The pattern of motion appears to be highly sensitive
to the initial conditions, and essentially unpredictable. Thus, while the pe-
riod of vacillation is highly regular, its direction would seem to be completely
chaotic. This phenomenon merits further investigation.

7 Concluding Discussion

7.1 Complementary Studies

The pendulum has a hyperbolic (saddle-point) equilibrium at § = £7, con-
nected to itself by a pair of homoclinic orbits which form the separatrix. The
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numerical results presented in §5 suggested an early onset of chaotic motion
there: the Poincaré sections had the appearance of irregularity near the sepa-
ratrix for relatively small € (see, e.g., Fig. 7g). The system is isoenergetically
degenerate as well as degenerate and the KAM theorem is inapplicable on
the separatrix. Alternative methods must be used for the theoretical study of
the solution in this region. Holmes and Marsden (1982) investigated the dy-
namics of a coupled pendulum-oscillator system using the Melnikov function
technique. They assumed a perturbation term in the Hamiltonian of the form
H'(p,p,) = 3¢(p — 0)* which corresponds to linear coupling in the canonical
equations: .

0 =py, pp = —sinf +¢(p—0),

p=0p, Pp=—wp—elp—0).
They showed that for initial conditions sufficiently near the separatrix this
system has Smale horseshoes in its dynamics and consequently possesses no
analytic second integral. The horseshoes are generated by the tangling of
the stable and unstable manifolds of trajectories homoclinic to § = +x. The
existence of a horseshoe map on the energy surface implies sensitivity to initial
conditions and the presence of chaotic dynamics. The same technique could

be applied to the elastic pendulum (although we should not anticipate the
outcome before the analysis is performed).

Camassa (1995) studied the dynamics of the Lorenz (1986) system near
the saddle-point equilibrium Py using a combination of Melnikov and singular
perturbation methods. He showed the existence of a countable infinity of
homoclinic bifurcations near Py and demonstrated the chaotic nature of the
dynamics in the vicinity of the separatrix. Camassa pointed out (loc. cit.,
p317) that some of his analysis can be applied to the generic situation of a
Hamiltonian with a saddle-point equilibrium. To the extent that this claim
is valid, his conclusions for the Lorenz system could also be applicable to
the elastic pendulum. Camassa and Tin (1996) extended this study to the
forced and damped version of the Lorenz model. They concluded that a local
slow manifold exists near the hyperbolic point. This conclusion also held true
for the conservative case. But a global slow manifold, defined either as an
invariant manifold devoid of fast oscillations for all time or as an invariant
manifold for which the fast variables are functions of the slow ones (i.e., slaved
to them), does not exist.

7.2 Centre Manifold Theory

The Lyapunov subcentre manifold theorem (Kelley, 1967) provides useful
information about the character of the dynamics in the vicinity of the equi-
librium points. The theorem applies to a system of the form

p = M+ P(pgr)
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q = _)‘p+Q(p7Q7r)
t = Ar+R(pqr)

where p and ¢ are two scalars and r is a vector of the remaining variables.
The eigenvalue A # 0 is real and A is a constant matrix. We assume P, ) and
R and their first derivatives vanish when (p, ¢,r) = (0,0,0). Then, provided
A does not have an eigenvalue which is an integral multiple of A, there exists
a unique invariant two-dimensional local manifold

M ={(p,q,r) : |Ip| + [q| < d, r =h(p,q)}.

If we consider all the pairs of variables (pg, gx) for which the system equations
may be written in the above form, there is a corresponding subcentre manifold
for each pair. The space spanned by the union of these manifolds is called the
centre manifold.

For the elastic pendulum, there are two such equilibrium points, the elliptic
point or centre Py with (8, pg,r,p,) = (0,0, (1 + €3)£y,0) and the hyperbolic
point or saddle Py where (0, pg, 7, pr) = (7,0, (1—€2)£o, 0). There is a technical
restriction for application of the Lyapunov subcentre manifold theorem: the
ratio of the rotational and elastic frequencies must not be an integer (wgr/wg ¢
Z). Subject to this (mild) condition, the theorem implies that there exist
two local, invariant, two-dimensional manifolds passing through Pg. In the
neighbourhood of the saddle point, there is one such invariant manifold. One
of the local manifolds near Py is obvious:

MF = {(eapaar:pr) : |7" + \pr| < (SF, [ =py = 0} .

This is the fast manifold, representing purely elastic vibrations in the vertical
through Pg. The Lyapunov result is existential; it ensures that My exists
and is unique, but it does not provide an explicit value for dr. However, it is
clear on physical grounds that this fast manifold is actually global; it passes
also through the unstable equilibrium point Pg. The other invariant manifold
near Py is more interesting. The Lyapunov result states that it is of the form

MS - {(oapearapT) : ‘9‘ + ‘p9| < 5Sa r= f(eape):pT - g(eape)} .

The subscript S is chosen more in hope than expectation: the theorem does
not imply that this manifold is slow. Although the fast variables r and p, are
slaved to € and py by the functions f and g, there is no guarantee that they
do not vary on the fast time-scale.

For the saddle point Py there is no invariant manifold corresponding to
M. Unlike My, which is global (in 7 and p,), this manifold may be essen-
tially local in character (confined to a d-neighbourhood of Pg). For € = 0,
there is a 2-dimensional centre manifold transverse to 1-dimensional stable
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and unstable manifolds around the saddle-point. The theory of normally hy-
perbolic manifolds (e.g., Wiggins, 1994) guarantees that this structure persists
near Py for small perturbations (note that transversality is preserved under
diffeomorphism). The fast manifold My which we have identified above is
identical to the centre manifold. The dynamics near Py are challenging to
analyse. Camassa (1995) has investigated this problem for the Lorenz sys-
tem, using the technique of Melnikov, and has demonstrated the existence of
chaos near the hyperbolic point. In a study of a physical system similar but
not isomorphic to the elastic pendulum, Georgiou and Schwartz (1996) report
the existence of a global slow manifold. We have been unable to reach such
a conclusion for the system under study here. Indeed, the numerical results
presented above strongly suggest that no such global slow manifold exists for
the elastic pendulum.

7.3 A Final Thought

First, consider an anelastic pendulum (so that e = 0) at its unstable equilib-
rium point Py (6 = 7). If it is disturbed by an infinitesimal impulse of energy
0 F, it will move away from equilibrium and execute a regular rotational mo-
tion of extremely long but constant period, spending most of the time near
the top point. Since the initial energy is £' = 1 and the impulse increases this,
the pendulum always has enough energy to surmount the top point on each
rotation. The motion is completely predictable.

Now imagine a similar scenario for the elastic pendulum. The bob leaves
Py with energy £ = 1+ JFE, as before, but now some energy is converted
from rotational to elastic oscillations. If the elastic energy Hg exceeds 6 F
as the bob approaches Py after a rotation, it will have insufficient energy to
reach the top and will fall back. If, on the other hand, Hg is less than JF,
it will surmount the peak and continue its rotation. But if Hg ~ dFE, the
course of the pendulum will depend on the phase of the elastic oscillation at
the critical angle § = 7. For small JF, this will occur long after the initial
impulse is applied. On some occasions the bob will surmount the top and
on others it will fall back. Although the motion is, in principle, determined
by the initial conditions, the precise phase is practically unpredictable; its
accurate determination would necessitate keeping track of the phase of the
rapid oscillations over a very large number of oscillations—a practical impos-
sibility. The motion will thus have the potential to exhibit high sensitivity to
the initial conditions — the signature of chaos.
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Figure Captions

Fig. 1. (a) Elastic pendulum in equilibrium. Mass of bob m, stretched
length ¢, stiffness of wire k. (b) Pendulum in motion, polar coordinates (r, ).

Fig. 2. Limagon curves for ¢, € {0.1,0.4,0.7,1.0} (¢, = 1 gives a car-
dioid). Unit circle shown dashed.

Fig. 3. Surface S; (¢ = 0.25) upon which the solutions of the slow
equations (12) evolve. Note that p, = 0.

Fig. 4. Numerical solutions. LIN: linear initialization, NLI: nonlinear
initialization, SLO: slow equations. For more details, see text.

Fig. 5. Phase diagram for the simple pendulum. A pair of homoclinic
orbits joining the unstable equilibrium point § = £ to itself form the separa-
trix, dividing the phase-plane into regions of libration and regions of clockwise
and anticlockwise rotation.

Fig. 6. Poincaré sections for twelve trajectories with total energy F = 0.0.
Top two rows: € € {0.025,0.05,0.1} (slow plane in first row, fast plane in
second). Bottom two rows: € € {0.25,0.325,0.4} (slow plane in third row,
fast plane in fourth).

Fig. 7. Poincaré sections for twelve trajectories with total energy £ = 1.8.
Top two rows: € € {0.025,0.05,0.1} (slow plane in first row, fast plane in
second). Bottom two rows: € € {0.25,0.325,0.4} (slow plane in third row,
fast plane in fourth).

Fig. 8. Equipotential lines of the swinging spring near the point of stable
equilibrium.

Fig. 9. Amplitudes of the horizontal or swinging component (solid) and
of the vertical or springing component (dashed) for the case of resonance.
Panel (a) is for the smaller energy (z(0) = 0.05). Panel (b) is for the larger
energy (z(0) = 0.1).
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Fig. 1. (a) Elastic pendulum in equilibrium. Mass of bob m,
stretched length ¢, stiffness of wire k. (b) Pendulum in motion,
polar coordinates (r, §).
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Fig. 2. Limagon curves for ¢y € {0.1,0.4,0.7,1.0} (eo = 1 gives a
cardioid). Unit circle shown dashed.
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Selution Surface of Slow Equaltions
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Fig. 3. Surface S; (e = 0.25) upon which the solutions of the slow
equations (12) evolve. Note that p, = 0.
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Fig. 4. Numerical solutions. LIN: linear initialization, NLI: non-

linear initialization, SLO: slow equations. For more details, see
text.
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Fhuse Diagram For Simple Pendulum
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Fig. 5. Phase diagram for the simple pendulum. A pair of ho-
moclinic orbits joining the unstable equilibrium point § = +7 to
itself form the separatrix, dividing the phase-plane into regions of
libration and regions of clockwise and anticlockwise rotation.
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Fig. 6. Poincaré sections for twelve trajectories with total energy
E = 0.0. Top two rows: € € {0.025,0.05,0.1} (slow plane in first
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Fig. 7. Poincaré sections for twelve trajectories with total energy
E =1.8. Top two rows: € € {0.025,0.05,0.1} (slow plane in first
row, fast plane in second). Bottom two rows: € € {0.25,0.325,0.4}
(slow plane in third row, fast plane in fourth).
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Fotential Energy near Elliptic Point

Fig. 8. Equipotential lines of the swinging spring near the point
of stable equilibrium.
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