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The dynamics of non-divergent flow on a rotating
sphere are described by the conservation of absolute
vorticity.

The analytical study of the nonlinear barotropic
vorticity equation is greatly facilitated by the
expansion of the solution in spherical harmonics.

The normal modes are the well-known
Rossby-Haurwitz (RH) waves which represent the
natural oscillations of the system.

Triads of RH waves that satisfy conditions for
resonance are of critical importance for the
distribution of energy in the atmosphere.
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The dynamical behaviour of planetary waves in the
atmosphere is modelled by the barotropic vorticity
equation (BVE):

d(¢+f)

a2
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The dynamical behaviour of planetary waves in the
atmosphere is modelled by the barotropic vorticity
equation (BVE):
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Rossby (1939) used a simplified (linear) form of this
equation for his study of atmospheric waves.

This was generalized to spherical geometry by
Haurwitz (1940). The linear wave solutions are now
called Rossby-Haurwitz waves.
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The dynamical behaviour of planetary waves in the
atmosphere is modelled by the barotropic vorticity
equation (BVE):

d(¢+f)

T = (0.

Rossby (1939) used a simplified (linear) form of this
equation for his study of atmospheric waves.

This was generalized to spherical geometry by
Haurwitz (1940). The linear wave solutions are now
called Rossby-Haurwitz waves.

Charney, Fjortoft & von Neumann (1950) integrated
the BVE to produce the earliest numerical weather
predictions on the ENIAC.

They integrated the equation on a rectangular k1
domain, in planar geometry.
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Silberman(1954) devised a numerical solution method
in which the streamfunction is expanded in spherical
surface harmonics.

The nonlinear terms introduced interaction
coefficients between the components.
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Silberman(1954) devised a numerical solution method
in which the streamfunction is expanded in spherical
surface harmonics.

The nonlinear terms introduced interaction
coefficients between the components.

A more efficient spectral technique, the transform
method, was later devised by Eliasen, Machenhauer
and Rasmussen (1970) and by Orszag (1970).

Highly truncated versions of the spectral BVE have
been analysed to gain understanding of atmospheric
phenomena.

Edward Lorenz (1960) introduced what he called the
maximum simplification of the system, reducing itto &
three nonlinear ODEs.
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In a series of papers, George Platzman undertook a
systematic study of the truncated spectral vorticity
equation (Platzman, 1960, 1962).

He showed that a three-component system has
periodic solutions: the equations are integrable and
the solutions are expressible in terms of Jacobi
elliptic functions.
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In a series of papers, George Platzman undertook a
systematic study of the truncated spectral vorticity
equation (Platzman, 1960, 1962).

He showed that a three-component system has
periodic solutions: the equations are integrable and
the solutions are expressible in terms of Jacobi
elliptic functions.

Interactions are particularly effective when the
component parameters are related by resonance
conditions.
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The nonlinear interactions between different scales
play a critical role in establishing the statistical
energy spectrum of the atmosphere.
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The nonlinear interactions between different scales
play a critical role in establishing the statistical
energy spectrum of the atmosphere.

The phenomenon of vacillation in the stratospheric
flow was first examined by Holton & Mass (1976).

They found that, for wave forcing beyond a critical
amplitude, the response to a steady forcing is not
steady, but the mean zonal flow and eddy
components oscillate quasi-periodically.
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The nonlinear interactions between different scales
play a critical role in establishing the statistical
energy spectrum of the atmosphere.

The phenomenon of vacillation in the stratospheric
flow was first examined by Holton & Mass (1976).

They found that, for wave forcing beyond a critical
amplitude, the response to a steady forcing is not
steady, but the mean zonal flow and eddy
components oscillate quasi-periodically.

Such oscillatory response to steady forcing is
consistent with forced resonant triads (Lynch, 2009).
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In this section, we review the spectral analysis of the
BVE, and the normal mode solutions of the equation.
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In this section, we review the spectral analysis of the
BVE, and the normal mode solutions of the equation.

We consider a shallow layer of incompressible fluid
on a rotating sphere, assuming the horizontal velocity
to be non-divergent.

The radius of the sphere is g, the rotation rate is Q2
and longitude/latitude coordinates (), ¢) will be used.
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In this section, we review the spectral analysis of the
BVE, and the normal mode solutions of the equation.

We consider a shallow layer of incompressible fluid
on a rotating sphere, assuming the horizontal velocity
to be non-divergent.

The radius of the sphere is g, the rotation rate is Q2
and longitude/latitude coordinates (), ¢) will be used.

The dynamics of the fluid are governed by
conservation of absolute vorticity

d
E(C+f)=0,

where f = 2Q sin ¢ is the planetary vorticity, and o
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¢ =k -V x Vis the vorticity of the flow. v

RH Waves



The time derivative is

dC_oc  _u o voc

at ot acospoN adp
We assume nondivergent flow and introduce a
stream-function ) such that V = k x V¢ and ¢ = V2.
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The time derivative is

dC_oc  _u o voc

at ot acospoN adp
We assume nondivergent flow and introduce a
stream-function ) such that V = k x V¢ and ¢ = V2.

The advection term now becomes
%_ag 10y 1 OC 1 0v10C

at ~ 0t ad¢acosod) | acosdorads
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The time derivative is

dC_oc  _u o voc

at ot acospoN adp
We assume nondivergent flow and introduce a
stream-function ) such that V = k x V¢ and ¢ = V2.

The advection term now becomes
%_ag 10y 1 OC 1 0v10C

at ~ 0t ad¢acosod) | acosdorads

Defining ;. = sin ¢, this may be expressed as
d¢ o¢ 1 [_940C 9y oC

at ~ ot " @| ouor orom
_ 9, 1 0.Q)
ot = a0\ p) —
0 1 ugp
= %4 Tuw.0. v

ot a2
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Since f = 2Q2 sin ¢, the “-term” may be expressed

af v Of
dt adg

1 op1of
acos ¢ O\ adod

1 o1 20 O

= —-20Q = —=—
acos ¢ o\ a cos ¢ a o\
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Since f = 2Q2 sin ¢, the “-term” may be expressed

af v Of
dt adg

1 op1of
acos ¢ O\ adod

1 o1 20 O

= —-20Q = —=—
acos ¢ o\ a cos ¢ a o\

The barotropic vorticity equation may now be written

o 200y 10(1,¢)

ot a o\ a o\ p)
This is the (non-divergent) BVE. o
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The non-linear advection is represented by the
Jacobian term.

RH Waves
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The non-linear advection is represented by the
Jacobian term.

Temporarily omitting this, we see that the BVE has
solutions of the form

b = o Yy'(A, ) exp(—iot)

where 1 is the constant amplitude and the frequency
o is given by the dispersion formula

g— g = 28m
"7 n(n+1)°
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The non-linear advection is represented by the
Jacobian term.

Temporarily omitting this, we see that the BVE has
solutions of the form

¥ =1 Y7 (A 1) exp(—iot)
where 1 is the constant amplitude and the frequency
o is given by the dispersion formula
20m
— m —_ e —
7T = T an+ 1)

Here, m is the zonal wavenumber, n is the total
wavenumber (both are integers) and Y/'(\, i) are the
spherical harmonics, eigenfunctions of V2:

n(n+1) il

oym_ PN+ VY)vm UL
veyYrn = — 2 Y. v
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We assume the functions Y] to be normalized so that

/ / (VY Y™ g Adp = 6mam

These solutions are called Rossby-Haurwitz waves,
or RH waves.
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We assume the functions Y] to be normalized so that

/ / (VY Y™ g Adp = 6mam

These solutions are called Rossby-Haurwitz waves,
or RH waves.

It is remarkable that, for a single RH wave, the

nonlinear Jacobian term vanishes identically, so that
such a wave is a solution of the nonlinear BVE.
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The spherical harmonics form an orthonormal basis
on the sphere: any sufficiently smooth function may
be expressed as a sum of such components.
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The spherical harmonics form an orthonormal basis
on the sphere: any sufficiently smooth function may
be expressed as a sum of such components.

Thus, the streamfunction has an expansion

Y(A, . 1) ZZ% )Y\ ).

n=0 m=—n
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The spherical harmonics form an orthonormal basis
on the sphere: any sufficiently smooth function may
be expressed as a sum of such components.

Thus, the streamfunction has an expansion

Y(A, . 1) ZZ% )Y\ ).

n=0 m=—n

The vorticity has a similar expansion, with

coefficients ( "
n(n-+
by = ————%n .
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The spherical harmonics form an orthonormal basis
on the sphere: any sufficiently smooth function may
be expressed as a sum of such components.

Thus, the streamfunction has an expansion

Y(A, . 1) ZZ% )Y\ ).

n=0 m=—n

The vorticity has a similar expansion, with
coefficients

n(n+1
C/T = ( 2 )wll;n :
The coefficients ¢/” and ¢ are functions of time. oo
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Flows governed by the BVE conserve the total energy
and total enstrophy, defined by

/ V. Vdidu = %M d\du

47r32

’
T Ara? // 20N du = -
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Flows governed by the BVE conserve the total energy
and total enstrophy, defined by

1

’
T Ara? // 20N du = -

In terms of the spectral coefficients, the constrained
quantities may be written

1
_ 1 m|2 :1 2
_Q;n(n+1)|<n| ) S 2;|Cmn| .
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Flows governed by the BVE conserve the total energy
and total enstrophy, defined by

1

’
T Ara? // 2 dNdn = -

In terms of the spectral coefficients, the constrained
quantities may be written

1
1 _ym2 _1 2
_2%,;n(n+1)|§n| ) S 2%{;|Cmn| .

1V4-V¢ dA du

The constancy of energy and enstrophy profoundly £
influences the energetics of solutions of the BVE.
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For brevity we define a vector wavenumber v = (m, n)
and denote its conjugate by 7 = (—m, n).
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For brevity we define a vector wavenumber =
and denote its conjugate by 7 = (—m, n).

We can then write the expansions
P = Zwy ~(\, 1) exp(—iat)

and

§= Zg (A, 1) exp(—fo,t)

with

2
== where Ky
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For brevity we define a vector wavenumber v = (m, n)
and denote its conjugate by 7 = (—m, n).

We can then write the expansions
P = Zwy ~(\, 1) exp(—iat)

and

§= Zg (A, 1) exp(—fo,t)

with
1

77/17 = —a2,w@, Where li7 = m

For a pure RH wave, or a collection of non-interacting
waves, the coefficients v, and (, are constants.

Their variation is due to nonlinear interactions ki
between the components.
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If the expansion

¢ = ch (A, 1) exp(—iot)

is substituted into the BVE and the orthogonality
condition is used, we obtain equations for the
evolution of the spectral coefficients in time:

dC”’ = /Z l50CsCa €Xp(—iot)
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If the expansion

= ch L(\, ) exp(—io, 1)

is substituted into the BVE and the orthogonality
condition is used, we obtain equations for the
evolution of the spectral coefficients in time:

dC”’ = /Z l50CsCa €Xp(—iot)

Here o = 0, + 03 — 0, and the interaction coefficients
are given by
bsa = (kg = Ka) Kypa - :
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The coupling integrals K, 3, vanish unless

m, + mg = m,; this follows from the separability of the
spherical harmonics and the orthogonality of the
exponential components for different m.
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The coupling integrals K, 3, vanish unless

m, + mg = m,; this follows from the separability of the
spherical harmonics and the orthogonality of the
exponential components for different m.

In case m, + mg = m,, they are given by

+ dP, dp
Ko — %/_1 P, (mﬂpﬁ e, ad—j) dji.

The interaction coefficients vanish in most cases. For
non-vanishing interaction, selection rules must be
satisfied ...
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Selection Rules

m,+mg = m,
m+m; # 0
n,ngn, # 0
n, # ng

n,+ng+n, is odd
(ns — M) + (o — | ma|)? 0
N, —Ng|l < N, < ny,+ng
(mﬁ7 nﬂ) # (_m‘/v n’Y) and (mou na) a (_m'Y7 n’Y)

RN
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It is obvious that the following symmetries hold:

has = Lga and Kiog = —Kipa -
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It is obvious that the following symmetries hold:

has = Lga and Kiog = —Kipa -

The following redundancy rules are easily proved by
integration by parts:

Kaﬁv = K“/ﬂa and K/B'Y@ = K“/ﬂC“

where & = (—m, n) when a = (m, n).
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The Transform Method

The interaction coefficients grow rapidly in number
with increasing truncation. Thus, this method is not
normally used to solve the spectral equations.
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The Transform Method

The interaction coefficients grow rapidly in number
with increasing truncation. Thus, this method is not
normally used to solve the spectral equations.

A more efficient spectral technique, the transform
method, was devised by Eliasen, Machenhauer and
Rasmussen (1970) and, independently, by Orszag
(1970).
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The Transform Method

The interaction coefficients grow rapidly in number
with increasing truncation. Thus, this method is not
normally used to solve the spectral equations.

A more efficient spectral technique, the transform
method, was devised by Eliasen, Machenhauer and
Rasmussen (1970) and, independently, by Orszag
(1970).

In this approach, the fields are transformed, at each
time step, back to the physical domain, the nonlinear
terms are calculated, and the result is transformed to
spectral space.
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Pros and Cons of Spectral Method

Pros:
» Spatial derivatives evaluated exactly.
» Energy and enstrophy exactly conserved.
» Uniform resolution throughout sphere.

Transform Method

uuuuuu



Pros and Cons of Spectral Method

Pros:
» Spatial derivatives evaluated exactly.
» Energy and enstrophy exactly conserved.
» Uniform resolution throughout sphere.
Cons:
» Less direct than finite difference method.
» Interaction coefficient method expensive.
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Pros and Cons of Spectral Method

Pros:
» Spatial derivatives evaluated exactly.
» Energy and enstrophy exactly conserved.
» Uniform resolution throughout sphere.
Cons:
» Less direct than finite difference method.
» Interaction coefficient method expensive.

The transform method addresses the last point.
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Derivatives are evaluated exactly in spectral space.
The nonlinear terms involve products of derivatives,

e.g.,
S _ 1o
ox  aouox
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Derivatives are evaluated exactly in spectral space.
The nonlinear terms involve products of derivatives,

e.g.
U ¢ _ 10¢ O¢ _
ox aop ox
The essence of the transform method is this:
» The spatial derivatives are evaluated in spectral
space.
» These are then transformed to gridpoint space.
» The multiplications etc. are done in gridpoint
space.
» The resulting nonlinear terms are transformed
back to spectral space.

Transform Method
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To make this concrete, consider the term
a¢
ox
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To make this concrete, consider the term
a¢
ox

We have the vorticity in spectral space

N +n
=Y 2V (0w

n=0 m=—n
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To make this concrete, consider the term
148
ox
We have the vorticity in spectral space
N +n
=Y 2V (0w
n=0 m=—n
The x-derivative of this is
a< N +n
5y =2 > (imZPYT(w)
n=0 m=—n

i.e. the coefficients are (im)Z]".
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To make this concrete, consider the term
148
ox
We have the vorticity in spectral space
N +n
=Y 2V (0w
n=0 m=—n
The x-derivative of this is
a< N +n
5y =2 > (imZPYT(w)
n=0 m=—n

i.e. the coefficients are (im)Z]".

This transform gives the values in gridpoint space.
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To make this concrete, consider the term
a¢
ox

We have the vorticity in spectral space

N +n
=Y 2V (0w

n=0 m=—n

The x-derivative of this is

I R
8_X = ;mzn(lm)zn Yn (/\M)

i.e. the coefficients are (im)Z]".

This transform gives the values in gridpoint space.
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We do this for all the terms, do the multiplications, v
and transform back to spectral space.
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The “invention” of the transform method
revolutionized the use of the spectral method.

From being a method primarily of theoretical interest,
it became a method of great practical interest.
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The “invention” of the transform method
revolutionized the use of the spectral method.

From being a method primarily of theoretical interest,
it became a method of great practical interest.

The method is at the heart of most global models of
the atmosphere, for example, the ECMWF model
known as the IFS code.
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Figure 4.12 issian and triangular grids en the globe for various reselutions: rhomboidal,
ar, Td2, TS and T170. (David Williamson, peesanal communication, 2002.)
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Perhaps the most important event in European
meteorology over the last half-century was the
establishment of the European Centre for
Medium-Range Weather Forecasts (ECMWF).
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Perhaps the most important event in European
meteorology over the last half-century was the
establishment of the European Centre for
Medium-Range Weather Forecasts (ECMWF).

The mission of ‘the Centre’ is to deliver weather
forecasts of increasingly high quality and scope from
a few days to a few seasons ahead.
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Perhaps the most important event in European
meteorology over the last half-century was the
establishment of the European Centre for
Medium-Range Weather Forecasts (ECMWF).

The mission of ‘the Centre’ is to deliver weather
forecasts of increasingly high quality and scope from
a few days to a few seasons ahead.

The Centre has been spectacularly successful in
fulfilling its mission, and continues to develop
forecasts and other products of steadily increasing
accuracy and value, maintaining its position as a
world leader.
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ECMWEF produces a wide range of global atmospheric
and marine forecasts and disseminates them on a
regular schedule to its Member States.
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ECMWEF produces a wide range of global atmospheric
and marine forecasts and disseminates them on a
regular schedule to its Member States.

» Forecasts for the atmosphere out to ten days
ahead, based on a T799 (25 km) 91-level (L91)
deterministic model are disseminated twice per
day.

» Forecasts from the Ensemble Prediction System
(EPS) using a T399 (50 km) L62 version of the
model and an ensemble of fifty-one members are
computed and disseminated twice per day.

» Forecasts out to one month ahead, based on
ensembles using a resolution of T255 (78 km) and
62 levels are distributed once per week.

» Seasonal Forecasts out to six months ahead, .
based on ensembles with a T159 (125 km) L40 HER
model are disseminated once per month.

ECMWF Model



The Integrated Forecast System
The basis of the NWP operations at ECMWF is the
Integrated Forecast System (IFS).
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The Integrated Forecast System
The basis of the NWP operations at ECMWF is the
Integrated Forecast System (IFS).

The IFS uses a spectral representation of the
meteorological fields. Each field is expanded in
series of spherical harmonics; for example,

u(\, ¢, t) = ZZUm )Y™(X, ¢)

n=0 m=—n

where the coefficients U](t) depend only on time, and
the spherical harmonics Y/"(), ¢) are as introduced
above.
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The Integrated Forecast System
The basis of the NWP operations at ECMWF is the
Integrated Forecast System (IFS).

The IFS uses a spectral representation of the
meteorological fields. Each field is expanded in
series of spherical harmonics; for example,

u(x, ¢, t) = ZZU’” )YT(A )
n=0 m=—n
where the coefficients U](t) depend only on time, and
the spherical harmonics Y/"(), ¢) are as introduced
above.

The coefficients U]’ of the harmonics provide an
alternative to specifying the field values u(\, ¢) in the k1
spatial domain.

ECMWF Model



It is straightforward to transform back and forth
between physical space and spectral space.
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It is straightforward to transform back and forth
between physical space and spectral space.

When the model equations are transformed to
spectral space, they become a set of equations for
the spectral coefficients U.

These are used to advance the coefficients in time,
after which the new physical fields may be computed.
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Triangular Truncation

A continuous field in space requires an infinite series
expansion. The series expansion must be truncated
at some point.
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Triangular Truncation

A continuous field in space requires an infinite series
expansion. The series expansion must be truncated
at some point.

In the IFS model, the expansion is truncated at a fixed
total wavenumber N:

()‘/7¢17 - Z Z Um )‘lv(ﬁj)

n=0 m=—n

This is called triangular truncation, and the value of N
indicates the resolution of the model.
E.g., if N = 512, the resolution is denoted 7512.
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There is a computational grid, called the Gaussian
grid, corresponding to the spectral truncation.

uuuuuu

ECMWF Model



There is a computational grid, called the Gaussian
grid, corresponding to the spectral truncation.

Since truncation at wavenumber N implies a
maximum of N wavelengths around the globe, and
since at least two points per wavelength are required,
the resolution of the equivalent Gaussian grid is
given by the circumference of the Earth divided by
twice the truncation N, that is, A = (27a)/2N.
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There is a computational grid, called the Gaussian
grid, corresponding to the spectral truncation.

Since truncation at wavenumber N implies a
maximum of N wavelengths around the globe, and
since at least two points per wavelength are required,
the resolution of the equivalent Gaussian grid is
given by the circumference of the Earth divided by
twice the truncation N, that is, A = (27a)/2N.

Since 2ra = 4 x 10’ m, we get the simple rule

A (20,/800) Kkm
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Table: Upgrade to the ECMWEF Integrated Forecast System in
Spring, 2006 (IFS cycle 29r3).

Deterministic Ensemble Prediction Monthly Forecast
Model System (EPS) (MOFC)
Previous | Upgrade | Previous | Upgrade | Previous | Upgrade
Spectral
Truncation T511 T799 T255 T399 T159 T255
Gaussian | N256 N400 N128 N200 N80 N128
Model
Levels L60 L91 L40 L62 L40 L62
&
UcD

ECMWF Model



The IFS system underwent a major upgrade in Spring,
2006.

The horizontal and vertical resolution of its
deterministic, ensemble prediction (EPS) and monthly
forecasting systems were substantially increased.
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The IFS system underwent a major upgrade in Spring,
2006.

The horizontal and vertical resolution of its
deterministic, ensemble prediction (EPS) and monthly
forecasting systems were substantially increased.

The truncation of the deterministic model is now
T799, which is equivalent to a spatial resolution of
25 km (it was previously 40 km).
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The IFS system underwent a major upgrade in Spring,
2006.

The horizontal and vertical resolution of its
deterministic, ensemble prediction (EPS) and monthly
forecasting systems were substantially increased.

The truncation of the deterministic model is now
T799, which is equivalent to a spatial resolution of
25 km (it was previously 40 km).

The number of model levels in the vertical has been
increased by 50%, from 60 to 91.
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The IFS system underwent a major upgrade in Spring,
2006.

The horizontal and vertical resolution of its
deterministic, ensemble prediction (EPS) and monthly
forecasting systems were substantially increased.

The truncation of the deterministic model is now
T799, which is equivalent to a spatial resolution of
25 km (it was previously 40 km).

The number of model levels in the vertical has been
increased by 50%, from 60 to 91.

The EPS system runs with a horizontal resolution half
that of the deterministic model. Ugp
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The new Gaussian grid for IFS has about 8 x 10°
points.
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The new Gaussian grid for IFS has about 8 x 10°
points.

With 91 levels and five primary prognostic variables
at each point, about 3 x 108 numbers are required to
specify the atmospheric state at a given time.

Thus, the model has about three hundred million
degrees of freedom. The computational task of
computing foreasts with such high resolution is truly
formidable.
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The new Gaussian grid for IFS has about 8 x 10°
points.

With 91 levels and five primary prognostic variables
at each point, about 3 x 108 numbers are required to
specify the atmospheric state at a given time.

Thus, the model has about three hundred million
degrees of freedom. The computational task of
computing foreasts with such high resolution is truly
formidable.

The Centre carries out its operational programme
using an IBM High Performance Computing Facility
(HPCF). The peak performance is 16.5 TeraFlops for
each cluster,

so the complete system has a peak performance of v
33 TeraFlops or 33 trillion calculations per second.
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End of Part 4
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