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The dynamics of non-divergent flow on a rotating
sphere are described by the conservation of absolute
vorticity.

The analytical study of the nonlinear barotropic
vorticity equation is greatly facilitated by the
expansion of the solution in spherical harmonics.

The normal modes are the well-known
Rossby-Haurwitz (RH) waves which represent the
natural oscillations of the system.

Triads of RH waves that satisfy conditions for
resonance are of critical importance for the
distribution of energy in the atmosphere.

Background RH Waves Interaction Coefficients Transform Method ECMWF Model



The dynamics of non-divergent flow on a rotating
sphere are described by the conservation of absolute
vorticity.

The analytical study of the nonlinear barotropic
vorticity equation is greatly facilitated by the
expansion of the solution in spherical harmonics.

The normal modes are the well-known
Rossby-Haurwitz (RH) waves which represent the
natural oscillations of the system.

Triads of RH waves that satisfy conditions for
resonance are of critical importance for the
distribution of energy in the atmosphere.

Background RH Waves Interaction Coefficients Transform Method ECMWF Model



The dynamics of non-divergent flow on a rotating
sphere are described by the conservation of absolute
vorticity.

The analytical study of the nonlinear barotropic
vorticity equation is greatly facilitated by the
expansion of the solution in spherical harmonics.

The normal modes are the well-known
Rossby-Haurwitz (RH) waves which represent the
natural oscillations of the system.

Triads of RH waves that satisfy conditions for
resonance are of critical importance for the
distribution of energy in the atmosphere.

Background RH Waves Interaction Coefficients Transform Method ECMWF Model



The dynamics of non-divergent flow on a rotating
sphere are described by the conservation of absolute
vorticity.

The analytical study of the nonlinear barotropic
vorticity equation is greatly facilitated by the
expansion of the solution in spherical harmonics.

The normal modes are the well-known
Rossby-Haurwitz (RH) waves which represent the
natural oscillations of the system.

Triads of RH waves that satisfy conditions for
resonance are of critical importance for the
distribution of energy in the atmosphere.

Background RH Waves Interaction Coefficients Transform Method ECMWF Model



The dynamical behaviour of planetary waves in the
atmosphere is modelled by the barotropic vorticity
equation (BVE):

d(ζ + f )

dt
= 0 .

Rossby (1939) used a simplified (linear) form of this
equation for his study of atmospheric waves.

This was generalized to spherical geometry by
Haurwitz (1940). The linear wave solutions are now
called Rossby-Haurwitz waves.

Charney, Fjørtoft & von Neumann (1950) integrated
the BVE to produce the earliest numerical weather
predictions on the ENIAC.

They integrated the equation on a rectangular
domain, in planar geometry.
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Silberman(1954) devised a numerical solution method
in which the streamfunction is expanded in spherical
surface harmonics.

The nonlinear terms introduced interaction
coefficients between the components.

A more efficient spectral technique, the transform
method, was later devised by Eliasen, Machenhauer
and Rasmussen (1970) and by Orszag (1970).

Highly truncated versions of the spectral BVE have
been analysed to gain understanding of atmospheric
phenomena.

Edward Lorenz (1960) introduced what he called the
maximum simplification of the system, reducing it to
three nonlinear ODEs.
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In a series of papers, George Platzman undertook a
systematic study of the truncated spectral vorticity
equation (Platzman, 1960, 1962).

He showed that a three-component system has
periodic solutions: the equations are integrable and
the solutions are expressible in terms of Jacobi
elliptic functions.

Interactions are particularly effective when the
component parameters are related by resonance
conditions.
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The nonlinear interactions between different scales
play a critical role in establishing the statistical
energy spectrum of the atmosphere.

The phenomenon of vacillation in the stratospheric
flow was first examined by Holton & Mass (1976).

They found that, for wave forcing beyond a critical
amplitude, the response to a steady forcing is not
steady, but the mean zonal flow and eddy
components oscillate quasi-periodically.

Such oscillatory response to steady forcing is
consistent with forced resonant triads (Lynch, 2009).
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In this section, we review the spectral analysis of the
BVE, and the normal mode solutions of the equation.

We consider a shallow layer of incompressible fluid
on a rotating sphere, assuming the horizontal velocity
to be non-divergent.

The radius of the sphere is a, the rotation rate is Ω
and longitude/latitude coordinates (λ, φ) will be used.

The dynamics of the fluid are governed by
conservation of absolute vorticity

d
dt

(ζ + f ) = 0 ,

where f = 2Ω sinφ is the planetary vorticity, and
ζ = k · ∇ × V is the vorticity of the flow.
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The time derivative is
dζ
dt

=
∂ζ

∂t
+

u
a cosφ

∂ζ

∂λ
+

v
a
∂ζ

∂φ
.

We assume nondivergent flow and introduce a
stream-function ψ such that V = k×∇ψ and ζ = ∇2ψ.

The advection term now becomes
dζ
dt

=
∂ζ

∂t
− 1

a
∂ψ

∂φ

1
a cosφ

∂ζ

∂λ
+

1
a cosφ

∂ψ

∂λ

1
a
∂ζ

∂φ
.

Defining µ = sinφ, this may be expressed as
dζ
dt

=
∂ζ

∂t
+

1
a2

[
−∂ψ
∂µ

∂ζ

∂λ
+
∂ψ

∂λ

∂ζ

∂µ

]
=

∂ζ

∂t
+

1
a2

∂(ψ, ζ)

∂(λ, µ)

=
∂ζ

∂t
+

1
a2 J(ψ, ζ) .
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Since f = 2Ω sinφ, the “β-term” may be expressed

df
dt

=
v
a
∂f
∂φ

=
1

a cosφ
∂ψ

∂λ

1
a
∂f
∂φ

=
1

a cosφ
∂ψ

∂λ

1
a

2Ω cosφ =
2Ω

a2

∂ψ

∂λ

The barotropic vorticity equation may now be written

∂ζ

∂t
+

2Ω

a2

∂ψ

∂λ
+

1
a2

∂(ψ, ζ)

∂(λ, µ)
= 0

This is the (non-divergent) BVE.
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The non-linear advection is represented by the
Jacobian term.

Temporarily omitting this, we see that the BVE has
solutions of the form

ψ = ψ0Y m
n (λ, µ) exp(−iσt)

where ψ0 is the constant amplitude and the frequency
σ is given by the dispersion formula

σ = σm
n ≡ −

2Ωm
n(n + 1)

.

Here, m is the zonal wavenumber, n is the total
wavenumber (both are integers) and Y m

n (λ, µ) are the
spherical harmonics, eigenfunctions of ∇2:

∇2Y m
n = −n(n + 1)

a2 Y m
n .
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We assume the functions Y m
n to be normalized so that

1
4π

∫∫
(Y m1

n1
)∗Y m2

n2
dλdµ = δm1

m2
δn1

n2
.

These solutions are called Rossby-Haurwitz waves,
or RH waves.

It is remarkable that, for a single RH wave, the
nonlinear Jacobian term vanishes identically, so that
such a wave is a solution of the nonlinear BVE.

Background RH Waves Interaction Coefficients Transform Method ECMWF Model



We assume the functions Y m
n to be normalized so that

1
4π

∫∫
(Y m1

n1
)∗Y m2

n2
dλdµ = δm1

m2
δn1

n2
.

These solutions are called Rossby-Haurwitz waves,
or RH waves.

It is remarkable that, for a single RH wave, the
nonlinear Jacobian term vanishes identically, so that
such a wave is a solution of the nonlinear BVE.

Background RH Waves Interaction Coefficients Transform Method ECMWF Model



Outline

Background

Rossby-Haurwitz Waves

Interaction Coefficients

Transform Method

The ECMWF Model

Background RH Waves Interaction Coefficients Transform Method ECMWF Model



The spherical harmonics form an orthonormal basis
on the sphere: any sufficiently smooth function may
be expressed as a sum of such components.

Thus, the streamfunction has an expansion

ψ(λ, µ, t) =
∞∑

n=0

n∑
m=−n

ψm
n (t)Y m

n (λ, µ) .

The vorticity has a similar expansion, with
coefficients

ζm
n = −n(n + 1)

a2 ψm
n .

The coefficients ψm
n and ζm

n are functions of time.
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Flows governed by the BVE conserve the total energy
and total enstrophy, defined by

E =
1

4πa2

∫∫
1
2V · Vdλdµ = − 1

4πa2

∫∫
1
2ψζ dλdµ

S =
1

4πa2

∫∫
1
2ζ

2dλdµ = − 1
4πa2

∫∫
1
2∇ψ·∇ζ dλdµ

In terms of the spectral coefficients, the constrained
quantities may be written

E = 1
2

∑
mn

1
n(n + 1)

|ζm
n |2 , S = 1

2

∑
mn

|ζmn|2 .

The constancy of energy and enstrophy profoundly
influences the energetics of solutions of the BVE.
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For brevity we define a vector wavenumber γ = (m,n)
and denote its conjugate by γ̄ = (−m,n).

We can then write the expansions

ψ =
∑
γ

ψγ(t)Yγ(λ, µ) exp(−iσγt)

and
ζ =

∑
γ

ζγ(t)Yγ(λ, µ) exp(−iσγt)

with

ψγ = −a2κγζγ , where κγ =
1

n(n + 1)

For a pure RH wave, or a collection of non-interacting
waves, the coefficients ψγ and ζγ are constants.

Their variation is due to nonlinear interactions
between the components.
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If the expansion

ζ =
∑
γ

ζγ(t)Yγ(λ, µ) exp(−iσγt)

is substituted into the BVE and the orthogonality
condition is used, we obtain equations for the
evolution of the spectral coefficients in time:

dζγ
dt

= 1
2 i
∑
α,β

Iγβαζβζα exp(−iσt) ,

Here σ = σα + σβ − σγ and the interaction coefficients
are given by

Iγβα = (κβ − κα)Kγβα .
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The coupling integrals Kγβα vanish unless
mα + mβ = mγ; this follows from the separability of the
spherical harmonics and the orthogonality of the
exponential components for different m.

In case mα + mβ = mγ, they are given by

Kγβα = 1
2

∫ +1

−1
Pγ

(
mβPβ

dPα

dµ
−mαPα

dPβ

dµ

)
dµ .

The interaction coefficients vanish in most cases. For
non-vanishing interaction, selection rules must be
satisfied . . .
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Selection Rules

mα + mβ = mγ

m2
α + m2

β 6= 0
nγnβnα 6= 0

nα 6= nβ
nα + nβ + nγ is odd

(nβ − |mβ|)2 + (nα − |mα|)2 6= 0
|nα − nβ| < nγ < nα + nβ

(mβ,nβ) 6= (−mγ,nγ) and (mα,nα) 6= (−mγ,nγ)
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It is obvious that the following symmetries hold:

Iγαβ = Iγβα and Kγαβ = −Kγβα .

The following redundancy rules are easily proved by
integration by parts:

Kαβ̄γ = Kγβα and Kβγᾱ = Kγβα ,

where ᾱ = (−m,n) when α = (m,n).
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The Transform Method

The interaction coefficients grow rapidly in number
with increasing truncation. Thus, this method is not
normally used to solve the spectral equations.

A more efficient spectral technique, the transform
method, was devised by Eliasen, Machenhauer and
Rasmussen (1970) and, independently, by Orszag
(1970).

In this approach, the fields are transformed, at each
time step, back to the physical domain, the nonlinear
terms are calculated, and the result is transformed to
spectral space.
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Pros and Cons of Spectral Method

Pros:
I Spatial derivatives evaluated exactly.
I Energy and enstrophy exactly conserved.
I Uniform resolution throughout sphere.

Cons:
I Less direct than finite difference method.
I Interaction coefficient method expensive.

The transform method addresses the last point.
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Derivatives are evaluated exactly in spectral space.
The nonlinear terms involve products of derivatives,
e.g.,

u
∂ζ

∂x
= −1

a
∂ψ

∂µ

∂ζ

∂x
.

The essence of the transform method is this:
I The spatial derivatives are evaluated in spectral

space.
I These are then transformed to gridpoint space.
I The multiplications etc. are done in gridpoint

space.
I The resulting nonlinear terms are transformed

back to spectral space.
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To make this concrete, consider the term
∂ζ

∂x

We have the vorticity in spectral space

ζ =
N∑

n=0

+n∑
m=−n

Z m
n Y m

n (λµ)

The x-derivative of this is

∂ζ

∂x
=

N∑
n=0

+n∑
m=−n

(im)Z m
n Y m

n (λµ)

i.e. the coefficients are (im)Z m
n .

This transform gives the values in gridpoint space.

We do this for all the terms, do the multiplications,
and transform back to spectral space.
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The “invention” of the transform method
revolutionized the use of the spectral method.

From being a method primarily of theoretical interest,
it became a method of great practical interest.

The method is at the heart of most global models of
the atmosphere, for example, the ECMWF model
known as the IFS code.
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Perhaps the most important event in European
meteorology over the last half-century was the
establishment of the European Centre for
Medium-Range Weather Forecasts (ECMWF).

The mission of ‘the Centre’ is to deliver weather
forecasts of increasingly high quality and scope from
a few days to a few seasons ahead.

The Centre has been spectacularly successful in
fulfilling its mission, and continues to develop
forecasts and other products of steadily increasing
accuracy and value, maintaining its position as a
world leader.

Background RH Waves Interaction Coefficients Transform Method ECMWF Model



Perhaps the most important event in European
meteorology over the last half-century was the
establishment of the European Centre for
Medium-Range Weather Forecasts (ECMWF).

The mission of ‘the Centre’ is to deliver weather
forecasts of increasingly high quality and scope from
a few days to a few seasons ahead.

The Centre has been spectacularly successful in
fulfilling its mission, and continues to develop
forecasts and other products of steadily increasing
accuracy and value, maintaining its position as a
world leader.

Background RH Waves Interaction Coefficients Transform Method ECMWF Model



Perhaps the most important event in European
meteorology over the last half-century was the
establishment of the European Centre for
Medium-Range Weather Forecasts (ECMWF).

The mission of ‘the Centre’ is to deliver weather
forecasts of increasingly high quality and scope from
a few days to a few seasons ahead.

The Centre has been spectacularly successful in
fulfilling its mission, and continues to develop
forecasts and other products of steadily increasing
accuracy and value, maintaining its position as a
world leader.

Background RH Waves Interaction Coefficients Transform Method ECMWF Model



ECMWF produces a wide range of global atmospheric
and marine forecasts and disseminates them on a
regular schedule to its Member States.

I Forecasts for the atmosphere out to ten days
ahead, based on a T799 (25 km) 91-level (L91)
deterministic model are disseminated twice per
day.

I Forecasts from the Ensemble Prediction System
(EPS) using a T399 (50 km) L62 version of the
model and an ensemble of fifty-one members are
computed and disseminated twice per day.

I Forecasts out to one month ahead, based on
ensembles using a resolution of T255 (78 km) and
62 levels are distributed once per week.

I Seasonal Forecasts out to six months ahead,
based on ensembles with a T159 (125 km) L40
model are disseminated once per month.
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The Integrated Forecast System
The basis of the NWP operations at ECMWF is the
Integrated Forecast System (IFS).

The IFS uses a spectral representation of the
meteorological fields. Each field is expanded in
series of spherical harmonics; for example,

u(λ, φ, t) =
∞∑

n=0

n∑
m=−n

Um
n (t)Y m

n (λ, φ)

where the coefficients Um
n (t) depend only on time, and

the spherical harmonics Y m
n (λ, φ) are as introduced

above.

The coefficients Um
n of the harmonics provide an

alternative to specifying the field values u(λ, φ) in the
spatial domain.
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It is straightforward to transform back and forth
between physical space and spectral space.

When the model equations are transformed to
spectral space, they become a set of equations for
the spectral coefficients Um

n .

These are used to advance the coefficients in time,
after which the new physical fields may be computed.
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Triangular Truncation

A continuous field in space requires an infinite series
expansion. The series expansion must be truncated
at some point.

In the IFS model, the expansion is truncated at a fixed
total wavenumber N:

u(λi , φj , t) =
N∑

n=0

n∑
m=−n

Um
n (t)Y m

n (λi , φj)

This is called triangular truncation, and the value of N
indicates the resolution of the model.
E.g., if N = 512, the resolution is denoted T 512.
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There is a computational grid, called the Gaussian
grid, corresponding to the spectral truncation.

Since truncation at wavenumber N implies a
maximum of N wavelengths around the globe, and
since at least two points per wavelength are required,
the resolution of the equivalent Gaussian grid is
given by the circumference of the Earth divided by
twice the truncation N, that is, ∆ = (2πa)/2N.

Since 2πa = 4× 107 m, we get the simple rule

∆ =

(
20,000

N

)
km .
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Table: Upgrade to the ECMWF Integrated Forecast System in
Spring, 2006 (IFS cycle 29r3).

Deterministic Ensemble Prediction Monthly Forecast
Model System (EPS) (MOFC)

Previous Upgrade Previous Upgrade Previous Upgrade

Spectral
Truncation T511 T799 T255 T399 T159 T255

Gaussian
Grid N256 N400 N128 N200 N80 N128

Model
Levels L60 L91 L40 L62 L40 L62
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The IFS system underwent a major upgrade in Spring,
2006.

The horizontal and vertical resolution of its
deterministic, ensemble prediction (EPS) and monthly
forecasting systems were substantially increased.

The truncation of the deterministic model is now
T 799, which is equivalent to a spatial resolution of
25 km (it was previously 40 km).

The number of model levels in the vertical has been
increased by 50%, from 60 to 91.

The EPS system runs with a horizontal resolution half
that of the deterministic model.
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The new Gaussian grid for IFS has about 8× 105

points.

With 91 levels and five primary prognostic variables
at each point, about 3× 108 numbers are required to
specify the atmospheric state at a given time.

Thus, the model has about three hundred million
degrees of freedom. The computational task of
computing foreasts with such high resolution is truly
formidable.

The Centre carries out its operational programme
using an IBM High Performance Computing Facility
(HPCF). The peak performance is 16.5 TeraFlops for
each cluster,

so the complete system has a peak performance of
33 TeraFlops or 33 trillion calculations per second.
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End of Part 4
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