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Eigenfunctions of the Laplacian

We now investigate the eigenfunctions of the

Laplacian operator, i.e., functions f that satisfy

∇2f = λf

First, consider Cartesian coordinates. Then

∇2f =
∂2f

∂x2
+

∂2f

∂y2

The trigonometric functions

fkℓ =

(

sin

cos

)

kx

(

sin

cos

)

ℓy

are clearly eigenfunctions of ∇2:

∇2fkℓ = −(k2 + ℓ2)fkℓ

with eigenvalues λkℓ = −(k2 + ℓ2).
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Note that fkℓ is an eigenfunction of ∇2 for arbitrary

values of k and ℓ.

Now we consider a bounded domain

0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly

with homogeneous boundary conditions:

f (0, y) = f (Lx , y) = f (x , 0) = f (x , Ly) = 0

This quantizes the wave numbers: eigensolutions are

fmn(x , y) = sin
mπ

Lx

x sin
nπ

Ly

y

with eigenvalues

λmn = −

(

[

mπ

Lx

]2

+

[

nπ

Ly

]2
)

.
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Now we consider Spherical coordinates. Then

∇2f =

(

1

cos2 φ

∂2f

∂λ2
+

1

cos φ

∂

∂φ
cos φ

∂f

∂φ

)

= −κf

(for simplicity we have taken a = 1).

We define µ = sin φ and write this as
(

1

1− µ2

∂2f

∂λ2
+

∂

∂µ
(1− µ2)

∂f

∂µ

)

= −κf

We seek a solution by separating the variables:

f (λ, µ) = Λ(λ)Φ(µ)

Then the eigenproblem is

d2Λ

dλ2
· Φ + Λ · (1− µ2)

d

dµ
(1− µ2)

dΦ

dµ
= −(1− µ2)κΛΦ .
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Dividing by ΛΦ, the problem separates into two parts

1

Λ

d2Λ

dλ2
= −

1− µ2

Φ

[

d

dµ
(1− µ2)

dΦ

dµ
+ κΦ

]

.

Since the l.h.s. depends only on λ and the r.h.s. only

on µ, they must both be constants:

1

Λ

d2Λ

dλ2
= −m2

−
1− µ2

Φ

[

d

dµ
(1− µ2)

dΦ

dµ
+ κΦ

]

= −m2 .

The zonal structure is given by

d2Λ

dλ2
+ m2Λ = 0

which is immediately solved: Λ = exp(imλ).
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The meridional structure is given by

[

d

dµ
(1− µ2)

d

dµ
+

(

κ−
m2

1− µ2

)]

Φ = 0 .

This is called the associated Legendre equation. It

has solutions regular at the poles (µ = ±1) for

κ = n(n + 1) where n is an integer. They are the

Legendre functions

Φ = Pm
n (µ)

The complete eigensolutions are the spherical

harmonics

Y m
n (λ, µ) = Pm

n (µ) exp(imλ) .
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The derivation above is standard and may be found in

many books on Mathematical Methods of Physics.

The important result for us is the following:

∇2Y m
n (λ, µ) = −n(n + 1)Y m

n (λ, µ) .

Allowing for a non-unit radius of the sphere, this

becomes

∇2Y m
n (λ, µ) = −

[

n(n + 1)

a2

]

Y m
n (λ, µ) .

The spherical harmonics Y m
n (λ, µ) are the

eigenfunctions of the Laplacian on the sphere, with

eigenvalues −n(n + 1)/a2.
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Alternating regions of positive and negative values.

Zonal: m = 0, n > 0.

Tesseral: 0 < m < n.

Sectoral: m = n.

|m| zeros in 0 ≤ λ < 2π
n − |m| zeros in −1 < µ < +1.
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Orthogonality & Completeness

The spherical harmonics are an orthogonal set:

1

4π

∫ 2π

0

∫

+1

−1

[Y p
q (λ, µ)]∗ · Y r

s (λ, µ) dµ dλ = δprδqs .

Any (reasonable) function f (λ, µ, t) on the sphere can

be expanded in spherical harmonics:

f (λ, µ, t) =
∞
∑

n=0

n
∑

m=−n

f m
n (t)Y m

n (λ, µ) .

The coefficients f m
n (t) are given by

f m
n (t) =

1

4π

∫ 2π

0

∫

+1

−1

[Y m
n (λ, µ)]∗ · f (λ, µ) dµ dλ
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Truncation
In practice, we have to replace the infinite summation

f (λ, µ, t) =
∞
∑

n=0

n
∑

m=−n

f m
n (t)Y m

n (λ, µ) .

by a finite summation.

There ae a number of ways to truncate the solution.

The most common is called triangular truncation:

f (λ, µ, t) =
N
∑

n=0

n
∑

m=−n

f m
n (t)Y m

n (λ, µ) .

It can be shown that this gives uniform resolution

throughout the sphere.

The ECMWF model uses triangular truncation.
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Note that m can be positive or negative, and |m| ≤ n.
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End of Part 3
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