The Spectral Method (MAPH 40260)

Part 3: Spherical Harmonics
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Eigenfunctions of the Laplacian

We now investigate the eigenfunctions of the
Laplacian operator, i.e., functions f that satisfy

V2f = M
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First, consider . Then
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The trigonometric functions

sin sin
e = (cos> hx (cos> ty

are clearly eigenfunctions of V2:
szkg = —(k2 -+ fz)fkg
with eigenvalues )\, = — (k2 + (2).
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Note that f;, is an eigenfunction of V2 for arbitrary
values of k and /.

Now we consider a bounded domain
0<x<Ly and 0<y<lL,
with homogeneous boundary conditions:
f(0.y) = f(Lx,y) = f(x,0) = f(x,L;) =0

This quantizes the wave numbers: eigensolutions are
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with eigenvalues
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Dividing by A®, the problem separates into two parts
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Since the l.h.s. depends only on )\ and the r.h.s. only
on u, they must both be constants:
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The zonal structure is given by

which is immediately solved: A = exp(im)\).
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Now we consider . Then
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(for simplicity we have taken a = 1).

We define ;. = sin ¢ and write this as
1 — 2 0N2
We seek a solution by separating the variables:
f(A, 1) = AN(A)®(1)

Then the eigenproblem is
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The meridional structure is given by
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This is called the associated Legendre equation. It
has solutions regular at the poles (. = +1) for

x = n(n+ 1) where nis an integer. They are the
Legendre functions

The complete eigensolutions are the spherical
harmonics

Y7 (A 1) = P(11) exp(im))
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The derivation above is standard and may be found in
many books on Mathematical Methods of Physics.

The is the following:

VYT (A 1) = =n(n+ 1) Y (\ 1)

Allowing for a non-unit radius of the sphere, this
becomes

vevron) = - [ A v, .

The spherical harmonics Y/"()\, i) are the
eigenfunctions of the Laplacian on the sphere, with
eigenvalues —n(n+1)/&°.
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Orthogonality & Completeness

The spherical harmonics are an orthogonal set:
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Any (reasonable) function f(\, 1, t) on the sphere can
be expanded in spherical harmonics:
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The coefficients f'(t) are given by

1 2m +1
— o [ [ o O dudy
™ Jo —1

Laplacian

Alternating regions of positive and negative values.

Sectaral
Types of Spherical Harmonics

Zonal: m=0,n> 0.
Tesseral: 0 < m < n.
Sectoral: m = n.

Im| zeros in 0 < \ < 27
n—|m| zeros in —1 < pu < +1.
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Truncation
In practice, we have to replace the infinite summation

f(\ p, t) Zme

n=0 m=-—n

by a finite summation.

There ae a number of ways to truncate the solution.
The most common is called triangular truncation:

f(O\ . b) Zme

n=0 m=-—n

It can be shown that this gives uniform resolution
throughout the sphere.

The ECMWF model uses triangular truncation.
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Permissible vales of m and n for
triangular and rhomboidal truncation.

Triangular truncation Rhomboidal truncation

Note that m can be positive or negative, and |m| < n.
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End of Part 3




