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The Spectral Method (MAPH 40260) Advection Equation

Part 2: The Advection Equation
Finite Difference Approximation

Peter Lynch
Spectral Approximation

School of Mathematical Sciences Solution of Advection Equation

Solution of Burgers’ Equation

The Advection Equation
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Advection Equation We consider the simple advection equation in one

dimension:
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We will retain the continuous representation in time.

We will compare the grid point and spectral
representation in space.

The contrast in the results is of great practical
importance.

Advection Equation Advection Equation
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Finite Difference Approximation

FD Approx

That is,

. ic , .
—ikCU,, + Ax (sinkAx)U, =0

This immediately leads to the result
sin kKAx
C= ( kAx ) ¢

Clearly

FD Approx

Grid Point Approximation

We evaluate the solution on a finite difference grid

u(mAXx, t) = Un(t)

The equation becomes

aUm Um+1 - Umf1 o
at‘+c(2Ax ) =0.

We look for a solution of the form
Un(t) = exp[ik(mAx — Ct)]

Substituting this into the equation, we have

e/’kAx e e—ikAx
X ( 2i > Un =0

FD Approx

For long waves, ) is large and k is small, so

C~c

For the shortest wave, A\ = 2Ax and kKAx = 7, SO

c— (Smﬂ)C:O,
s

so the shortest wave is stationary.
For the 4Ax-wave, kKAx = /2, SO
C_ (sm 7r/2> c_ ()
/2 T
so the wave is slowed down by about one third.

FD Approx




Spectral Approximation

Now consider the spectral approximation to

v
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We look for a solution

Uty =) Uk(x,t) =) explik(x — Ct)]

Spectral Approximation

Since the equation is linear, we can consider the
individual components separately.

Substituting the solution in the equation, we get
—IikCUx + ikeUy = 0 (o] ¢ C=c.

The phase speed is represented exactly.

Spectral Approx Spectral Approx

Solution of Linear Advection Equation
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Expand the solution in spectral components:

u(x,t) = i Un(t) exp(2minx /() .

Solution of Advection Equation Note that we must truncate the expansion.

The truncation level N determines accuracy, just as
the grid interval Ax does for the finite difference
method.

Substituting in the expansion, the equation becomes

Solution Solution




i’% au, N 2ricn
at 14

U,,} exp(2rinx /() =

n=—

Now recall the orthogonality relationship

14
l/ exp(—27imx/{) - exp(+2mwinx /() dX = 0mn .
0

Multiply the equation by exp(—27imx /() and integrate:

N .
au, 2mricn
3 [dt y un]e(sm,,:o, or

n=—N
aUu,, N 2ricm
dt
The PDE has been reduced to a set of (independent)
ODEs, which can easily be integrated.

Solution

Solution of Burgers’ Equation
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This is the nonlinear advection equation with
diffusion added to regularize the solution.

Expand the solution in spectral components:

+N

= ) Uy(t)exp(2rinx /).

n=—N

Substituting into the equation, expanding all terms
and evaluating spatial derivatives analytically ...

m=-N,—(N-1)...N—1,N.

Outline

Solution of Burgers’ Equation

2rwipx  2mwigx

Uy-e 7 ez

For simplicity, let us take / = 27. Then

+N +N  +N
dL% uw

N
+ Z D iqUpUge Pt = —1 Y~ nPU,e™.
n=—N

n=—N —Ng=—N

We multiply by exp(—imx) and integrate. The first and
last sums reduce to single terms. The double sum
reduces to a single sum.




1 2 au, . . X au, U,
. inx —imx — —=ns —_=m
2m Jo (n_N dt )e o HZN dat ™" dt

2

(—y Z n’U e’”x> e ™ dx = —vmPU,,

or +N +N

Z > iqU,Uye'PraXe=m dx =
—Ng=—-N

Burgers’ Equation may now be written

dUp, il
?Jr—/m Z UpUp_p = —vmPUp, .

Ignoring the nonlinear terms, we have
dUp,
at
This means that each term gradually decays. The
larger the wavenumber (the smaller the scale) the
faster the decay rate. Viscosity acts most strongly on
the smallest scales.

If we omit viscosity, we get the inviscid Burgers
Equation:
au,,

dt+/mp_z_: UpUpn_p=0.

Again, Burgers’ Equation in spectral form is:
d X

Un
WJrf/m Z UpUn_p = —vmPUp,.

We see that components interact in groups of three,
called triads:

C

We see that all scales interact. For any mode U,,, any
other mode U, can change it by interacting with U,,_,.
Energy can move from any scale to any other scale.

We may start with all the energy in the largest scale:
eix e e—ix
u(x,0) = U, () = U;sinx,
2i
and the energy will quickly spread to other modes.




INITIAL CONDITIONS FINAL SPECTRUM
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Initial conditions for Burgers’ Equation. ‘ : Final spectrum for Burgers’ Equation.
Initial state is a pure sine-wave. Energy has spread to all modes.

Burgers

SOLUTION AT t=0,T/4,T/23T/4 AND T ENERGY
T

Solution of Burgers’ Equation. Shock has developed. : ‘. Evolution of energy in time. Dissipation increases
Initial state is a pure sine-wave. when energy reaches small scales.
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End of Part 2
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