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The Advection Equation

We consider the simple advection equation in one

dimension:
∂u

∂t
+ c

∂u

∂x
= 0 .

We will retain the continuous representation in time.

We will compare the grid point and spectral

representation in space.

The contrast in the results is of great practical

importance.
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Grid Point Approximation

We evaluate the solution on a finite difference grid

u(m∆x , t) = Um(t)

The equation becomes

∂Um

∂t
+ c

(

Um+1 − Um−1

2∆x

)

= 0 .

We look for a solution of the form

Um(t) = exp[ik(m∆x − Ct)]

Substituting this into the equation, we have

−ikCUm +
ic

∆x

(

eik∆x
− e−ik∆x

2i

)

Um = 0
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That is,

−ikCUm +
ic

∆x
(sin k∆x) Um = 0

This immediately leads to the result

C =

(

sin k∆x

k∆x

)

c .

Clearly

C < c for k > 0 .
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For long waves, λ is large and k is small, so

C ≈ c

For the shortest wave, λ = 2∆x and k∆x = π, so

C =

(

sin π

π

)

c = 0 ,

so the shortest wave is stationary.

For the 4∆x-wave, k∆x = π/2, so

C =

(

sin π/2

π/2

)

c =

(

2

π

)

c ≈
2

3
c ,

so the wave is slowed down by about one third.
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Spectral Approximation

Now consider the spectral approximation to

∂u

∂t
+ c

∂u

∂x
= 0 .

We look for a solution

U(t) =
∑

k

Uk(x , t) =
∑

k

exp[ik(x − Ct)]

Since the equation is linear, we can consider the

individual components separately.

Substituting the solution in the equation, we get

−ikCUk + ikcUk = 0 or C = c .

The phase speed is represented exactly.
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Solution of Linear Advection Equation

∂u

∂t
+ c

∂u

∂x
= 0 .

Expand the solution in spectral components:

u(x , t) =
+N
∑

n=−N

Un(t) exp(2πinx/ℓ) .

Note that we must truncate the expansion.

The truncation level N determines accuracy, just as

the grid interval ∆x does for the finite difference

method.

Substituting in the expansion, the equation becomes

. . .
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+N
∑

n=−N

[

dUn

dt
+

2πicn

ℓ
Un

]

exp(2πinx/ℓ) = 0 .

Now recall the orthogonality relationship

1

ℓ

∫

ℓ

0

exp(−2πimx/ℓ) · exp(+2πinx/ℓ) dx = δmn .

Multiply the equation by exp(−2πimx/ℓ) and integrate:

+N
∑

n=−N

[

dUn

dt
+

2πicn

ℓ
Un

]

ℓδmn = 0 , or

dUm

dt
+

2πicm

ℓ
Um = 0 , m = −N,−(N−1) . . . N−1, N .

The PDE has been reduced to a set of (independent)

ODEs, which can easily be integrated.
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Solution of Burgers’ Equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
.

This is the nonlinear advection equation with

diffusion added to regularize the solution.

Expand the solution in spectral components:

u(x , t) =
+N
∑

n=−N

Un(t) exp(2πinx/ℓ) .

Substituting into the equation, expanding all terms

and evaluating spatial derivatives analytically . . .
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+N
∑

n=−N

dUn

dt
e

2πinx
ℓ +

+N
∑

p=−N

+N
∑

q=−N

Up

(

2πiq

ℓ

)

Uq · e
2πipx

ℓ e
2πiqx

ℓ

= ν
+N
∑

n=−N

(

2πin

ℓ

)2

Une
2πinx

ℓ .

For simplicity, let us take ℓ = 2π. Then

+N
∑

n=−N

dUn

dt
einx+

+N
∑

p=−N

+N
∑

q=−N

iqUpUqei(p+q)x = −ν
+N
∑

n=−N

n2Uneinx .

We multiply by exp(−imx) and integrate. The first and

last sums reduce to single terms. The double sum

reduces to a single sum.
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1

2π

∫ 2π

0

(

+N
∑

n=−N

dUn

dt
einx

)

e−imx dx =
+N
∑

n=−N

dUn

dt
δmn =

dUm

dt
.

1

2π

∫ 2π

0

(

−ν

+N
∑

n=−N

n2Uneinx

)

e−imx dx = −νm2Um

1

2π

∫ 2π

0

+N
∑

p=−N

+N
∑

q=−N

iqUpUqei(p+q)xe−imx dx =
+N
∑

p=−N

i(m−p)UpUm−p
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Lemma:

+N
∑

p=−N

i(m − p)UpUm−p = 1
2
im

+N
∑

p=−N

UpUm−p

Proof:

+N
∑

p=−N

(m − p)UpUm−p = m

+N
∑

p=−N

UpUm−p −

+N
∑

p=−N

pUpUm−p

= m

+N
∑

p=−N

UpUm−p −

+N
∑

q=−N

qUqUm−q

= m

+N
∑

p=−N

UpUm−p −

+N
∑

q=−N

(m − p)Um−pUp

Taking the last term to the left, the lemma follows.
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Burgers’ Equation may now be written

dUm

dt
+ 1

2
im

+N
∑

p=−N

UpUm−p = −νm2Um .

Ignoring the nonlinear terms, we have

dUm

dt
= −νm2Um .

This means that each term gradually decays. The

larger the wavenumber (the smaller the scale) the

faster the decay rate. Viscosity acts most strongly on

the smallest scales.

If we omit viscosity, we get the inviscid Burgers

Equation:

dUm

dt
+ 1

2
im

+N
∑

p=−N

UpUm−p = 0 .
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Again, Burgers’ Equation in spectral form is:

dUm

dt
+ 1

2
im

+N
∑

p=−N

UpUm−p = −νm2Um .

We see that components interact in groups of three,

called triads:
{

Um Up Um−p

}

We see that all scales interact. For any mode Um, any

other mode Up can change it by interacting with Um−p.

Energy can move from any scale to any other scale.

We may start with all the energy in the largest scale:

u(x , 0) = U1

(

eix
− e−ix

2i

)

= U1 sin x ,

and the energy will quickly spread to other modes.
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Initial conditions for Burgers’ Equation.

Initial state is a pure sine-wave.
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Final spectrum for Burgers’ Equation.

Energy has spread to all modes.
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Solution of Burgers’ Equation. Shock has developed.

Initial state is a pure sine-wave.
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Evolution of energy in time. Dissipation increases

when energy reaches small scales.
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End of Part 2
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