The Gridpoint Method

Suppose we have a function of one space coordinate.

For example: the temperature on a line from Galway to Dublin; the pressure around the equator.

This is an infinite amount of information.

How do we specify the function in a finite way?

There are several answers to this question.
Continuous function of position.

Evaluation on a set of grid points.

Spectral Analysis

As an alternative to grid point values, we can break the function into different scales.

These are called the spectral components.

The procedure is called spectral analysis.

It is somewhat like splitting sunlight into the various colours of the spectrum.
Introduction
Fourier Analysis
Vibrating String

Continuous function of position.

The first spectral component.

The first and second spectral components.

The first, second and third spectral components.
Introduction Fourier Analysis Vibrating String

Gridpoint Method

- Discrete representation
- Values at geographical locations
- Easy to understand
- No computation necessary
- Easy to represent graphically.
- Derivatives evaluated by finite differences.

Big drawback: Evaluation of derivatives involves errors.

Introduction Fourier Analysis Vibrating String

Spectral Method

- Discrete representation
- Values NOT at geographical locations
- Less easy to understand
- Computation of coefficients necessary
- Derivatives evaluated exactly, by analysis.

Big advantage: Evaluation of derivatives is exact.
The most popular spectral components are trigonometric functions.

These functions are easy to evaluate, and to manipulate.

They are also easily differentiated analytically.

\[
d\frac{\sin x}{dx} = \cos x \quad d\frac{\cos x}{dx} = -\sin x.
\]

\[
\exp(ix) = \cos x + i\sin x
\]

\[
d\frac{\exp(ix)}{dx} = i\exp(ix).
\]

Introduction

Fourier Analysis

Vibrating String

Fourier Analysis

We consider a function \(f(x) \) on an interval \([0, \ell]\).

For simplicity, we assume that \(f \) vanishes at the ends:

\[
f(0) = f(\ell) = 0
\]

We note that sinusoidal functions with certain wavelengths also vanish at \(x = 0 \) and at \(x = \ell \):

\[
\sin \frac{\pi x}{\ell}, \sin \frac{2\pi x}{\ell}, \ldots, \sin \frac{n\pi x}{\ell},
\]

for all integer values of \(n \).

The first six harmonic components (\(\ell = 10 \)).
Orthogonality

We denote the spectral components by
\[\psi_n(x) = \sin\left(\frac{n\pi x}{\ell}\right) \]

We easily show that
\[
\int_0^\ell [\psi_n(x)]^2 \, dx = \int_0^\ell \sin^2\left(\frac{n\pi x}{\ell}\right) \, dx
\]
\[
= \frac{1}{2} \int_0^\ell \left[1 - \cos\left(\frac{2n\pi x}{\ell}\right) \right] \, dx
\]
\[
= \left[\frac{x}{2} \right]_0^\ell - \left[\frac{\ell}{4\pi n} \sin\left(\frac{2n\pi x}{\ell}\right) \right]_0^\ell
\]
\[
= \frac{\ell}{2}.
\]

Orthogonality

Suppose \(m \neq n \).
\[
\int_0^\ell \psi_n(x) \cdot \psi_m(x) \, dx
\]
\[
= \int_0^\ell \sin\left(\frac{n\pi x}{\ell}\right) \cdot \sin\left(\frac{m\pi x}{\ell}\right) \, dx
\]
\[
= \frac{1}{2} \int_0^\ell \left[\cos\left(\frac{n-m\pi x}{\ell}\right) - \cos\left(\frac{n+m\pi x}{\ell}\right) \right] \, dx
\]
\[
= \frac{1}{2\pi} \left[\frac{\ell}{n-m} \sin\left(\frac{n-m\pi x}{\ell}\right) - \frac{\ell}{n+m} \sin\left(\frac{n+m\pi x}{\ell}\right) \right]_0^\ell
\]
\[
= 0.
\]

Orthonormality

We thus have:
\[
\int_0^\ell \psi_n(x) \cdot \psi_m(x) \, dx = \delta_{mn} \frac{\ell}{2}
\]

Now define
\[\tilde{\psi}_n(x) = \sqrt{\frac{2}{\ell}} \sin\left(\frac{n\pi x}{\ell}\right) \]

We obtain an orthonormal set of functions:
\[
\int_0^\ell \tilde{\psi}_n(x) \cdot \tilde{\psi}_m(x) \, dx = \delta_{mn}.
\]

Outline

Introduction

Fourier Analysis

Vibrating String
Example: Vibrating String

Imagine a string, stretched between $x = 0$ and $x = \ell$. Let the sideways displacement be $\Phi(x)$.

We suppose the string is fixed at the ends:

$$\Phi(0) = 0 \quad \Phi(\ell) = 0.$$

The displacement is governed by the wave equation

$$\frac{\partial^2 \Phi}{\partial t^2} = c^2 \frac{\partial^2 \Phi}{\partial x^2}.$$

We first consider a single component, of frequency ω:

$$\Phi(x, t) = \Psi(x) \exp(\imath \omega t).$$

We might also choose $\Phi(x, t) = \Psi(x) \cos(\omega t)$ or $\Phi(x, t) = \Psi(x) \sin(\omega t)$.

Then the wave equation reduces to an o.d.e:

$$\frac{d^2 \Psi}{dx^2} + \left(\frac{\omega^2}{c^2}\right) \Psi = 0.$$

We define the wavenumber k as

$$k = \frac{\omega}{c}$$

Then the o.d.e. may be written

$$\frac{d^2 \Psi}{dx^2} + k^2 \Psi = 0.$$

The function

$$\Psi(x) = A \sin kx$$

is a solution of the o.d.e., and satisfies the boundary conditions if

$$k\ell = n\pi \quad \text{or} \quad k = k_n = n \frac{\pi}{\ell}.$$

We thus define the components as

$$\Psi_n(x) = A_n \sin \frac{n\pi}{\ell} x$$

where A_n is the amplitude of the n-th component.

$\psi_n(x)$ is an eigenfunction of the o.d.e. with eigenvalue $k_n = n\pi/\ell$.

Wave speed is wavelength divided by period

$$c = \frac{\lambda}{\tau}.$$

Period τ is reciprocal of frequency $\nu = 2\pi \omega$, or

$$\tau = \frac{1}{\nu}, \quad \text{so that} \quad c = \lambda \nu.$$

Hence

$$k = \frac{\omega}{c} = \frac{2\pi \nu}{c} = \frac{2\pi}{\lambda}.$$

k is the inverse of the wavelength, with a 2π factor.
We now seek a solution expanded in eigenfunctions

\[\Psi = \sum_{n=1}^{\infty} A_n \Psi_n(x). \]

We can find the coefficients by integration

\[\int_0^\ell \psi_m(x) \psi(x) \, dx = \int_0^\ell \psi_m(x) \left(\sum_{n=1}^{\infty} A_n \Psi_n(x) \right) \, dx \]

\[= \sum_{n=1}^{\infty} A_n \left(\int_0^\ell \psi_m(x) \psi_n(x) \, dx \right) \]

\[= \sum_{n=1}^{\infty} A_n \frac{\ell}{2} \delta_{mn} \, dx = \frac{\ell}{2} A_m. \]

Thus,

\[A_m = \frac{2}{\ell} \int_0^\ell \psi_m(x) \psi(x) \, dx \]

Duality of the Fourier Transform

The function \(\Psi \) can be obtained from the expansion

\[\Psi = \sum_{n=1}^{\infty} A_n \Psi_n(x). \]

if the coefficients \(A_n \) are known.

The coefficients can be found by integration

\[A_m = \frac{2}{\ell} \int_0^\ell \psi_m(x) \psi(x) \, dx \]

if the function is known.

There is a duality between \(\psi(x) \), a function in physical space and \(\{A_n\} \), the coefficients in wavenumber space. Given either representation, we can obtain the other.

Example: Analysis of a Square Wave

Let

\[\psi(x) = +1, \text{ for } x \in [0, \frac{\ell}{2}] \quad \psi(x) = -1, \text{ for } x \in [\frac{\ell}{2}, \ell]. \]

The Fourier coefficients are easily calculated.

\[A_n = \frac{2}{\ell} \int_0^\ell \psi \cdot \psi_n \, dx = \frac{2}{\ell} \left(\int_0^{\ell/2} \sin \frac{n\pi}{\ell} x \, dx - \int_{\ell/2}^{\ell} \sin \frac{n\pi}{\ell} x \, dx \right). \]

When we work these out, we find that only every fourth coefficient has a nonzero value:

\[A_2 = \frac{1}{2} \left(\frac{8}{\pi} \right), \quad A_6 = \frac{1}{6} \left(\frac{8}{\pi} \right), \quad A_{10} = \frac{1}{10} \left(\frac{8}{\pi} \right), \quad \text{etc.} \]

The square wave function (\(\ell = 10 \)).
The square wave function. First coefficient.

The square wave function. First two coefficients.

The square wave function. First three coefficients.

The square wave function. First four coefficients.
The square wave function. First five coefficients.

The square wave function. First six coefficients.

Exercise: Analysis of a Sawtooth Wave

Find the Fourier coefficients of the sawtooth function.

First six coefficients. Note Gibbs Phenomenon.
Solution of Wave Equation

We assume simple initial conditions:
\[\Phi(x, 0) = \Phi_0(x), \quad \Phi_t(x, 0) = 0. \]

We seek a solution of the form
\[\Phi(x, t) = \sum_{n=1}^{\infty} A_n \Psi_n(x) \cos \omega_n t. \]

At the initial time,
\[\Phi(x, t) = \Phi_0(x) = \sum_{n=1}^{\infty} A_n \Psi_n(x). \]

Also, because of the chosen form of solution,
\[\Phi_t(x, 0) = 0. \]

This gives us the values of the coefficients:
\[A_n = \frac{2}{\ell} \int_0^\ell \Psi_n(x) \Phi_0(x) \, dx \]

The problem is now completely solved:
\[\Phi(x, t) = \sum_{n=1}^{\infty} A_n \Psi_n(x) \cos \omega_n t, \]

with coefficients that are now known.

The eigenfunctions and eigenvalues are defined by
\[\Psi_n(x) \equiv \sin k_n x, \quad k_n = \frac{n\pi}{\ell}, \quad \omega_n = c k_n. \]

End of Part 1