4D-Var Data Assimilation (§5.6)

In OI and 3D-Var, the background error covariance matrix
is estimated once and for all, as if the forecast errors were
statistically stationary.

The errors are estimated from the difference between the
forecast and the analysis ...

. that is, from the analysis increments.
We can evaluate if this is indeed a good approximation.

The following figure shows the 6-h forecast errors over the
USA from the NCEP/NCAR reanalysis.
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Daily variation of the rms increment between the 6-h
forecast and the analysis (NCEP-NCAR reanalysis).
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The NCEP/NCAR reanalysis used a 3D-Var data assimila-
tion system which did not change during the period.

Thus, the difference between the figures is due only to the
changes in the observing system.

Over these four decades the improvements in the observing
system in the Northern Hemisphere show a positive impact.

The 6-h forecast errors decrease by about 20%, with the
average analysis increment reduced from about 10 m to 8 m.



The most striking result apparent in the error statistics is
that the day-to-day variability in the forecast error is about
as large as the average error.

The figures emphasize the importance of the errors of the
day which are dominated by baroclinic instabilities of syn-
optic time scales

These errors are ignored when the forecast error covariance
is assumed to be constant.

The Kalman Filter technique predicts both the model state
and its error covariance.

However, it is computationally very demanding, and is not
practical for use in its complete form.

We will now consider four-dimensional variational assimila-
tion (4D-Var), which has some of the advantages of Kalman
Filtering.

It includes, at least implicitly, the evolution of the forecast
error covariance.

Model Error Covariance

Let us represent the (nonlinear) model forecast that ad-
vances from time ¢;_; to time ¢; by

x! (t:) = Mi_1 [x(t;_1)]

Since the model is imperfect, we write
x!(t;) = M;_1[x'(t;_1)]
X'(t;) = M1 [x"(t;1)] — n(ti1)
x! (&) = x(t:) + n(ti—1)

The model error 7 is assumed to have zero mean, and co-
variance matrix Q; = E(nmlT)

In other words, starting from perfect initial conditions, the
forecast error is given by 7;.

(In reality model errors have significant biases, which must
be taken into account.)

Note: I am covering the following material in §5.6 of
Eugenia Kalnay’s book:

e Introductory paragraphs (pp. 175-177)
@ §5.6.1, to the bottom of page 178
® §5.6.3, on 4D-Var

I am not discussing Kalman Filtering in this course.

As this a topic of growing importance, you should read the
remaining part of §5.6.1 (pages 179-180) and §5.6.2.

Tangent Linear Model

Consider the solution on the time interval ¢; to ¢;,.

If we introduce a perturbation in the initial conditions, the
final perturbation is given by

X(ti1) + 0x(tip1) = M [x(t;) + 0x(t;)]
= M; [x(t;)] + Liox(t;) + O(|6x[)
The matrix L; is the linear tangent model operator
L = 20,
)
That is, it is the Jacobian of M (x) with respect to x.

We have
5X(tl'+1) = L;éx(t;) + H.O.T.



The Adjoint Model

The linear tangent model L; is a matrix that transforms an
initial perturbation at time ¢; to the final perturbation at
time ;..

5X<ti+1> = LZ'5X(tZ') + H.O.T.

The transpose of the linear tangent model is
called the adjoint model.
* * *

The linear tangent model L; and the adjoint model LZ.T can
be constructed by a systematic procedure.

For a description of how to develop the computer codes,
read Appendix B of Eugenia Kalnay’s book.

If there are several steps in a time interval {; —¢;, the linear
tangent model that advances a perturbation from ¢, to ¢; is
given by the product of the linear tangent model matrices.

Each one advance the solution over a single step.

t07 H L j+1 H Lj_LZ 1Li—9---LiLg
J=t—1 J=t—1

(note the order of application, from right to left).

Therefore, the adjoint model is given by

1—1
L(t;, to) HL s+t =[[Lf =LfL{ - Lf L

=0
Note that the order of the terms is reversed.

The adjoint model advances a perturbation backwards in
time, from the final to the initial time.

Simple Case:
xg = Mi(x1) = My (Mo(x))

Suppose x) — X + 0x.
Then x; — x; + 0x; with
x1 + 0x1 = My(xq + 0xg) = My(xq) + Lodxg

Now x9 — X9 + dxo with
X9 + 0x9 = Mj(x1 + 0x1)

= Ml(Xl) + Liox;

= M;(My(x0)) + L1Lodxg

= x9 + L;Lydxq
Therefore,

0x9 = LiLgdxq
The adjoint of L;L is LOTL?

The reversal of the order of the terms corresponds to a
reversal of time: the operations are preformed backwards.

(Kalnay, §5.6.3)

Four-dimensional variational assimilation (4D-Var) is an ex-
tension of 3D-Var to allow for observations distributed within
a time interval (t(,t,).

The cost function includes a term measuring the distance
to the background at the beginning of the interval.

It also includes a summation over time of the cost function
for each observational increment computed with respect to
the model integrated to the time of the observation.

The control variable is the initial state of the model x ().
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Schematic diagram of four dimensional variational assimilation.

The analysis at the end of the interval is given by the model
integration from the solution

X(tn) = Mo—n [x(t0)] = Mp—1 [Mp—2-- - [M1 [My [x(t0)]] - -]
Thus, the model is used as a strong constraint. That is, the
analysis solution has to satisfy the model equations.

4D-Var thus seeks an initial condition such that the forecast
best fits the observations within the assimilation interval.

* * *

The fact that the 4D-Var method assumes a perfect model
is a disadvantage.

For example, it will give the same weight to older observa-
tions as to newer observations.

Methods of correcting for a constant model error have been
proposed (see references in Kalnay).
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Schematic diagram of four dimensional variational assimilation

Let us consider the variation in the cost function when the
control variable x (t;) is changed by a small amount §x(%).

It is given by

oJ
Ox(to)

T
6J—J[x(to>+5x<to>1—=f[x<to>1w[ ] ox(to)

Here the gradient of the cost function
aJ
Vit bx(to)]

is a column vector (of course, ./ is a scalar).

Its j-th component is
[ 9. ] o)
Ox(to)];  Oxj(to)

We need this because iterative minimization schemes re-
quire the estimation of the gradient of the cost function.




In the simplest scheme, the steepest descent method, the
change in the control variable after each iteration is chosen
to be opposite to the gradient

Lemma I:

Given a symmetric matrix A and a functional J = %XTAX,
the gradient is given by

0x(tg) = —aVX(tO)J = —a 0J/0x(ty) . 0J _ A
where a is chosen empirically. ox
More efficient methods, such as the conjugate gradient or (we proved this already).
quasi-Newton method, also require the use of the gradient. Lemma II:
Thus, in order to solve this minimization problem efficiently, If /=y’ Ay, and y = y(x), then
we need to be able to compute the .gradient of Jwith respect a7 By T o By T
to the elements of the control variable. —=|=| =—=|=| Ay
0x ox| Oy 0x
* * * where [0y /0x];. | = Oy;,/0z; is a matrix.
Proof of Lemma II:
Consider J = J(yi,...,yn) where y; = y;(z1,...,xp).
Then
OF _ 50507
Oxy, - Ox}, 0y;
But we have Conclusion of the foregoing
Ay, T oy
[iy] ) Thus || - %%
x| Oy x|y  Oxy
Thus, in vector form, the result is
07 _[oy]"9J
ox |0x| Oy

Q.E.D.




We can write the cost function J as a sum of the background
error term and the observation error term

J=Jy+Jo.

First, we require the gradient, with respect to x (), of the

background component of the cost function
1

~[x(to) — x"(to)]" By [x(to) — x"(to)]

Jb:2

This is given by
aJp

Ix(ty) By ![x(to) — x(to)]

We are half-way there (but it is the easy half).

The gradient of the second term,
N

Jo =5 > IH(x;) — I Ry '[H(x;) — y7]
1=0
is more complicated because x; = M;_;[x(ty)] depends on x(t()

through the model.
If we perturb the initial state, then dx; = L(t(, t;)0x(.

Therefore,
O(H(x;) —y?) 0H 0x;
Ix( - 0x; 0%,

= H;L(to, ;) .

The matrices H; and L(t, ;) are the linearized Jacobians:
0H oM
H, = d L(ty,t;) = —

aXZ an ( 05 Z) aXO

Expanding the hnear tangent model operator step by step,

The gradient of the term J, is more complicated. H,L(t, t;) = H; H L(tj,tj+1) = H; [L;i_1Li_o- - - LiLy) .
j=i—1
Recall that Again,
1 g aJ Y
Tp—1 Ty T T Tp-—1
Jo =5 > IH(x;) =y Ry '[H(x;) ~ ¥7] 20— =3 [ufif - 1L, HYR
i=0 Y0
and its gradient w.r.t. xo is i Every iteration of the 4D-Var minimization requires the
dJo _ laH(Xi) dJo computation of the gradient. It involves
%0 % OH (x;) e Computing the increments d; = —[H(x;) —y{] at the obser-
But we have shown that - vation times ¢; during a forward integration
O0H (x; 0H (x; - _
a(XZ) = H;L(to, t;) so that [#] — LT (t, t;) HY e Multiplying them by H/R;
X0 X0

Therefore, the gradient of the observation cost function is

N
9o — 3 Lita to) BT R [H(xi) ~ ¥
aXO s (2 1 () 1 1

Defining the innovation d; = [y{ — H(x;)], this is
N

%:_Z[LOTLIT...

T Tp—1
T~ L7 | HIR; g,

e Integrating these weighted increments backward to the
initial time using the adjoint model.



Since parts of the backward adjoint integration are common
to several time intervals, the summation

N
> Lty to) H/ R H(x,) — y7]
1=0
for 0.J,/0x) can be arranged more conveniently.

For example, suppose the interval of assimilation is from
00 Z to 12 Z, with observations every 3 hours.
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e e ® ®
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Schematic of the computation of the gradient of the observational cost

function for a period of 12 h, with observations every 3 hours.

We compute, during the forward integration, the weighted
negative observation increments

d; = HIR; [H(x;) — y?] = —H/R 4.

The adjoint model L7 (t;,t;_|) = LZ.T_1 applied to a vector d;
“converts” it from time ¢; to time ¢; ;.
Recall the equation

N

aJ, - TP 7

L7, HlR; 4,

This can be written

aJ, — — —
° = [do + Lgdl + LgL{dQ +
8X0

LoL71Id; + L0L1L2TL3Ta4]
Thus, we can write the gradient of J as

gio = 80 + Lg {31 + L{ [ag + Lg (ag + Lg&@} }
0

The minimization algorithm is now applied, modifying the
control variable x(t;) at each stage.

After this change, a new forward integration and new
observational increments are computed and the process
is repeated until convergence is satisfactory.

e Integrate the full model forward, computing and storing
the increments d; at the observation times t;.

e Integrate the adjoint model backwards, accumulating the
terms d; = —HiTRl-_ldi, using the adjoint model.

e Iterate these forward-backward cycles until convergence.

Reduced Inner Loops

4D-Var can also be written in an incremental form.

We define the cost function as

J(6%0) = 3<6XU>TB—1<5XO>

Z [HL(to, t;)dx0 — A R [HiL(to, t;)6%0 — d7] .
=0

With the incremental formulation, we introduce a “simpli-
fication operator” S.

This converts the variables to a lower dimensional space
than that of the original model variables x:

0w = Sdx

Typically, S is a projection to a lower dimensional subspace
of the total model space.



A number of iterations are now executed in the reduced
space. These are called the “inner loops”.

Normally, the inverse of S doesn’t exist: If we project to a
lower-dimensional space, we cannot transform back unam-
biguously; information is lost.

To return to the full space, we have to use a generalized
inverse S~ = [SST]~18T,
We compute 0x = S~ /fw and use this to modify x.

At this stage, a new “outer iteration” at the full model
resolution can be carried out.

* * *

Note that the complete documentation of the ECMWF
variational assimilation system is available at:
http://www.ecnwf.int

Pre-conditioning

The iteration process can be accelerated through the use of
pre-conditioning.

This involves a change of control variables that makes the
cost function more spherical.

An example of a change of variables might be to use the
vorticity and divergence instead of the wind components.

After pre-conditioning, each iteration gets closer to the min-
imum of the cost function, reducing computation time.

Cost Function for
Uncorrelated Errors

le y Xz Scaled Variables
Xy

Cost Function for Correlated Errors

X4

Advantages of 4D-Var

The most important advantage of 4D-Var is this:
We assume that:

e (a) the model is perfect, and

e (b) the a priori error covariance B at the initial time is
known exactly.

Then it can be shown that the 4D-Var analysis at the final

time is identical to that of the extended Kalman filter.

This means that implicitly, 4D-Var is able to evolve the
forecast error covariance from B to the final time.

Unfortunately, this implicit covariance is not available at
the end of the cycle, and neither is the new analysis error
covariance.

4D-Var is able to find the best linear unbiased estimation
but not its error covariance.

4D-Var has been successfully implemented at ECMWF,
Météo France, the Met Office, JMA and CMC.

(3D-Var is used now in most other centres).

Intensive research is under way in the HirRLAM Project to
develop a limited-area 4D-Var system.

The following figure shows that implementation of 4D-Var
has resulted in improved forecast scores.
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Planned future global data assimilation systems.
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