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Variational Assimilation (§5.5)

We now turn from Optimal Interpolation to another
approach to objective analysis, the variational assim-
ilation technique.

This method is of growing popularity and is now in
use in several major NWP centres.

Variational assimilation has been shown to yield
significant improvements in the quality of numerical
forecasts.

It has also been invaluable for re-analysis:
The ERA-40 Project at ECMWEF was carried out
using the 3D-Var system.



The Cost Function J

We saw, for the “two-temperature problem”, an impor-
tant equivalence between the least squares approach and
the variational approach.



The Cost Function J

We saw, for the “two-temperature problem”, an impor-
tant equivalence between the least squares approach and
the variational approach.

The same equivalence holds for the full 3-dimensional case.



The Cost Function J

We saw, for the “two-temperature problem”, an impor-
tant equivalence between the least squares approach and
the variational approach.

The same equivalence holds for the full 3-dimensional case.

Lorenc (1986) showed that the OI solution is equivalent to a
specific variational assimilation problem: Find the optimal
analysis x, field that minimizes a (scalar) cost function.



The Cost Function J

We saw, for the “two-temperature problem”, an impor-
tant equivalence between the least squares approach and
the variational approach.

The same equivalence holds for the full 3-dimensional case.

Lorenc (1986) showed that the OI solution is equivalent to a
specific variational assimilation problem: Find the optimal
analysis x, field that minimizes a (scalar) cost function.

The cost function is defined as the (weighted) distance be-
tween x and the background x;, plus the (weighted) distance
to the observations y,:

J(x) = 5 {(x = x) "B (x = x3) + [yo — H(x)|TR [y, — H(x)]}



J(x)=Tb{x)+Jo(x)

AL |

Schematic representation of the cost function in a simple
one-dimensional case. J, and J, respectively tend to pull the analysis
towards the background x; and the observation y.
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Again, the cost function is

I(x) = 5 {(x = x) "B (x = x3) + [yo — H(x)|TR "y, — H(x)]}

The minimum of J(x) is attained for x = x, such that

0J

Assuming the analysis is close to the truth, we write
X = [xp 4 (x — Xp),
and assume that x — x; is small.

Then we can linearize the observation operator:
Yo — HX)] =yo — H[xp+ (x = xp)] = {yo — H(xp)} — H-(x — x3)

We now substitute this into the cost function:

J(x) = 5 {(x = x) "B (x = %) + [yo — H(x)|TR 'y, — H(x)]}
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The result is:
2J(x) = (x — x5)"B7 (x — xy)
+[{yo— H(xp)} —H(x — x)] ' R [ {yo — H(xp)} — H(x — x3)]

Expanding the products, we get
2J(x) = (x —x) ! B7 (x — xp) + (x — xp) H'R™TH(x — x;)
— {yo— H(xy)}' R™TH(x — x,)
- (x—xp) " H' Ry, — H(x)}
+ {yo— H(xp)}' R™{yo — H(x)}

The cost function is a quadratic function of the analysis
increments (x — xy).



Schematic of the cost function in two dimensions. The minimum is
found by moving down-gradient in discrete steps.
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Q.E.D.
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The gradient of the cost function J with respect to x is
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Repeat: The gradient of J with respect to x is
VJ(x)=[B+HIRH|(x - x;) - HI Ry, - H(x})}

We now set VJ(x,) =0 to ensure that J is a minimum, and
obtain an equation for (x, — xp)

B~ +H'RH](xq — x) = H' R {y, — H(x})}
We can write this as:
_ 1 Tr—1y1- 1T -1r..
xq =%+ BT +H' R H| H'R {y,— H(xp)}

This 1s the solution of the 3-dimensional variational
(3D-Var) analysis problem.

It looks similar to the OI result, but the weight matrix is
W =B '+H'R'H] '"HTR™

The equivalence is not obvious.
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Again, the variational analysis is

xo=x,+ B+ H'R™H] '"H Ry, — H(x})}

It is a formal solution: the computation x, requires the
inversion of a huge matrix, which is impractical.

In practice the solution is obtained through minimization
algorithms for J(x) using iterative methods for minimization
such as the conjugate gradient or quasi-Newton methods.

Note that the control variable for the minimization is now
the analysis, not the weights as in OI.

The equivalence between the minimization of the analysis
error variance and the three-dimensional variational cost
function approach is an important property.
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Minimization

In practical 3D-Var, we do not invert a huge matrix.

We find the minimum of J(x) by computing the cost func-
tion for a range of values of x and using an optimization
technique.

The idea is to “proceed downhill” as quickly as possible.

Examples are the Steepest Descent algorithm, Newton’s
method, and the Conjugate Gradient algorithm.

For a selection of techniques, see Numerical Recipes, which
may be inspected online before purchase.
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The location of the minimum depends greatly on the nature
of the function J.

As an example, for two dimensions, we consider the shape
of the “surface” J = J(z,y).

:

For a purely elliptic surface, the minimum is easily located.

For a banana shaped surface, the minimum is much harder to find.



130 J curves

=

The “narrow-valley” effect. The minimization can spend many
iterations zigzagging towards the minimum.
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Cost Function for Correlated Errors

X

©“Data Assimilation” by Alan O’Neill (Reading University)
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Cost Function for
Uncorrelated Errors

X2 Scaled Variables
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Equivalence between Ol and 3D-Var

We have to show that the weight matrix that multiplies
the innovation {y, — H(xp)} = dy, is the same as the weight
matrix obtained with OI:

B '+H' R ') AR = BH')R +HBH!) !

(3D-Var) (O1)

This identity is a variant of the Sherman—Morrison-Woodbury
formula (Golub and Van Loan, 1996).

The mathematical proof (an elegant demonstration) is given
in Kalnay, §5.5.1.

It demonstrates the formal equivalence of the problems solved
by 3D-Var and OI.

However, because the methods of solution are different,
their results are different, and many centers have now adopted
the 3D-Var approach.
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Straightforward Demonstration of Equivalence

B '+H'R'H)"'H'R! = (BH")(R + HBH')~!
Inverse of left-hand side:

RH /(B '+H 'R 'H)
(RH'B~! + H)
(RH /B '+H)BH'H /B!

(R+HBH )H B!
The inverse of this is equal to the right-hand side
BH' (R + HBH!)™!

Thus 3D-Var and OI are mathematically equivalent.



Jp: The Conventional Method
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Typical “structure function” used in OI. The autocorelation of height

is an isotropic Gaussian function. By geostrophy, the cross correlation

with the tangential wind is maximum where the radial gradient of the
height correlation is maximum.
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Jp: The "NMC method”

Most NWP centres have now adopted the “NMC method”
for estimating the forecast error covariance.

The structure of the background error covariance is esti-
mated as the average difference between two short-range
model forecasts verifying at the same time.

B ~ aB{[x;(48 h) — x(24 h)][x;(48 h) — x (24 h)]"}

The magnitude of the covariance is then appropriately scaled.

The model—forecast differences themselves provide a multi-
variate global forecast difference covariance.

This method has been shown to produce better results than
previous estimates computed from forecast minus observa-
tion estimates.
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Comparison of 3D-Var and Ol

3D-Var has several important advantages with respect to
OI, because the cost function J is minimized using global
minimization algorithms.

As a result, many of the simplifying approximations re-
quired by OI are unnecessary in 3D-Var.

e In 3D-Var there is no data selection; all available data
are used simultaneously. This avoids jumpiness in the
boundaries between regions that have selected different
observations.

e The background error covariance matrix for 3D-Var can
be defined with a more general, global approach, rather
than the local approximations used in OI.

e It is possible to add constraints to the cost function with-
out increasing the cost of the minimization. These can be
used to control spurious noise.



e For example, we may require the analysis increments to
approximately satistfy the linear global balance equation.



e For example, we may require the analysis increments to
approximately satistfy the linear global balance equation.

e With the implementation of 3D-Var at NCEP, it became
unnecessary to perform a separate initialization step in
the analysis cycle.



e For example, we may require the analysis increments to
approximately satistfy the linear global balance equation.

e With the implementation of 3D-Var at NCEP, it became
unnecessary to perform a separate initialization step in
the analysis cycle.

e It is possible to incorporate nonlinear relationships be-
tween observed variables and model variables in the H
operator. This is harder to do in the OI approach.



e For example, we may require the analysis increments to
approximately satistfy the linear global balance equation.

e With the implementation of 3D-Var at NCEP, it became
unnecessary to perform a separate initialization step in
the analysis cycle.

e It is possible to incorporate nonlinear relationships be-
tween observed variables and model variables in the H
operator. This is harder to do in the OI approach.

e 3D-Var has allowed three-dimensional variational assimi-
lation of radiances.



e For example, we may require the analysis increments to
approximately satistfy the linear global balance equation.

e With the implementation of 3D-Var at NCEP, it became
unnecessary to perform a separate initialization step in
the analysis cycle.

e It is possible to incorporate nonlinear relationships be-
tween observed variables and model variables in the H
operator. This is harder to do in the OI approach.

e 3D-Var has allowed three-dimensional variational assimi-
lation of radiances.

e The quality control of the observations becomes easier
and more reliable when it is made in the space of the
observations than in the space of the retrievals.



End of §5.5



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

