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Approximations in Practical OI
(Kalnay, §5.4.2)

We have seen that the analysis is obtained from

xa = xb + W[yo −H(xb)]

We define increments from the background as

δx = x− xb .

Then the analysis increment is

δxa = Wδyo

The optimal weight matrix W that minimizes the analysis
error covariance is given by

W = BHT (HBHT + R)−1



If all the statistical assumptions are accurate, i.e., the co-
variance matrices are known exactly, these formulas provide
the OI analysis.
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If all the statistical assumptions are accurate, i.e., the co-
variance matrices are known exactly, these formulas provide
the OI analysis.

In that case, the analysis error covariance is given by

Pa = A = (I−WH)B

In reality, the statistics are only approximations of the true
statistics. Thus, the formulae provide a statistical interpo-
lation, not necessarily an optimal one.

Some scientists argue that the name statistical interpolation
should be used instead of optimal interpolation. But the
latter is generally used.
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Note the orders of these matrices.
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The Observation Operator
H is the linear perturbation (Jacobian) of the forward ob-
servational model H, and HT is its transpose or adjoint.

• Multiplying by H on the left transforms grid-point incre-
ments into observation increments (H is p× n);

• Multiplying by HT transforms from observation points
back to grid points (HT is n× p).

For a single variable, there are n grid points.

If we are considering several variables, n is the product of
the number of grid points and the variables.
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Simple Low-order Example
Consider again the OI equations in matrix form:

xa = xb + W[yo −H(xb)]

The optimal weight matrix is obtained by solving the system
of equations

W(HBHT + R) = BHT

As an illustration, let us consider the simple case of
three grid points e, f, g, and two observations, 1 and 2.

Simple example: three grid points and two observation points.

Then xa = (xa
e, x

a
f , xa

g)T and xb = (xb
e, x

b
f , xb

g)
T .
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The observation vector is yo = (yo
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The elements of the observation operator H represent
interpolation from gridpoint to observation location.

For example, if we used linear interpolation, H would be

H =


xf−x1
xf−xe

x1−xe
xf−xe

0

0
xg−x2
xg−xf

x2−xf
xg−xf


Check: Verify that the correct answer is given when an
observation is located at a grid point.
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The background error covariance matrix elements are
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The background error covariance matrix elements are
the covariances between grid points:

B =

 bee bef beg
bfe bff bfg
bge bgf bgg


The error covariance between grid points and observation
points is

BHT =

 be1 be2
bf1 bf2
bg1 bg2


Then the background error covariance between observation
points may be written

HBHT =

(
b11 b12
b21 b22

)
.
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The observation error covariance is
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r21 r22

)
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The observation error covariance is

R =

(
r11 r12
r21 r22

)
We often assume that measurement errors at different loca-
tions are uncorrelated.

Then R is a diagonal matrix:

R =

(
r11 0
0 r22

)
Note that R includes not only the instrument error,
but also the representativity error.
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We can now write the OI equation for a particular (single)
grid point g influenced by p observations as:

xa
g = xb

g +

p∑
j=1

wgjδyj

This is the grid-point version of the vector equation

xa = xb + W[yo −H(xb)]
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We can now write the OI equation for a particular (single)
grid point g influenced by p observations as:

xa
g = xb

g +

p∑
j=1

wgjδyj

This is the grid-point version of the vector equation

xa = xb + W[yo −H(xb)]

The weights are the solution of the linear system
p∑

j=1

wgj(bjk+rjk) = bgk k = 1, . . . , p

This is the grid-point version of the matrix equation

W(HBHT + R) = BHT

There are equations like this for each grid point and, in
multivariate analysis, for each variable at each point.

9



How big is the linear system?

10



How big is the linear system?

A linear system of the form
p∑

j=1

wgj(bjk+rjk) = bgk k = 1, . . . , p

is solved for each gridpoint.

10



How big is the linear system?

A linear system of the form
p∑

j=1

wgj(bjk+rjk) = bgk k = 1, . . . , p

is solved for each gridpoint.

Each system comprises p equations, where p is the number
of observations taken into account for the analysis at that
gridpoint.

10



How big is the linear system?

A linear system of the form
p∑

j=1

wgj(bjk+rjk) = bgk k = 1, . . . , p

is solved for each gridpoint.

Each system comprises p equations, where p is the number
of observations taken into account for the analysis at that
gridpoint.

Clearly, a selection must be made. Nearby observations are
chosen, whereas remote observations are ignored.

10



How big is the linear system?

A linear system of the form
p∑

j=1

wgj(bjk+rjk) = bgk k = 1, . . . , p

is solved for each gridpoint.

Each system comprises p equations, where p is the number
of observations taken into account for the analysis at that
gridpoint.

Clearly, a selection must be made. Nearby observations are
chosen, whereas remote observations are ignored.

Depending on the computational power available, p may be
as small as 10 or in the hundreds.

10



How big is the linear system?

A linear system of the form
p∑

j=1

wgj(bjk+rjk) = bgk k = 1, . . . , p

is solved for each gridpoint.

Each system comprises p equations, where p is the number
of observations taken into account for the analysis at that
gridpoint.

Clearly, a selection must be made. Nearby observations are
chosen, whereas remote observations are ignored.

Depending on the computational power available, p may be
as small as 10 or in the hundreds.

Recall that the computation required to solve a linear sys-
tem of order N typically scales as the cube of N .
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SCM versus OI
In SCM, the weights of the observational increments depend
only on their distance to the grid point.

Therefore, all observations will be given similar weight, even
if a number of them are “bunched up” in one region.

? ? ?
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In SCM, the weights of the observational increments depend
only on their distance to the grid point.

Therefore, all observations will be given similar weight, even
if a number of them are “bunched up” in one region.

? ? ?

In OI and 3D-Var, the correlation between observational
increments is taken into account.

Therefore, an isolated observational increment will be given
more weight in the analysis than observations that are close
together and therefore less independent.

The forecast error correlation bjk/
√

bjjbkk between the ob-
servation points j and k is large if the points are close.

Thus, isolated observations have more independent infor-
mation than observations close together; OI allows for this.
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Ill-conditioned matrices
When several observations are too close together, then the
solution of
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Ill-conditioned matrices
When several observations are too close together, then the
solution of

p∑
j=1

wgj(bjk+rjk) = bgk k = 1, . . . , p

becomes an ill-posed problem.

If two observations have essentially the same information,
they are given similar weights. Thus, the matrix W has two
rows almost equal, and is close to being singular.

In those cases, we can compute a super-observation, com-
bining the close individual observations. This removes the
ill-posedness.

The super-observation is given a weight that takes into ac-
count the relative errors of the original observations.
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Conclusion of the foregoing
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Estimation of the Matrices
To implement OI, we need to estimate the error covariances,
B and R and the observation operator H.

The observation operator is an interpolator from the model
to the observation location.

If the observed variable are different from the model vari-
ables, a conversion to observed variables is also included.

We will not consider the conversion process, e.g., conversion
of temperatures to radiance measurements.

? ? ?

The observational error covariance R is obtained from
instrument error estimates.

If the measurements are independent, the matrix R is
diagonal, which is a major advantage.
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Here

µij = bij/(
√

bii

√
bjj) = bij/

(
σiσj

)
are the correlations of the background errors at two obser-
vational points i, j, and σ2

i are the error variances.
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A number of additional simplifications are made in order
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We normally assume that the background error correlations
can be separated into the product of the horizontal correla-
tion and the vertical correlation (this is illustrated below).

Moreover, the correlations are typically defined as functions
of distance only.

? ? ?

We will assume that the background error correlation be-
tween two points in the same horizontal surface is homoge-
neous and isotropic.

Then the background error correlation of the geopotential
height depends only on the distance between the two points.
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We often use a Gaussian exponential function for the
geopotential error correlation:

[µij(rij)]H = e
−r2

ij/2L2
Φ

Here r2
ij = (xi − xj)

2 + (yi − yj)
2 is the square of the distance

between two points i and j, and LΦ, typically of the order
of 500 km, defines the background error correlation scale.

Gaussian functions can also be used for the vertical
correlation functions:

[µij(z)]V = e−z2/2L2
z

Then the total correlation is the product of horizontal and
vertical:

µij = [µij(rij)]H × [µij(z)]V

17



Another important assumption is that the background wind
error correlations are geostrophically related to the geopo-
tential height error correlations.
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Another important assumption is that the background wind
error correlations are geostrophically related to the geopo-
tential height error correlations.

This has two advantages:

• It avoids having to estimate independently the wind error
correlation

• It imposes an approximate geostrophic balance of the
wind and height analysis increments, and thus improves
the balance of the analysis.

? ? ?

The multivariate correlation between heights and winds can
be obtained from the height correlations.

For example, the background error correlation between δu
and δv is:

E(δuiδvj) = − g

fi

g

fj
E

(
∂(δzi)

∂yi

∂(δzj)

∂xj

)
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Since the geopotential error at the point xj is independent
of yi, we can combine the derivatives and write

E(δuiδvj) = − g

fi

g

fj

∂2E(δziδzj)

∂yi∂xj
= − g

fi

g

fj

∂2bij
∂yi∂xj

= −g2

fi

σ2
z

fj

∂2µij

∂yi∂xj
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Since the geopotential error at the point xj is independent
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The standard deviation of the wind increments can also be
derived from the geostrophic relationship [*]:

σu = E(δu2
i )

1/2 = (gσz/fi) , σv = E(δv2
j)

1/2 = (gσz/fj)
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∂2bij
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= −g2

fi

σ2
z

fj

∂2µij

∂yi∂xj

The standard deviation of the wind increments can also be
derived from the geostrophic relationship [*]:

σu = E(δu2
i )

1/2 = (gσz/fi) , σv = E(δv2
j)

1/2 = (gσz/fj)

So, we obtain the correlation of the increments of the two
wind components by dividing by these standard deviations:

ρu,v = −∂2µij/∂yi∂xj .
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Since the geopotential error at the point xj is independent
of yi, we can combine the derivatives and write

E(δuiδvj) = − g
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∂2E(δziδzj)
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∂2bij
∂yi∂xj

= −g2
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∂2µij

∂yi∂xj

The standard deviation of the wind increments can also be
derived from the geostrophic relationship [*]:

σu = E(δu2
i )

1/2 = (gσz/fi) , σv = E(δv2
j)

1/2 = (gσz/fj)

So, we obtain the correlation of the increments of the two
wind components by dividing by these standard deviations:

ρu,v = −∂2µij/∂yi∂xj .

[*] Detail to be clarified later.
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Similarly, we can obtain the correlations between the incre-
ments of any two of the variables at points i and j:

ρh,h = µij , ρh,u = −
∂µij

∂yi
, ρu,h = −

∂µij

∂yj
.
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Similarly, we can obtain the correlations between the incre-
ments of any two of the variables at points i and j:

ρh,h = µij , ρh,u = −
∂µij

∂yi
, ρu,h = −

∂µij

∂yj
.

Exercise: Assume the height correlation function is
Gaussian:

µij = e
−r2

ij/2L2
φ

where r2
ij = (xi − xj)

2 + (yi − yj)
2.
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Similarly, we can obtain the correlations between the incre-
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.

Exercise: Assume the height correlation function is
Gaussian:

µij = e
−r2

ij/2L2
φ

where r2
ij = (xi − xj)

2 + (yi − yj)
2.

Derive the expressions for the other correlations.

? ? ?
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−r2

ij/2L2
φ

where r2
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2 + (yi − yj)
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Derive the expressions for the other correlations.

? ? ?

The following figure shows schematically the shape of of the
correlation function for geopotential height used in OI.

20



Schematic illustration of the correlation of Φ-Φ.
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The following figure shows schematically the shape of typical
wind/height correlation functions used in OI.

Note that the u–h correlations have the opposite sign than
the h–u correlations because the first and second variables
correspond to the first and second points i and j respectively.
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Correlation and cross-correlation functions.
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Other Practical Limitations
Geostrophic balance does not hold near the equator, and
additional approximations have to be made in the tropics
to allow for a smooth decoupling of wind and height incre-
ments.
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Geostrophic balance does not hold near the equator, and
additional approximations have to be made in the tropics
to allow for a smooth decoupling of wind and height incre-
ments.

In addition, it is common to select the observations to be
included in solving the linear system for the weight coeffi-
cients, depending on the computer resources available for
the analysis, allowing for a maximum number of observa-
tions affecting each grid point.
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Other Practical Limitations
Geostrophic balance does not hold near the equator, and
additional approximations have to be made in the tropics
to allow for a smooth decoupling of wind and height incre-
ments.

In addition, it is common to select the observations to be
included in solving the linear system for the weight coeffi-
cients, depending on the computer resources available for
the analysis, allowing for a maximum number of observa-
tions affecting each grid point.

Rules for the selection of the subset of observations to be
used typically depend on the distance to the grid point
(within a maximum radius of influence), the types of ob-
servations (giving priority to the most accurate) and their
distribution.
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End of §5.4
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