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Optimal Interpolation (§5.4)
We now generalize the least squares method to obtain the
OI equations for vectors of observations and background
fields.

These equations were derived originally by Eliassen (1954),
However, Lev Gandin (1963) derived the multivariate OI
equations independently and applied them to objective anal-
ysis in the Soviet Union.

OI became the operational analysis scheme of choice during
the 1980s and 1990s. Indeed, it is still widely used.

Later, we show that 3D-Var is equivalent to the OI method,
although the method for solving it is quite different.
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We now consider the complete NWP operational problem
of finding an optimum analysis of a field of model variables
xa, given

• A background field xb available at grid points in two or
three dimensions

• A set of p observations yo available at irregularly spaced
points ri

For example, the unknown analysis and the known back-
ground might be two-dimensional fields of a single variable
like the temperature.

Alternatively, they might be the three-dimensional field of
the initial conditions for all the model prognostic variables:

x = (ps, T, q, u, v)

[Here dim(x) = NxNy + 4 ∗NxNyNz]
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The model variables are ordered by grid point and by vari-
able, forming a single vector of length n, where n is the
product of the number of points by the number of variables.

The truth, xt, discretized at the model points, is also a
vector of length n.

We use a different variable yo for the observations than for
the field we want to analyze.

This is to emphasize that the observed variables are, in gen-
eral, different from the model variables by being:

• (a) located in different points

• (b) (possibly) indirect measures of the model variables.

Examples of these measurements are radar reflectivities and
Doppler shifts, satellite radiances, and global positioning
system (GPS) atmospheric refractivities.
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background plus weighted innovation:

xa = xb + W[yo −H(xb)] = xb + Wd

The error in the analysis is

εa = xa − xt

So, the truth may be written

xt = xa − εa = xb + Wd− εa

Now the truth, the analysis, and the background are vectors
of length n (the total number of grid points times the num-
ber of model variables)

The weights are given by a matrix of dimension (n× p).

They are determined from statistical interpolation.
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• For errors, always subtract the “truth” from the approx-

imate or estimated quantity.

• For every matrix expression, check the orders of the com-
ponents to ensure that the expression is meaningful.

• Be aware whether vectors are row or column vectors.
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Forward Operator: General Remarks
In general, we do not directly observe the grid-point
variables that we want to analyze.

For example, radiosonde observations are at locations that
are different from the analysis grid points.

Thus, we have to perform horizontal and vertical
interpolations.

We also have remote sensing instruments (like satellites and
radars) that measure quantities like radiances, reflectivities,
refractivities, and Doppler shifts, rather than the variables
themselves.
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We use an observation operator H(xb) (or forward operator)
to obtain, from the first guess grid field a first guess of the
observations.

The observation operator H includes

• Spatial interpolations from the first guess to the location
of the observations

• Transformations that go from model variables to observed
quantities (e.g., radiances)

The direct assimilation of radiances, using the forward ob-
servational model H to convert the first guess into first
guess TOVS radiances has resulted in major improvements
in forecast skill.
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Simple Low-order Example
As a illustration, let us consider the simple case of
three grid points e, f, g, and two observations, 1 and 2.

We assume that the observed and model variables are the
same, so that ther is no conversion, just interpolation.

Simple example: three grid points and two observation points.

Then

xa = (xa
e, x

a
f , xa

g)T =

xa
e

xa
f

xa
g

 and xb = (xb
e, x

b
f , xb

g)
T =

xb
e

xb
f

xb
g


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The forward observational operator H converts the back-
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The Observational Operator H
The forward observational operator H converts the back-
ground field into first guesses of the observations.

Normally, H is be nonlinear (e.g., the radiative transfer
equations that go from temperature and moisture vertical
profiles to the satellite observed radiances).

The observation field yo is a vector of length p, the number
of observations.

The vector d, also of length p, is the innovation or
observational increments vector:

d = yo −H(xb)

Note: The operator H is a nonlinear vector function.
It maps from the n-dimensional analysis space to the
p-dimensional observation space.
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Observation Error Variances
The observation error variances come from two different
sources:

• The instrumental error variances

• Subgrid-scale variability not in the grid-average values.

The second type of error is called error of representativity.

For example, an observatory might be located in a river
valley. Then local effects will be encountered.

The observational error variance R is the sum of the in-
strument error variance Rinstr and the representativity error
variance Rrepr, assuming that these errors are not correlated:

R = Rinstr + Rrepr
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Error Covariance Matrix
The error covariance matrix is obtained by multiplying the
vector error

ε =


e1
e2
...
en


by its transpose

εT =
[
e1 e2 . . . en

]
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Error Covariance Matrix
The error covariance matrix is obtained by multiplying the
vector error

ε =


e1
e2
...
en


by its transpose

εT =
[
e1 e2 . . . en

]
We average over many cases, to obtain the expected value:

P = εεT =


e1e1 e1e2 · · · e1en

e2e1 e2e2 · · · e2en
... ... ...

ene1 ene2 · · · enen


The overbar represents the expected value (E( )).
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Covariance matrices are symmetric and positive definite.

The diagonal elements are the variances of the vector error
components eiei = σ2

i .

If we normalize the covariance matrix, dividing each com-
ponent by the product of the standard deviations eiej/σiσj =
corr(ei, ej) = ρij, we obtain a correlation matrix

C =


1 ρ12 · · · ρ1n

ρ12 1 · · · ρ2n
... ... ...

ρ1n ρ12 · · · 1
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There are error covariance matrices for the background field
and for the observations.

Covariance matrices are symmetric and positive definite.

The diagonal elements are the variances of the vector error
components eiei = σ2

i .

If we normalize the covariance matrix, dividing each com-
ponent by the product of the standard deviations eiej/σiσj =
corr(ei, ej) = ρij, we obtain a correlation matrix

C =


1 ρ12 · · · ρ1n

ρ12 1 · · · ρ2n
... ... ...

ρ1n ρ12 · · · 1


? ? ?

Warning: Do not confuse εεT and εTε. Write expressions
for both. Experiment with the 2 × 2 case.
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If

D =


σ2

1 0 · · · 0

0 σ2
2 · · · 0

... ... ...

0 0 · · · σ2
n


is the diagonal matrix of the variances, then we can write

P = D1/2CD1/2

? ? ?
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If

D =


σ2

1 0 · · · 0

0 σ2
2 · · · 0

... ... ...

0 0 · · · σ2
n


is the diagonal matrix of the variances, then we can write

P = D1/2CD1/2

? ? ?

Exercise: Verify the last expression explicitly for a low-
order (say, n = 3) matrix.
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Some General Rules
The transpose of a matrix product is the product of the
transposes, but in reverse order:

[AB]T = BTAT

A similar rule applies to the inverse of a product:

[AB]−1 = B−1A−1

? ? ?

Exercise: Prove these statements.

Note: The transpose AT exists for any matrix. However,
the (two-sided) inverse only exists for non-singular square
matrices.
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The general form of a quadratic function is

F (x) =
1

2
xTAx + dTx + c,

where A is a symmetric matrix, d is a vector and c a scalar.
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F (x) =
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2
xTAx + dTx + c,

where A is a symmetric matrix, d is a vector and c a scalar.

To find the gradient of this scalar function ∇xF = ∂F/∂x
(a column vector), we use the following properties of the
gradient with respect to x:

∇(dTx) = ∇(xTd) = d i.e.
∂

∂xi
(d1x1 + . . . dnxn) = di

Also,
∇(xTAx) = 2Ax .

Therefore,

∇F (x) = Ax + d ∇2F (x) = A and δF = (∇F )T δx
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Conclusion of the foregoing.
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BLUE
We consider multiple regression or Best Linear Unbiased
Estimation (BLUE).

We start with two time series of vectors

x(t) =


x1(t)
x2(t)

...
xn(t)

 y(t) =


y1(t)
y2(t)

...
yp(t)


We assume (nlog) that they are centered about their mean
value, E(x) = 0, E(y) = 0, i.e., vectors of anomalies.

We derive the best linear unbiased estimation of x in terms
of y, i.e., the optimal value of the weight matrix W in the
multiple linear regression

xa(t) = Wy(t)
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This approximates the true relationship

x(t) = Wy(t) − ε(t)

where ε(t) = xa(t) − x(t) is the linear regression (“analysis”)
error, and W is an n × p matrix that minimizes the mean
squared error E(εTε).
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x(t) = Wy(t) − ε(t)

where ε(t) = xa(t) − x(t) is the linear regression (“analysis”)
error, and W is an n × p matrix that minimizes the mean
squared error E(εTε).

To derive W we write the regression equation matrix com-
ponents explicitly:

xi(t) =

p∑
k=1

wikyk(t) − εi(t)

Then

n∑
i=1

ε2
i (t) =

n∑
i=1

 p∑
k=1

wikyk(t) − xi(t)

2

= εTε
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The derivative of this with respect to the weight matrix
components is

∂

∂wij

n∑
i=1

ε2
i (t) = 2

[
p∑

k=1
wikyk(t) − xi(t)

] [
yj(t)

]
= 2

[
p∑

k=1
wikyk(t)yj(t) − xi(t)yj(t)

]
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yj(t)

]
= 2

[
p∑

k=1
wikyk(t)yj(t) − xi(t)yj(t)

]

Setting this to zero, and taking the long-time average, we
get a system of equations for wik:

p∑
k=1

wikyk(t)yj(t) = xi(t)yj(t)

This is a linear system of equations for the weights wik.

We will re-cast the system in matrix form:

WyyT = xyT
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In matrix form, the derivative of the error variance is

∂

∂W
(εTε) =

∂

∂W

[
(yTWT − xT )(Wy − x)

]
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]
Expanding, and taking the derivative, we get

∂

∂W
εTε = 2

{[
Wy(t)yT (t)

]
−

[
x(t)yT (t)

]}
If we take a long time mean, and choose W to minimize the
mean squared error, we get the normal equation

WE
(
yyT

)
− E

(
xyT

)
= 0

or

W = E
(
xyT

) [
E

(
yyT

)]−1
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∂

∂W
(εTε) =

∂

∂W

[
(yTWT − xT )(Wy − x)

]
Expanding, and taking the derivative, we get

∂

∂W
εTε = 2

{[
Wy(t)yT (t)

]
−

[
x(t)yT (t)

]}
If we take a long time mean, and choose W to minimize the
mean squared error, we get the normal equation

WE
(
yyT

)
− E

(
xyT

)
= 0

or

W = E
(
xyT

) [
E

(
yyT

)]−1

This gives the best linear unbiased estimation

xa(t) = Wy(t) .

20



Formal Derivation of BLUE
The analysis error covariance can be written

εTε = (yTWT − xT )(Wy − x)
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Formal Derivation of BLUE
The analysis error covariance can be written

εTε = (yTWT − xT )(Wy − x)

We proceed heuristically, formally differentiating and gath-
ering terms taking account of the matrix orders.

The derivative with respect to the weights is

∂εTε

∂W
= −2 (Wy − x)yT

Setting this to zero and taking time means give the normal
equations:

W = E
(
xyT

) [
E

(
yyT

)]−1
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Statistical Assumptions
We define the background error and the analysis error as
vectors of length n:

εb = xb − xt

εa = xa − xt

22



Statistical Assumptions
We define the background error and the analysis error as
vectors of length n:

εb = xb − xt

εa = xa − xt

The p observations available at irregularly spaced points
yo(rk) have observational errors

εok = yo(rk) − yt(rk) = yo −H(xt)

22



Statistical Assumptions
We define the background error and the analysis error as
vectors of length n:

εb = xb − xt

εa = xa − xt

The p observations available at irregularly spaced points
yo(rk) have observational errors

εok = yo(rk) − yt(rk) = yo −H(xt)

We don’t know the truth, xt, thus we don’t know the errors
of the available background and observations . . .

. . . but we can make a number of assumptions about their
statistical properties.

22



Statistical Assumptions
We define the background error and the analysis error as
vectors of length n:

εb = xb − xt

εa = xa − xt

The p observations available at irregularly spaced points
yo(rk) have observational errors

εok = yo(rk) − yt(rk) = yo −H(xt)

We don’t know the truth, xt, thus we don’t know the errors
of the available background and observations . . .

. . . but we can make a number of assumptions about their
statistical properties.

The background and observations are assumed to be
unbiased:

E{εb} = E{xb} − E{xt} = 0
E{εo} = E{yo} − E{yt} = 0

}
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We define the error covariance matrices for the analysis,
background and observations respectively:

Pa = A = E
{
εaε

T
a

}
(n× n)

Pb = B = E
{
εbε

T
b

}
(n× n)

Po = R = E
{
εoε

T
o

}
(p× p)


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
The nonlinear observation operator, H, that transforms anal-
ysis variables into observed variables can be linearized as

H(x + δx) = H(x) + Hδx
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We define the error covariance matrices for the analysis,
background and observations respectively:

Pa = A = E
{
εaε

T
a

}
(n× n)

Pb = B = E
{
εbε

T
b

}
(n× n)

Po = R = E
{
εoε

T
o

}
(p× p)


The nonlinear observation operator, H, that transforms anal-
ysis variables into observed variables can be linearized as

H(x + δx) = H(x) + Hδx

Here H is a p × n matrix, called the linear observation op-
erator with elements

Hij =
∂Hi

∂xj
(p× n)

Note that H is a nonlinear vector function while H is a
matrix.
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We assume that the background field is a good approxima-
tion of the truth.

Then the analysis and the observations are equal to the
background values plus small increments εb = xb − xt.
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We assume that the background field is a good approxima-
tion of the truth.

Then the analysis and the observations are equal to the
background values plus small increments εb = xb − xt.

So, the innovation vector d = y0 −H(xb) can be written

d = yo −H(xb) = yo −H(xt + (xb − xt))

= yo −H(xt) −H(xb − xt) = εo −Hεb

Here we use

H(x + ε) = H(x) +

(
∂H

∂x

)
x

ε = H(x) + Hε
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We assume that the background field is a good approxima-
tion of the truth.

Then the analysis and the observations are equal to the
background values plus small increments εb = xb − xt.

So, the innovation vector d = y0 −H(xb) can be written

d = yo −H(xb) = yo −H(xt + (xb − xt))

= yo −H(xt) −H(xb − xt) = εo −Hεb

Here we use

H(x + ε) = H(x) +

(
∂H

∂x

)
x

ε = H(x) + Hε

The H matrix transforms vectors in analysis space into their
corresponding values in observation space.

Its transpose or adjoint HT transforms vectors in observa-
tion space to vectors in analysis space.

24



The background error covariance, B, and the observation
error covariance, R, are assumed to be known.
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E
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εoε

T
b

}
= 0
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The background error covariance, B, and the observation
error covariance, R, are assumed to be known.

We assume that the observation and background errors are
uncorrelated:

E
{
εoε

T
b

}
= 0

We will now use the best linear unbiased estimation formula

W = E
(
xyT

) [
E

(
yyT

)]−1

to derive the optimal weight matrix W.

The innovation is

d = yo −H(xb) = εo −Hεb

So, the optimal weight matrix W that minimizes εT
a εa is

W = E{(x− xb)[yo −H(xb)]
T}

[
E{[yo −H(xb)][yo −H(xb)]

T}
]−1

25



This can be written as

W = E[(−εb)(εo −Hεb)
T ] {E[(εo −Hεb)(εo −Hεb)

T ]}−1
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This can be written as

W = E[(−εb)(εo −Hεb)
T ] {E[(εo −Hεb)(εo −Hεb)

T ]}−1

We may expand it as

W =
[
E(εbε

T
b )H

][
E(εoε

T
o ) + HE(εbε

T
b )HT ]−1
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This can be written as

W = E[(−εb)(εo −Hεb)
T ] {E[(εo −Hεb)(εo −Hεb)

T ]}−1

We may expand it as

W =
[
E(εbε

T
b )H

][
E(εoε

T
o ) + HE(εbε

T
b )HT ]−1

Substituting the definitions of background error covariance

B and observational error covariance R into this, we obtain

the optimal weight matrix:

W = BHT (R + HBHT )−1
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Repeat:

W = BHT (R + HBHT )−1
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Repeat:

W = BHT (R + HBHT )−1

Using the relationship

εa = εb + W[ε0 −H(εb)]

we can derive the analysis error covariance E
{
εaε

T
a

}
.

27



Repeat:

W = BHT (R + HBHT )−1

Using the relationship

εa = εb + W[ε0 −H(εb)]

we can derive the analysis error covariance E
{
εaε

T
a

}
.

It is

Pa = E
{
εaε

T
a

}
= E

{
εbε

T
b + εb(εo −Hεb)

TWT

+W(εo −Hεb)ε
T
b + W(εo −Hεb)(εo −Hεb)

TWT}
= B−BHTWT −WHB + WRWT + WHBHTWT
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Repeat:

W = BHT (R + HBHT )−1

Using the relationship

εa = εb + W[ε0 −H(εb)]

we can derive the analysis error covariance E
{
εaε

T
a

}
.

It is

Pa = E
{
εaε

T
a

}
= E

{
εbε

T
b + εb(εo −Hεb)

TWT

+W(εo −Hεb)ε
T
b + W(εo −Hεb)(εo −Hεb)

TWT}
= B−BHTWT −WHB + WRWT + WHBHTWT

Substituting

W = BHT (R + HBHT )−1

we obtain

Pa = (I−WH)B

27



The Full Set of OI Equations
For convenience, we collect the full set of basic equations of
OI, and then examine their meaning in detail.

They are formally similar to the equations for the scalar
least squares ‘two temperatures problem’.
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The Full Set of OI Equations
For convenience, we collect the full set of basic equations of
OI, and then examine their meaning in detail.

They are formally similar to the equations for the scalar
least squares ‘two temperatures problem’.

xa = xb + W[yo −H(xb)]

W = BHT (R + HBHT )−1

Pa = (I−WH)B

The interpretation of these equations is very similar to the
scalar case discussed earlier.
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The Analysis Equation

xa = xb + W[yo −H(xb)]
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xa = xb + W[yo −H(xb)]

This equation says:

The analysis is obtained by adding to the back-
ground field the product of the optimal weight
matrix and the innovation.
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the observation operator H to the background vector.
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The Analysis Equation

xa = xb + W[yo −H(xb)]

This equation says:

The analysis is obtained by adding to the back-
ground field the product of the optimal weight
matrix and the innovation.

The first guess of the observations is obtained by applying
the observation operator H to the background vector.

Note that from H(x + δx) = H(x) + Hδx, we get

H(xb) = H(xt) + H(xb − xt) = H(xt) + Hεb ,

where the matrix H is the linear tangent perturbation of H.
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The Optimal Weight Matrix

W = BHT (R + HBHT )−1
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The Optimal Weight Matrix

W = BHT (R + HBHT )−1

This equation says:

The optimal weight matrix is given by the back-
ground error covariance in the observation space
(BHT ) multiplied by the inverse of the total er-
ror covariance.
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The Optimal Weight Matrix

W = BHT (R + HBHT )−1

This equation says:

The optimal weight matrix is given by the back-
ground error covariance in the observation space
(BHT ) multiplied by the inverse of the total er-
ror covariance.

Note that the larger the background error covariance com-
pared to the observation error covariance, the larger the
correction to the first guess.
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The Optimal Weight Matrix

W = BHT (R + HBHT )−1

This equation says:

The optimal weight matrix is given by the back-
ground error covariance in the observation space
(BHT ) multiplied by the inverse of the total er-
ror covariance.

Note that the larger the background error covariance com-
pared to the observation error covariance, the larger the
correction to the first guess.

Check the result if R = 0.
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Analysis Error Covariance Matrix

Pa = (I−WH)B
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Analysis Error Covariance Matrix

Pa = (I−WH)B

This equation says:

The error covariance of the analysis is given
by the error covariance of the background, re-
duced by a matrix equal to the identity matrix
minus the optimal weight matrix.
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Analysis Error Covariance Matrix

Pa = (I−WH)B

This equation says:

The error covariance of the analysis is given
by the error covariance of the background, re-
duced by a matrix equal to the identity matrix
minus the optimal weight matrix.

Note that I is the n× n identity matrix.
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End of §5.4.1
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