Least Squares Method (Kalnay, 5.3)

Statistical estimation

We start with a toy model example, the two temperatures
problem.

We use two methods to solve it, a sequential and a vari-
ational approach, and find that they are equivalent: they
yield identical results.

The problem is important because the methodology and
results carry over to multivariate OI, Kalman filtering, and
3D-Var and 4D-Var assimilation.

If you fully understand the toy model, you should find the
more realistic application straightforward.

Introduction. Each of you: Guess the temperature in
this room right now. How can we get a best estimate of the
temperature?

* * *

The best estimate of the state of the atmosphere is obtained
by combining prior information about the atmosphere (back-
ground or first guess) with observations.

In order to combine them optimally, we also need statistical
information about the errors in these pieces of information.

As an introduction to statistical estimation, we consider the
simple problem, that we call the two temperatures problem:

Given two independent observations 7] and 75, determine
the best estimate of the true temperature 7;.

Simple (toy) Example

Let the two observations of temperature be
Ty =T+ 61}
Ty =T+ €9

[For example, we might have two iffy thermometers].
The observations have errors ¢;, which we don’t know.

Let F( ) represent the expected value, i.e., the average of
many similar measurements.

We assume that the measurements 7| and 7) are unbiased:
BT -T;) =0, E(T,—T;) =0

or equivalently,
E(e1) = E(e2) =0

We also assume that we know the variances of the observa-
tional errors:

E(el)=of  E(s) =03

We next assume that the errors of the two measurements
are uncorrelated:

E(g1g89) =0

This implies, for example, that there is no systematic ten-
dency for one thermometer to read high (¢2 > 0) when the
other is high (g9 > 0).

* * *

The above equations represent the statistical information
that we need about the actual observations.




We estimate T} as a linear combination of the observations:

Ty = a1T1 + ag1s
The analysis 7, should be unbiased:
E(Ta) = E(T})
This implies
ap +ay =1

T, will be the best estimate of 7} if the coefficients are chosen
to minimize the mean squared error of Tj:

2
0z = E((To - Tv)?] = E{[a1(Ty — Ty) + ao(To — Ty)]°}
subject to the constraint a; + a9 = 1.
This may be written

02 = E[(ate1 + agen)?]

Expanding this expression for 0(21, we get

02 = a%a% + a%a%

To minimize o2 w.r.t. aj, we require do>/da; = 0.

Naive solution: do?/da; = 2a,0? = 0, so a; = 0.
Similarly, do2/das = 0 implies ay = 0.
We have forgotten the constraint a; + a, = 1.

So, a; and ay, are not independent.
Substituting a9 =1 — a1, we get

02 = ajo} + (1 — ay)’o3

Equating the derivative w.r.t. a; to zero, 802/@@1 =0, gives

o3 o
a1 =35, 3 a2="35, 3
oy -+ op) o7 -+ o5

Thus, we have expressions for the weights a; and as in terms
of the variances (which are assumed to be known).

We define the precision to be the inverse of the variance. It
is a measure of the accuracy of the observations.

Note: The term precision, while a good one, does not have
universal currency, so it should be defined when used.

* * *
Substituting the coefficients in ac% = a%a% + a%ag, we obtain
2 2
2 _ 9193
9%a= "9 3
o1+ 05
This can be written in the alternative form:
1 1
= Al I e

o, 01 09

Thus, if the coefficients are optimal, the precision of the
analysis is the sum of the precisions of the measurements.

Variational approach

We can also obtain the same best estimate of 7; by mini-
mizing a cost function.

The cost function is defined as the sum of the squares of the
distances of 7' to the two observations, weighted by their
observational error precisions:

1 [(T-T)? (T -T2
J(T) == 5 5
2 o1 03

The minimum of the cost function J is obtained is obtained
by requiring 0.J/9T = 0.

* * *

Exercise: Prove that 0.J/0T = 0 gives the same value for
T, as the least squares method.



The control variable for the minimization of J (i.e., the vari-
able with respect to which we are minimizing the cost func-
tion) is the temperature.

For the least squares method, the control variables were the
weights.

The equivalence between the minimization of the analysis
error variance and the variational cost function approach is
important.

This equivalence also holds true for multidimensional prob-
lems, in which case we use the covariance matrix rather than
the scalar variance.

It indicates that OI and 3D-Var are solving the same prob-
lem by different means.

Example: Suppose T1' =2 o01=2 1Tp=0 o9=1.

Show that 7, = 0.4 and o, = v/0.8.

* * *
O'% + 0'% =95

0% 1 0% 4

o1+ 05 o o1 + 05 5

CHECK: a; +a9 = 1.

1 4
Ta:a1T1+a2T2:gX2+gXOZO.4

* * * 9 0%05 4x1
04 = 5 5 = =0.8
o +o5 441
This solution is illustrated in the next figure.
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The probability distribution for a simple case.

The analysis has a pdf with a maximum closer to 75, and a smaller standard deviation than either observation.

Conclusion of the foregoing.



Simple Sequential Assimilation

We consider the ‘toy’ example as a prototype of a
full multivariate OI.

Recall that we wrote the analysis as a linear combination
Ty = a1T] + ag1h
The requirement that the analysis be unbiassed led to

a]+az =1, so
To =T+ ay(Th — T1)

Assume that one of the two temperatures, say 71 = 1, is not
an observation, but a background value, such as a forecast.
Assume that the other value is an observation, T = T,,.
We can write the analysis as

To =T+ W(To — Tp)

where W = a9 can be expressed in terms of the variances.

The least squares method gave us the optimal weight:

When the analysis is written as
To=Tpy+W(T, —Tp)

the quantity (7, —T}) is called the observational innovation,
i.e., the new information brought by the observation.

It is also known as the observational increment (with respect
to the background).

The analysis error variance is, as before, given by

11 ,  0ho
2= 3t3 O 0g=—m5
o oy + 05

The analysis variance can be written as

03 =(1- W)ag

* * *
Exercise: Verify all the foregoing formulze.
* * *

We have shown that the simple two-temperatures problem
serves as a paradigm for the problem of objective analysis
of the atmospheric state.

Collection of Main Equations

We gather the principal equations here:




These four equations have been derived for the simplest
scalar case ...

... but they are important for the problem of data assim-
ilation because they have exactly the same form as more
general equations:

The least squares sequential estimation method is used for
real multidimensional problems (OI, interpolation, 3D-Var
and even Kalman filtering).

Therefore we will interpret these four equations in detail.

The first equation

T, =T, +WI(T,—Tp)

This says:

The analysis is obtained by adding to the background
value, or first guess, the innovation (the difference
between the observation and first guess), weighted
by the optimal weight.

The second equation The third equation

9
4

W_

- 0l + 02

This says:

The optimal weight is the background error variance
multiplied by the inverse of the total error variance
(the sum of the background and the observation error
variances).

Note that the larger the background error variance,
the larger the correction to the first guess.

Look at the limits: 02 =0;

The variance of the analysis is

)
2 9p9%
%= "5 5

oy + 05

This can also be written

1 1 1
o2 o2 o2
a b 0

This says:

The precision of the analysis (inverse of the analysis
error variance) is the sum of the precisions of the
background and the observation.




The fourth equation

This says:

The error variance of the analysis is the error variance
of the background, reduced by a factor equal to one
minus the optimal weight.

It can also be written

2 _ 2
o, =Wo,

All the above statements are important because they also
hold true for sequential data assimilation systems (OI and
Kalman filtering) for multidimensional problems.

In these problems, in which 7}, and 7; are three-dimensional
fields of size order 10" and 7, is a set of observations (typi-
cally of size 105), we have to replace expressions as follows:

® error variance =—> error covariance matrix

e optimal weight =—> optimal gain matrix.

Note that there is one essential tuning parameter in OI:

It is the ratio of the observationalvariance to the background

error variance: )
Oo
ayp

Application to Analysis

If the background is a forecast, we can use the four equations
to create a simple sequential analysis cycle.

The observation is used once at the time it appears and then
discarded.

Assume that we have completed the analysis at time ¢; (e.g.,
at 06 UTC), and we want to proceed to the next cycle (time
tir1, or 12 UTC).

The analysis cycle has two phases, a forecast phase to up-
date the background 7}, and its error variance ag, and an
analysis phase, to update the analysis 7T, and its error vari-

ance o_.
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Typical 6-hour analysis cycle.




Forecast Phase

Analysis Phase

In the forecast phase of the analysis cycle, the background
is first obtained through a forecast:

Ty(tiv1) = M [Ta(t;)]
where M represents the forecast model.

We also need the error variance of the background.

In OI, this is obtained by making a suitable simple assump-
tion, such as that the model integration increases the ini-
tial error variance by a fixed amount, a factor a somewhat
greater than 1:

ot (tiv1) = aoi(t;)

This allows the new weight W (¢;,{) to be estimated using

In the analysis phase of the cycle we get the new observation
To(ti+1), and we derive the new analysis 7;(t;,) using

To =Ty +W(T, —Tp)
The estimates of ag is from
op(tir1) = aog(t;)
The new analysis error variance o2(t; ;) comes from
o2 =(1— W)ag

It is smaller than the background error.

After the analysis, the cycle for time ¢;,; is completed, and
we can proceed to the next cycle.

Reading Assignment

Study the Remarks in Kalnay, §5.3.1




