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Data Assimilation

Data Assimilation

e NWP is an initial/boundary value problem

e Given
—an estimate of the present state of the atmosphere
(initial conditions)
— appropriate surface and lateral boundary conditions

the model simulates or forecasts the evolution of the at-
mosphere.

e The more accurate the estimate of the initial conditions,
the better the quality of the forecasts.

e Operational NWP centers produce initial conditions through

a statistical combination of observations and short-range
forecasts.

e This approach is called data assimilation

The model integrates the equations forward in time, starting
from the initial conditions.

In the early NWP experiments, hand interpolations of the
observations to grid points were performed.

These fields of initial conditions were manually digitized.

The need for an automatic “objective analysis” quickly be-
came apparent.

The first objective analysis systems were developed (inde-
pendently) in Sweden and in USA in the 1950s.
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tional data assimilation systems.

Present-day operational systems typically use a 6-h cycle
performed four times a day.
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Suppose the background field is a model 6-h forecast:

Xb
To obtain the background or first guess “observations”, the
model forecast is interpolated to the observation location

If the observed quantities are not the same as the model
variables, the model variables are converted to observed
variables yg.

The first guess of the observations is denoted
H(xp)
where H is called the observation operator.
The difference between the observations and the background,
Yo — H(xp),

is called the observational increment or innovation.

The analysis x5 is obtained by adding the innovations to the
background field with weights W that are determined based
on the estimated statistical error covariances of the forecast
and the observations:

Xq = Xp + W[Yo - H(Xb)]

Different analysis schemes (SCM, OI, 3D-Var, and KF) are
based on this equation, but differ by the approach taken to
combine the background and the observations to produce
the analysis.

Earlier methods such as the SCM used weights which were
determined empirically.

The weights were a function of the distance between the ob-
servation and the grid point, and the analysis wass iterated
several times.

In Optimal Interpolation (OI), the matrix of weights W is
determined from the minimization of the analysis errors at
each grid point.

In the 3D-Var approach one defines a cost function propor-
tional to the square of the distance between the analysis
and both the background and the observations.

This cost function is minimized to obtain the analysis.

Lorenc (1986) showed that OI and the 3D-Var approach are
equivalent if the cost function is defined as:

1 _ _
J = 5{vo— HR)"R ™y, - Hx)] + (x - x) "B~ (x - x,) }
The cost function J measures:
e The distance of a field x to the observations (first term)

e The distance to the background x}, (second term).



The distances are scaled by the observation error covariance
R and by the background error covariance B respectively.

The minimum of the cost function is obtained for x = xj,
which is defined as the analysis.

The analysis obtained by OI and 3DVar is the same if the

weight matrix is given by

W =BH!(HBH! + R )~!

The difference between OI and the 3D-Var approach is in
the method of solution:

e In OI, the weights W are obtained for each grid point or
grid volume, using suitable simplifications.

e In 3D-Var, the minimization of J is performed directly, al-
lowing for additional flexibility and a simultaneous global
use of the data.

Recently, the variational approach has been extended to
four dimensions, by including within the cost function the
distance to observations over a time interval (assimilation
window).

This is called four-dimensional variational assimilation (4DVar)

In the analysis cycle, the importance of the model cannot
be overemphasized:

e It transports information from data-rich to data-poor
regions

e It provides a complete estimation of the four-dimensional
state of the atmosphere.

The introduction of 4ADVar at ECMWEF has resulted in marked
improvements in the quality of medium-range forecasts.

End of Introduction

Richardson (1922) and Charney et al. (1950) performed
hand interpolations of the observations to a regular grid.

These fields of initial conditions were then manually digi-
tized, which was a very time consuming procedure.

The need for an automatic “objective analysis” became quickly
apparent.

Interpolation methods fitting observations to a regular grid
were soon developed.

Panofsky (1949) developed the first objective analysis algo-
rithm.

It was based on two-dimensional polynomial interpolation,
a global procedure (the same function is used to fit all the
observations).

However, why should an observation in New Zealand be
used to determine the pressure pattern in Ireland?

Gilchrist and Cressman (1954) developed a local polynomial
interpolation scheme for the geopotential height.

A quadratic in z and y was defined at each grid point:

2 2
2(x,y) = ago + a10® + agry + ax” + a112y + apy

The coefficients were determined by minimizing the mean
square difference

min £ = min[ Z pk — z(zy, yk))Q

Kyr

+ Z%{

Here p;, q;. are emplrlcal weighting coefficients and K is the
total number of observations within the radius of influence.

—ug(eg,yp)]” + [0f - Ug(xkaykﬂQ}]
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Note that although the geopotential height field is being
analysed, the wind observations are also used:

The winds provide information about the gradient of z.
This is called multi-variate analysis.

When only heights are used to analyse heights, and winds
to analyse winds, we have a uni-variate analysis.

* * *

Exercise: Consider the Gilchrist and Cressman scheme.
What does the analysis look like if there is (i) a single pres-
sure observation; (ii) two pressure observations close to-
gether; (iii) two pressure obs. far apart?

Background Field

Background Field

For operational models, it is not enough to perform spatial
interpolation of observations into regular grids:

There are not enough data available to define the initial
state.

The number of degrees of freedom in a modern NWP model
is of the order of 10'.

The total number of conventional observations is of the or-
der of 10*-10°.

There are many new types of data, such as satellite and
radar observations, but:

e they don’t measure the variables used in the models

e their distribution in space and time is very nonuniform.

In addition to observations, it is necessary to use a first

guess estimate of the state of the atmosphere at the grid
points.

The first guess (also known as background field or prior
information) is our best estimate of the state of the atmo-
sphere prior to the use of the observations.

A short-range forecast is normally used as a first guess in
operational systems in what is called an analysis cycle.

If a forecast is unavailable (e.g., if the cycle is broken), we
may have to use climatological fields ...

... but they are normally a poor estimate of the initial state.
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Regional analysis cycle, performed (perhaps) every hour.

Intermittent data assimilation is used in most global oper-
ational systems, typically with a 6-h cycle performed four

times a day.
The model forecast plays a very important role:

e Over data-rich regions, the analysis is dominated by the
information contained in the observations.

e In data-poor regions, the forecast benefits from the infor-
mation upstream.

For example, 6-h forecasts over the North Atlantic Ocean
are relatively good, because of the information coming from

North America.
The model is able to transport information from data-rich
to data-poor areas.

Exercise: Simple chart analysis.
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