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The most popular method of initialization up to recently
was nonlinear normal mode initialization, or NNMI.

This has been widely used, in many NWP centres, and has
performed satisfactorily.

However, it has a number of limitations. In particular, it is
not straightforward to apply NNMI in limited geographical
domains.

Recently, an alternative method of initialization, called dig-
ital filter initialization (DFI), was introduced.

In this lecture we review DFI, and describe how the method
is applied in operational NWP.
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The Notion of Filtering
The concept of filtering has a rôle in virtually every field of
study, “from topology to theology, seismology to sociology.”

The process of filtering involves the selection of those com-
ponents of an assemblage having some particular property,
and the removal or elimination of those that lack it.

A filter is any device or contrivance designed to carry out
such a selection.

It may be represented by a simple system diagram, having
an input with both desired and undesired components, and
an output comprising only the former.

Good/Bad/Ugly =⇒ Filter −→ Good
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The information in the signal can be isolated by using a
lowpass filter.

? ? ?

Other ideal filters can be discussed:

• High-pass filters

• Band-pass filters

• Notch filters

But the Low-Pass Filter is the one needed for initialization.
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Frequency response of ideal low-pass filter.
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Nonrecursive and Recursive Filters
Given a discrete function of time,

{
xn

}
, a nonrecursive dig-

ital filter is defined by

yn =

N∑
k=−N

akxn−k.
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The output yn at time n∆t depends on both past and future
values of the input xn, but not on other output values.

A recursive digital filter is defined by

yn =

N∑
k=K

akxn−k +

L∑
k=1

bkyn−k

where L and N are positive integers. Usually, K = 0.

The output yn at time n∆t depends on past and present
values of the input and also on previous output values.
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Recursive filters are more powerful than non-recursive ones,
but the feedback of the output can cause numerical insta-
bility.

The response of a nonrecursive filter to an impulse δ(n) is
zero for |n| > N , giving rise to the alternative name finite
impulse response or FIR filter.

Since the response of a recursive filter can persist indefi-
nitely, it is called an infinite impulse response (IIR) filter.

? ? ?

To find the frequency response of a recursive filter, let

xn = exp(inθ)

and assume an output of the form

yn = H(θ) exp(inθ)
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Substitute yn = H(θ) exp(inθ) into the defining formula

yn =

N∑
k=K

akxn−k +

L∑
k=1

bkyn−k

The transfer function H(θ) is

H(θ) =

N∑
k=K

ake
−ikθ

1−
L∑

k=1
bke

−ikθ

.

For nonrecursive filters the denominator reduces to unity:

H(θ) =

N∑
k=−N

ake
−ikθ
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Response function of a FIR:

H(θ) =

N∑
k=−N

ake
−ikθ

This equation gives the response once the filter coefficients
ak have been specified.

However, what is really required is the opposite: to derive
coefficients which will yield the desired response function.

This inverse problem has no unique solution, and a great
variety of techniques have been developed.

The entire area of filter design is concerned with finding
filters haveing desired properties.

? ? ?
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quency components.
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Design of Nonrecursive Filters
Consider a function of time, f (t), with low and high fre-
quency components.

To filter out the high frequencies we proceed as follows:

[1] Calculate the Fourier transform F (ω) of f (t);
[2] Set the coefficients of the high frequencies to zero;
[3] Calculate the inverse transform.

Step [2] may be performed by multiplying F (ω) by an ap-
propriate weighting function Hc(ω).

Typically, Hc(ω) is a step function

Hc(ω) =

{
1, |ω| ≤ |ωc|;
0, |ω| > |ωc|,

where ωc is a cutoff frequency.
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Equivalence of filtering and convolution.

(h ∗ f )(t) = F−1{F{h} · F{f}}
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These three steps are equivalent to a convolution of f (t) with
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Suppose now that f is known only at discrete moments tn =
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is given.
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−∞
h(τ )f (t− τ )dτ.

For simple functions f (t), this integral may be evaluated
analytically. In general, some approximation must be used.

? ? ?

Suppose now that f is known only at discrete moments tn =
n∆t, so that the sequence

{
· · · , f−2, f−1, f0, f1, f2, · · ·

}
is given.

For example, fn could be the value of some model variable
at a particular grid point at time tn.

11



The shortest period component which can be represented
with a time step ∆t is τNy = 2∆t, corresponding to a max-
imum frequency, the so-called Nyquist frequency, ωNy =
π/∆t.
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cients of a function F (θ):

F (θ) =

∞∑
n=−∞

fne−inθ,

where θ = ω∆t is the digital frequency and F (θ) is periodic
with period 2π: F (θ) = F (θ + 2π). [Note: θNy = ωNy∆t = π]

High frequency components of the sequence may be elim-
inated by multiplying F (θ) by a function Hd(θ) defined by

Hd(θ) =

{
1, |θ| ≤ |θc|;
0, |θ| > |θc|,

The cutoff frequency θc = ωc∆t is assumed to fall in the
Nyquist range (−π, π) and Hd(θ) has period 2π.
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The function Hd(θ) may be expanded:

Hd(θ) =

∞∑
n=−∞

hne−inθ ; hn =
1

2π

∫ π

−π
Hd(θ)einθdθ.
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hn =
sin nθc

nπ
.
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Let
{
f?
n

}
denote the low frequency part of

{
fn

}
, with all

components having frequency greater than θc removed.
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Exercise: Prove this.

? ? ?

Let
{
f?
n

}
denote the low frequency part of

{
fn

}
, with all

components having frequency greater than θc removed.

Clearly,

Hd(θ) · F (θ) =

∞∑
n=−∞

f?
ne−inθ.
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The convolution theorem now implies that Hd(θ) ·F (θ) is the
transform of the convolution of

{
hn

}
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{
fn

}
:

f?
n = (h ∗ f )n =

∞∑
k=−∞

hkfn−k.
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hkfn−k.

This enables the filtering to be performed in the time do-
main, i.e., directly on the sequence

{
fn
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.

? ? ?

In practice the summation must be truncated.

Thus, an approximation to the LF part of
{
fn

}
is given by

f?
n =

N∑
k=−N

hkfn−k.

We see that the finite approximation to the discrete convo-
lution is identical to a nonrecursive digital filter.
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Gibbs oscillations
Truncation of a Fourier series gives rise to Gibbs oscillations.

These may be greatly reduced by means of an appropriately
defined “window” function.
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Gibbs oscillations
Truncation of a Fourier series gives rise to Gibbs oscillations.

These may be greatly reduced by means of an appropriately
defined “window” function.

The response of the filter is improved if hn is multiplied by
the Lanczos window:

wn =
sin

(
nπ/(N + 1)

)
nπ/(N + 1)

.

Exercise: Write a MatLab program to compute the FFT
of a step function with various truncations. Thus investigate
the Gibbs phenomenon.

? ? ?
The truncated Fourier analysis of a square wave is shown in
the following figures.

15



Original Square wave function.
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Truncation: N = 11 (Nmax = 50)
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Truncation: N = 21 (Nmax = 50)
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Truncation: N = 31 (Nmax = 50)
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Truncation: N = 41 (Nmax = 50)
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Original Square wave function.
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Application of FIR to Initialization
An initialization scheme using a nonrecursive digital filter
was developed by Lynch and Huang (1992) for HiRLAM.
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Application of FIR to Initialization
An initialization scheme using a nonrecursive digital filter
was developed by Lynch and Huang (1992) for HiRLAM.

The value chosen for the cutoff frequency corresponded to
a period τc = 6 hours.

With the time step ∆t = 6 minutes, this corresponds to a
(digital) cutoff frequency θc = π/30.

The coefficients were derived by Fourier expansion of a step-
function, truncated at N = 30, with a Lanczos window:

hn =

[
sin

(
nπ/(N + 1)

)
nπ/(N + 1)

] (
sin(nθc)

nπ

)
.
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The use of the win-
dow decreases the
Gibbs oscillations in
the stop-band |θ| >
|θc|.
However, it also has
the effect of widen-
ing the pass-band
beyond the nominal
cutoff.

For a fuller discus-
sion of windowing
see e.g. Hamming
(1989) or Oppen-
heim and Schafer
(1989).
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The central lobe of the coefficient function spans a period
of six hours, from t = −3h to t = +3h: TSpan = 6hours.

The filter summation was calculated over this range, with
the coefficients normalized to have unit sum over the span.
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The uninitialized fields of surface pressure, temperature,
humidity and winds were first integrated forward for three
hours, and running sums of the form

f?
F (0) =

1

2
h0f0 +

N∑
n=1

h−nfn,

where fn = f (n∆t), were calculated for each field at each
gridpoint and on each model level.
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? ? ?

The uninitialized fields of surface pressure, temperature,
humidity and winds were first integrated forward for three
hours, and running sums of the form

f?
F (0) =

1

2
h0f0 +

N∑
n=1

h−nfn,

where fn = f (n∆t), were calculated for each field at each
gridpoint and on each model level.

These were stored at the end of the three hour forecast.
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Repeat:

f?
F (0) =

1

2
h0f0 +

N∑
n=1

h−nfn,
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Repeat:

f?
F (0) =

1

2
h0f0 +

N∑
n=1

h−nfn,

The original fields were then used to make a three hour
‘hindcast’, during which running sums

f?
B(0) =

1

2
h0f0 +

−N∑
n=−1

h−nfn

were accumulated for each field, and stored as before.

The two sums were then combined to give

f?(0) = f?
F (0) + f?

B(0) =

−N∑
n=−N

h−nfn .

These fields correspond to the application of the digital filter
to the original data. They are the filtered data.
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Phase Errors
In the foregoing, only the amplitudes of the transfer func-
tions have been discussed.

Since these functions are complex, there is also a phase
change induced by the filters.
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Phase Errors
In the foregoing, only the amplitudes of the transfer func-
tions have been discussed.

Since these functions are complex, there is also a phase
change induced by the filters.

We will not consider this question here. However, it is es-
sential that the phase characteristics of a filter be studied
before it is considered for use.

Ideally, the phase-error should be as small as possible for the
low frequency components which are meteorologically im-
portant.

It is salutary to recall that phase-errors are amongst the
most prevalent and pernicious problems in forecasting.
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The Dolph-Chebyshev Filter
We now consider a particularly simple filter, having explicit
expressions for its impulse response coefficients.
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We give here the definition and principal properties of the
Dolph-Chebyshev filter.

For further information, see Lynch, 1997 (http://maths.ucd.ie/∼plynch).

We use the Chebyshev polynomials, defined by

Tn(x) =

{
cos(n cos−1 x), |x| ≤ 1;

cosh(n cosh−1 x), |x| > 1.

Clearly, T0(x) = 1 and T1(x) = x.

A recurrence relation follows from the definition:

Tn(x) = 2xTn−1(x)− Tn−2(x), n ≥ 2.

In the interval |x| ≤ 1, Tn(x) oscillates between +1 and −1.
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Now consider the function defined in the frequency domain:

H(θ) =
T2M (x0 cos (θ/2))

T2M(x0)
,

where x0 > 1.
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Now consider the function defined in the frequency domain:

H(θ) =
T2M (x0 cos (θ/2))

T2M(x0)
,

where x0 > 1.

Let θs be such that x0 cos(θs/2) = 1:

• As θ varies from 0 to θs, H(θ) falls from 1 to r = 1/T2M (x0).

• For θs ≤ θ ≤ π, H(θ) oscillates in the range ±r.

The form of H(θ) is that of a low-pass filter with a cut-off
at θ = θs.

By means of the definition of Tn(x) and basic trigonometric
identities, H(θ) can be written as a finite expansion

H(θ) =

+M∑
n=−M

hn exp(−inθ).
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Again,

H(θ) =

+M∑
n=−M

hn exp(−inθ).
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Again,

H(θ) =

+M∑
n=−M

hn exp(−inθ).

The coefficients {hn} may be evaluated from the inverse
Fourier transform

hn =
1

N

1 + 2r

M∑
m=1

T2M

(
x0 cos

θm

2

)
cos mθn

 ,

where |n| ≤ M , N = 2M + 1 and θm = 2πm/N .
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Again,

H(θ) =

+M∑
n=−M

hn exp(−inθ).

The coefficients {hn} may be evaluated from the inverse
Fourier transform

hn =
1

N

1 + 2r

M∑
m=1

T2M

(
x0 cos

θm

2

)
cos mθn

 ,

where |n| ≤ M , N = 2M + 1 and θm = 2πm/N .

Since H(θ) is real and even, hn are also real and h−n = hn.

The weights {hn : −M ≤ n ≤ +M} define the Dolph-Chebyshev
or, for short, Dolph filter.
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In the HiRLAM model, the filter order N = 2M + 1 is deter-
mined by the time step ∆t and forecast span TS.
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in the stop-band [θs, π]:
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side-lobe amplitude
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mined by the time step ∆t and forecast span TS.

The desired frequency cut-off is specified by choosing a value
for the cut-off period, τs.

Then θs = 2π∆t/τs and the parameters x0 and r are given by

1

x0
= cos

θs

2
,

1

r
= cosh

(
2M cosh−1 x0

)
.

The ripple ratio r is a measure of the maximum amplitude
in the stop-band [θs, π]:

r =

[
side-lobe amplitude

main-lobe amplitude

]
The Dolph filter has minimum ripple-ratio for a given main-
lobe width and filter order.
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Example of Dolph Filter
Suppose components with period less than three hours are
to be eliminated (τs = 3 h) and the time step is ∆t = 1

8 h.
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Example of Dolph Filter
Suppose components with period less than three hours are
to be eliminated (τs = 3 h) and the time step is ∆t = 1

8 h.

The parameters chosen for the DFI are:

• Span TS = 2 h

• Cut-off period τs = 3 h

• Time step ∆t = 450 s = 1
8 h

So, M = 8, N = 17 and θs = 2π∆t/τs ≈ 0.26.

The DFI procedure employed in the HiRLAM model in-
volves a double application of the filter.

We examine the frequency response H(θ) and its square,
H(θ)2 (a second pass squares the frequency response).
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Frequency response for Dolph filter with span TS = 2h, order N = 2M + 1 = 17 and

cut-off τs = 3h. Results for single and double application are shown.

Logarithmic response (dB) as a function of frequency.
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Frequency response for Dolph filter with span TS = 2h, order N = 2M + 1 = 17 and

cut-off τs = 3h. Results for single and double application are shown.

Amplitude response as a function of period.
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The ripple ratio of the filter has the value r = 0.241.

A single pass attenuates high frequencies (components with
|θ| > |θs|) by at least 12.4dB.

For a double pass, the minimum attenuation is about 25dB,
more than adequate for elimination of HF noise.

The amplitudes of components with periods less than two
hours are reduced to less than 5% of their original value.

Components with periods greater than one day are left sub-
stantially unchanged.

It is crucial that an initialization scheme does not distort
the meteorologically significant components of the flow.

It can be proved (Lynch, 1997) that the Dolph window is
an optimal filter whose pass-band edge, θp, is the solution
of the equation H(θ) = 1− r.
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filter to time series of model variables.
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Implementation in HIRLAM
The digital filter initialization is performed by applying the
filter to time series of model variables.

The filter is applied in two stages:

In the first stage, a backward integration from t = 0 to t =
−TS is performed, with all irreversible physics switched off.

The filter output is calculated by accumulating the sums

x̄ =

n=−N∑
n=0

hN−nxn .

The output x̄ is valid at time t = −1
2TS.

In the second stage, a forward integration is made from
t = −1

2TS to t = +1
2TS, starting from the output x̄.

Again, the filter is applied by accumulating sums formally
identical to those of the first stage.
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The output of the second stage is valid at the centre of the
interval [−1

2TS, +
1
2TS], i.e., at t = 0.

36



The output of the second stage is valid at the centre of the
interval [−1

2TS, +
1
2TS], i.e., at t = 0.

The output of the second pass is the initialized data.
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DFI: Sample Results
The basic measure of noise is the mean absolute value of
the surface pressure tendency

N1 =

(
1

NGRID

) NGRID∑
n=1

∣∣∣∣∂ps

∂t

∣∣∣∣ .
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For well balanced fields this quantity has a value of about
1 hPa per 3 hours.

For uninitialized fields it can be up to an order of magnitude
larger.
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DFI: Sample Results
The basic measure of noise is the mean absolute value of
the surface pressure tendency

N1 =

(
1

NGRID

) NGRID∑
n=1

∣∣∣∣∂ps

∂t

∣∣∣∣ .

For well balanced fields this quantity has a value of about
1 hPa per 3 hours.

For uninitialized fields it can be up to an order of magnitude
larger.

In the following figure, we plot the value of N1 for three
forecasts.
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Mean absolute surface pressure tendency for three forecasts. Forecast

with no initialization (NIL); normal mode initialization (NMI); digital

filter initialization (DFI). Units are hPa/3 hours.
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The measure N1 indicates the noise in the vertically inte-
grated divergence field.

However, even when this is small, there may be significant
activity in the internal gravity wave modes.
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The measure N1 indicates the noise in the vertically inte-
grated divergence field.

However, even when this is small, there may be significant
activity in the internal gravity wave modes.

To see this, we look at the vertical velocity field at 500 hPa
for the NIL and DFI analyses.

? ? ?

The uninitialized vertical velocity field is physically quite
unrealistic.

The DFI vertical velocity is much smoother, and much more
realistic.
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Vertical velocity at 500 hPa for uninitialized analysis (NIL).
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Vertical velocity at 500 hPa after digital filtering (DFI).
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Root mean square divergence at each model level.
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Advantages of DFI
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Advantages of DFI
1. No need to compute or store normal modes;

2. No need to separate vertical modes;

3. Complete compatibility with model discretisation;

4. Applicable to exotic grids on arbitrary domains;

5. No iterative numerical procedure which may diverge;

6. Ease of implementation and maintenance;

7. Applicable to all prognostic model variables;

8. Applicable to non-hydrostatic models.
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End of §4.3
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