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In this section we consider the Initialization of the analysed fields.



Text for the Course
The lectures will be based closely on the text

Atmospheric Modeling, Data Assimilation and Predictability
by

Eugenia Kalnay

published by Cambridge University Press (2002).

See also Lynch, Peter, 2003: Introduction to Initialization. Pp. 97-111 in Data Assimilation for the Earth System.

Eds. R. Swinbank, V. Shutyaev and W. Lahoz, 378pp. [http://maths.ucd.ie/∼plynch/Publications.html]
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§4.1. Introduction to Initialization

�The spectrum of atmospheric motions
is vast, encompassing phenomena hav-
ing periods ranging from seconds to
millennia.

�The motions of primary interest have
timescales greater than a day.

�The mathematical models used for nu-
merical prediction describe a broader
span of dynamical features than those
of direct concern.
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�For many purposes these higher fre-
quency components can be regarded
as noise contaminating the motions of
meteorological interest.
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�For many purposes these higher fre-
quency components can be regarded
as noise contaminating the motions of
meteorological interest.

�The elimination of this noise is achieved
by adjustment of the initial fields, a
process called initialization.

? ? ?
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�We examine the fundamental equations
and elucidate the causes of spurious os-
cillations.
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�We examine the fundamental equations
and elucidate the causes of spurious os-
cillations.

�The history of methods of eliminating
high-frequency noise is recounted.

�Various initialization methods are de-
scribed.

�The normal mode initialization method
is described.

� It is illustrated by application to a sim-
ple mechanical system, the swinging
spring.
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Richardson’s Forecast
The story of Lewis Fry Richardson’s fore-
cast is well known.

�Richardson forecast the change in sur-
face pressure at a point in central Eu-
rope, using the mathematical equations.

�His results implied a change in surface
pressure of 145 hPa in 6 hours.

�As Sir Napier Shaw remarked, “the
wildest guess . . . would not have been
wider of the mark . . . ”.
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cast was “. . . a fairly correct deduction
from a somewhat unnatural initial dis-
tribution”.
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�Yet, Richardson claimed that his fore-
cast was “. . . a fairly correct deduction
from a somewhat unnatural initial dis-
tribution”.

�He ascribed the unrealistic value of pres-
sure tendency to errors in the winds.

�This is only a partial explanation of
the problem.
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Spectrum of Atmospheric Motions
The natural oscillations of the atmosphere fall into two groups

• Rotational or vortical modes (Rossby-Haurwitz waves)

• Gravity-inertia wave oscillations

For typical conditions of large scale atmospheric flow the
two types of motion are clearly separated and interactions
between them are weak.

The high frequency gravity-inertia waves may be locally sig-
nificant in the vicinity of steep orography, where there is
strong thermal forcing or where very rapid changes are oc-
curring . . .

. . . but overall they are of minor importance and may be
regarded as undesirable noise.
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Smooth Evolution of Pressure
x
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Noisy Evolution of Pressure
x

10



Tendency of a Smooth Signal
x
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Tendency of a Noisy Signal
x
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A Reading from

The Book of Limerick

Young Richardson wanted to know
How quickly the pressure would grow.

But, what a surprise, ’cos
The six-hourly rise was,

In Pascals, One Four Five Oh Oh!
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A Freak Wave?
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The Forty-foot, Sandycove.
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Simple Example
As a simple example of a system with multiple timescales,
consider the water level at the Forty-foot on a stormy day.
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Simple Example
As a simple example of a system with multiple timescales,
consider the water level at the Forty-foot on a stormy day.

The tidal variation, the slow changes between low and high
water, has a period of about twelve hours.

Water level changes due to sea and swell have periods of
less than a minute.

Clearly, the instantaneous value of water level cannot be
used for tidal analysis.

If the vertical velocity observed at an instant is used to
predict the long-term movement of the water, a nonsensical
forecast is obtained.

The instantaneous rate-of-change is no a guide to the long-
term evolution.

The same is true of the atmosphere!
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The Problem of Initialization.
A subtle and delicate state of balance exists in the atmo-
sphere between the wind and pressure fields.

This ensuring that the fast gravity waves have much smaller
amplitude than the slow rotational part of the flow.
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The Problem of Initialization.
A subtle and delicate state of balance exists in the atmo-
sphere between the wind and pressure fields.

This ensuring that the fast gravity waves have much smaller
amplitude than the slow rotational part of the flow.

The pressure and wind fields in regions not too near the
equator are close to a state of geostrophic balance and the
flow is quasi-nondivergent.

The existence of this geostrophic balance is a perennial
source of interest

It is a consequence of the forcing mechanisms and dominant
modes of hydrodynamic instability and of the manner in
which energy is dispersed and dissipated in the atmosphere.
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Evolution of surface pressure before and after NNMI.
(Williamson and Temperton, 1981)
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When the primitive equations are used for numerical pre-
diction the forecast may contain spurious large amplitude
high frequency oscillations.

These result from anomalously large gravity-inertia wave
components, arising from in the observations and analysis.

It was the presence of such imbalance in the initial fields
which gave rise to the totally unrealistic pressure tendency
of 145 hPa/6h obtained by Lewis Fry Richardson.

The problems associated with high frequency motions are
overcome by the process known as initialization.
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Evolution of surface pressure before and after NNMI.
(Williamson and Temperton, 1981)
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Need for Initialization
The principal aim of initialization is to define the initial
fields so that the gravity inertia waves remain small through-
out the forecast.
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Need for Initialization
The principal aim of initialization is to define the initial
fields so that the gravity inertia waves remain small through-
out the forecast.

Specific Requirements for Initialization:

• Essential for satisfactory data assimilation

• Noisy forecasts have unrealistic vertical velocity

• Hopelessly inaccurate short-range rainfall patterns

• Spin-up of the humidity/water fields.

• Imbalance can lead to numerical instabilities.
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Scale-analysis of the SWE
We introduce characteristic scales for the dependent vari-
ables, and examine the relative sizes of the terms in the
equations.
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Scale-analysis of the SWE
We introduce characteristic scales for the dependent vari-
ables, and examine the relative sizes of the terms in the
equations.

• Length scale: L = 106 m

• Velocity scale: V = 10ms−1

• Advective time scale: T = L/V = 105 s

• Pressure variation scale: P

• Scale height: H = 104 m

• Acceleration of gravity: g = 10ms−2

• Coriolis parameter: f = 10−4 s−1

• Density: ρ0 = 1kgm−3

For simplicity, we may assume ρ0 ≡ 1, though this is not essential.
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The linear rotational shallow water equations are:

∂u

∂t︸︷︷︸
V2/L

− fv︸︷︷︸
f V

+
1

ρ0

∂p

∂x︸ ︷︷ ︸
P/L

= 0

∂v

∂t︸︷︷︸
V2/L

+ fu︸︷︷︸
f V

+
1

ρ0

∂p

∂y︸ ︷︷ ︸
P/L

= 0

1

ρ0

∂p

∂t︸ ︷︷ ︸
PV/L

+ gH

[
∂u

∂x
+
∂v

∂y

]
︸ ︷︷ ︸

gHV/L

= 0

The scale of each term in the equations is indicated.
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+
1
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∂p

∂y︸ ︷︷ ︸
P/L

= 0

1

ρ0

∂p

∂t︸ ︷︷ ︸
PV/L

+ gH

[
∂u

∂x
+
∂v

∂y

]
︸ ︷︷ ︸

gHV/L

= 0

The scale of each term in the equations is indicated.

If there is approximate balance between the Coriolis and
pressure gradient terms, we must have

P

L
= fV or P = fLV = 103 Pa
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The ratio of the velocity tendencies to the Coriolis terms is

the Rossby number

Ro ≡ V

fL
=

10

10−4 · 106
= 10−1 ,

a small parameter.
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The scales of the terms in the momentum equations are
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the Rossby number

Ro ≡ V

fL
=

10

10−4 · 106
= 10−1 ,

a small parameter.

The scales of the terms in the momentum equations are

∂u

∂t︸︷︷︸
10−4

− fv︸︷︷︸
10−3

+
1

ρ0

∂p

∂x︸ ︷︷ ︸
10−3

= 0

∂v

∂t︸︷︷︸
10−4

+ fu︸︷︷︸
10−3

+
1

ρ0

∂p

∂y︸ ︷︷ ︸
10−3

= 0 .

To the lowest order of approximation, the tendency terms
are negligible; there is geostrophic balance between the Cori-
olis and pressure terms.
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Scaling the Divergence
The vorticity is the same scale as each of its components:

ζ =

(
∂v

∂x
− ∂u

∂y

)
∼ V

L
= 10−5 s−1 .
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Scaling the Divergence
The vorticity is the same scale as each of its components:

ζ =

(
∂v

∂x
− ∂u

∂y

)
∼ V

L
= 10−5 s−1 .

Due to the cancellation between the two terms in the diver-
gence, one might expect it to scale an order of magnitude
smaller than each of its terms:

δ =

(
∂u

∂x
+
∂v

∂y

)
∼ Ro

V

L
= 10−6 s−1 (?)

If we assume this magnitude for the divergence, and take
g = 10ms−2 and H = 104 m the continuity equation scales as

1

ρ0

∂p

∂t︸ ︷︷ ︸
10−2

+ gH

[
∂u

∂x
+
∂v

∂y

]
︸ ︷︷ ︸

10−1

= 0 ???

Impossible: there is nothing to balance the second term.
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Dines Compensation mechanism:

Cancellation of converegence and divergence.
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We recall that the divergence term

g

∫
δ dz ≈ gH

[
∂u

∂x
+
∂v

∂y

]
.

arises through vertical integration.

There is a tendency for cancellation between convergence
at low levels and divergence at higher levels and vice-versa.

This is called the Dines compensation mechanism.
(Illustrate the Dines compensation mechanism for a cyclone.)

Thus, we assume∫
δ dz ∼ Ro δH , so that g

∫
δ dz ∼ Ro2gH

V

L
= 10−2 .

The terms of the continuity equation are now in balance:

1

ρ0

∂p

∂t︸ ︷︷ ︸
10−2

+ gH

[
∂u

∂x
+
∂v

∂y

]
︸ ︷︷ ︸

10−2

= 0

So, ∂p/∂t ∼ 10−2 Pa s−1, which is about 1 hPa per 3 hours.
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Break here
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The Effect of Data Errors
Suppose there is a 10% error ∆v in the v-component of the
wind observation at a point.
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The Effect of Data Errors
Suppose there is a 10% error ∆v in the v-component of the
wind observation at a point.

The scales of the terms are as before:
∂u

∂t︸︷︷︸
10−4

− f (v + ∆v)︸ ︷︷ ︸
10−3

+
1

ρ0

∂p

∂x︸ ︷︷ ︸
10−3

= 0

However, the error in the tendency is ∆(∂u/∂t) ∼ f∆v ∼ 10−4,
comparable in size to the tendency itself.

The signal-to-noise ratio is 1.

The forecast may be qualitatively reasonable, but it will be
quantitatively invalid.
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A similar conclusion is reached for a 10% error in the
pressure gradient.
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A similar conclusion is reached for a 10% error in the
pressure gradient.

However, if the spatial scale ∆x of the pressure error is small
(say, ∆x ∼ L/10) the error in its gradient is correspondingly
large:

∂p

∂x
∼ P

L
, but ∆

∂p

∂x
∼ ∆p

∆x
∼ P
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∼ ∂p

∂x
,
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A similar conclusion is reached for a 10% error in the
pressure gradient.

However, if the spatial scale ∆x of the pressure error is small
(say, ∆x ∼ L/10) the error in its gradient is correspondingly
large:

∂p

∂x
∼ P

L
, but ∆

∂p

∂x
∼ ∆p

∆x
∼ P

L
∼ ∂p

∂x
,

Thus, that the error in the wind tendency is now

∆
∂u

∂t
∼ 1

ρ0

∂p

∂x
∼ 10−3 � ∂u

∂t
.

The forecast will be qualitatively incorrect (i.e., useless!).
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Now consider the continuity equation.

The pressure tendency has scale

∂p

∂t
∼ 10−2 Pa s−1 ≈ 1 hPa in 3 hours .
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Now consider the continuity equation.

The pressure tendency has scale

∂p

∂t
∼ 10−2 Pa s−1 ≈ 1 hPa in 3 hours .

If there is a 10% error in the wind, the resulting error in
divergence is ∆δ ∼ ∆v/L ∼ 10−6.

The error is larger than the divergence itself!

Thus, the pressure tendency is unrealistic.

Worse still, if the wind error is of small spatial scale, the
divergence error is correspondingly greater:

∆δ ∼ ∆
∂v

∂x
∼ ∆v

∆x
∼ V

L
∼ 10−5 ∼ 102δ .

This implies a pressure tendency two orders of magnitude
larger than the correct value.
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If there is a 10% error in the wind, the resulting error in
divergence is ∆δ ∼ ∆v/L ∼ 10−6.

The error is larger than the divergence itself!

Thus, the pressure tendency is unrealistic.

Worse still, if the wind error is of small spatial scale, the
divergence error is correspondingly greater:

∆δ ∼ ∆
∂v

∂x
∼ ∆v

∆x
∼ V

L
∼ 10−5 ∼ 102δ .

This implies a pressure tendency two orders of magnitude
larger than the correct value.

Instead of the value ∂p/∂t ∼ 1 hPa in 3 hours we get a change
of order 100 hPa in 3 hours (like Richardson’s result).
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Evolution of surface pressure before and after NNMI.
(Williamson and Temperton, 1981)
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Early Initialization Methods
We will describe, in outline, a number of methods which
have been used to overcome the problems of noise in nu-
merical integrations.
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�1. The Filtered Equations

�2. Static Initialization

�3. Dynamic Initialization

�4. Variational Initialization
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1. The Filtered Equations
The first computer forecast was made in 1950 by Charney,
Fjørtoft and Von Neumann. They used the equation

d

dt
(ζ + f ) = 0

which has no gravity wave components.
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The barotropic, quasi-geostrophic potential vorticity equa-
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∂
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1. The Filtered Equations
The first computer forecast was made in 1950 by Charney,
Fjørtoft and Von Neumann. They used the equation

d

dt
(ζ + f ) = 0

which has no gravity wave components.

Systems like this are called Filtered Equations.

The basic filtered system is the quasi-geostrophic equations.

The barotropic, quasi-geostrophic potential vorticity equa-

tion (the QGPV Equation) is

∂

∂t

(
∇2ψ − Fψ

)
+ J(ψ,∇2ψ) + β

∂ψ

∂x
= 0 .

This is a single equation for a single variable, ψ.
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The simplifying assumptions have the effect of eliminating
high-frequency gravity wave solutions, so that only the slow
Rossby wave solutions remain.

? ? ?
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The simplifying assumptions have the effect of eliminating
high-frequency gravity wave solutions, so that only the slow
Rossby wave solutions remain.

? ? ?

A more accurate filtering of the primitive equations leads
to the balance equations.

This system is more complicated to solve than the quasi-
geostrophic system, and has not been widely used.

However one diagnostic component has been used for ini-
tialization. We discuss this presently.
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2. Static Initialization
Hinkelmann (1951) investigated the problem of noise in nu-
merical integrations of the primitive equations.

He concluded that if the initial winds were geostrophic:

V =
1

f
k×∇Φ

high frequency oscillations would occur but would remain
small in amplitude.
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Hinkelmann (1951) investigated the problem of noise in nu-
merical integrations of the primitive equations.

He concluded that if the initial winds were geostrophic:

V =
1

f
k×∇Φ

high frequency oscillations would occur but would remain
small in amplitude.

If we express the wind in terms of a stream function
V = k×∇ψ, we can write

f∇ψ = ∇Φ

The divergence of this is the linear balance equation:

∇·f∇ψ = ∇2Φ

This can easily be solved for ψ if Φ is given,
or for Φ if ψ is given.
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Forecasts made with the primitive equations were soon shown
to be clearly superior to those using the quasi-geostrophic
system . . .
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. . . however, the use of geostrophic initial winds has a huge
disadvantage:

Observations of the wind field are completely ignored.

Charney (1955) proposed that a better estimate of the wind
could be obtained from the nonlinear balance equation.

This equation is a diagnostic relationship between the pres-
sure and wind fields.

∇2Φ−∇·f∇ψ + 2

( ∂2ψ

∂x∂y

)2

− ∂2ψ

∂x2

∂2ψ

∂y2

 = 0
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Forecasts made with the primitive equations were soon shown
to be clearly superior to those using the quasi-geostrophic
system . . .

. . . however, the use of geostrophic initial winds has a huge
disadvantage:

Observations of the wind field are completely ignored.

Charney (1955) proposed that a better estimate of the wind
could be obtained from the nonlinear balance equation.

This equation is a diagnostic relationship between the pres-
sure and wind fields.

∇2Φ−∇·f∇ψ + 2

( ∂2ψ

∂x∂y

)2

− ∂2ψ

∂x2

∂2ψ

∂y2

 = 0

This is a Poisson equation for Φ when ψ is given. However,
it is nonlinear in ψ and much harder to solve for ψ when Φ
is given. This is the usual case.
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When ψ is obtained from the nonlinear balance equation, a
non-divergent wind is constructed: V = k×∇ψ.
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When ψ is obtained from the nonlinear balance equation, a
non-divergent wind is constructed: V = k×∇ψ.

Phillips (1960) argued that, in addition to getting ψ from
the nonlinear balance equation, a divergent component of
the wind should be included.

He proposed that a further improvement would result if the
divergence of the initial field were set equal to that implied
by quasi-geostrophic theory.

This can be sone by solving the QG omega equation.

Each of these steps represented some progress, but the noise
problem still remained essentially unsolved.

39



3. Dynamic Initialization
Another approach, called dynamic initialization, uses the
forecast model itself to define the initial fields.
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3. Dynamic Initialization
Another approach, called dynamic initialization, uses the
forecast model itself to define the initial fields.

The dissipative processes in the model can damp out high
frequency noise as the forecast procedes.

We integrate the model first forward and then backward in
time, keeping the dissipation active all the time.

We repeat this forward-backward cycle many times until we
finally obtain fields, valid at the initial time, from which the
high frequency components have been damped out.

The forecast starting from these fields is noise-free . . .

. . . however, the procedure is expensive in computer time.

Moreover, it damps the meteorologically significant motions
as well as the gravity waves so it is no longer popular.
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Digital filtering initialization (DFI) is essentially a refine-
ment of dynamic initialization.

Because it used a highly selective filtering technique, is is
computationally more efficient than the older method.
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Digital filtering initialization (DFI) is essentially a refine-
ment of dynamic initialization.

Because it used a highly selective filtering technique, is is
computationally more efficient than the older method.

If time permits, we will return to DFI later.
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4. Variational Initialization
An elegant initialization method based on the calculus of
variations was introduced by Sasaki (1958).
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4. Variational Initialization
An elegant initialization method based on the calculus of
variations was introduced by Sasaki (1958).

Although the method was not widely used, the variational
method is now at the centre of modern data assimilation
practice.

Recall that, in variational assimilation, we minimize a cost
function, J, which is normally a sum of two terms

J = JB + JO

Here, JB is the distance between the analysis and the back-
ground field

JB = 1
2(x− xb)

TB−1(x− xb)

and JO is the distance to the observations

JO = 1
2(yo −H(x))TR−1(yo −H(xb))
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The variational problem can be be modified to include as
the minimization of an integral representing the deviation
of the resulting fields from balance.

43



The variational problem can be be modified to include as
the minimization of an integral representing the deviation
of the resulting fields from balance.

We add a constraint which requires the analysis to be close
to geostrophic balance:

JC = 1
2α
∑
ij

[(
fu + ∂Φ
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The variational problem can be be modified to include as
the minimization of an integral representing the deviation
of the resulting fields from balance.

We add a constraint which requires the analysis to be close
to geostrophic balance:

JC = 1
2α
∑
ij

[(
fu + ∂Φ

∂y

)2

ij
+
(
fv − ∂Φ

∂x

)2

ij

]
This term JC is large if the analysis is far from geostrophic
balance. It vanishes for perfect geostrophic balance.

The weight α is chosen to give the constraint an appropri-
ate weight. This is known as a weak constraint. It is not
satisfied exactly, only approximately.

The constrained variational assimilation finds the minimum
of the cost function

J = JB + JO + JC
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End of §4.1

44


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

