33.2.3 Leapfrog Scheme (again)

The numerical solution of the differential equations requires
that they be transformed into algebraic form.

This is done by the now-familiar method of finite differences.

33.2.3 Leapfrog Scheme (again)

The numerical solution of the differential equations requires
that they be transformed into algebraic form.

This is done by the now-familiar method of finite differences.

The continuous variables are represented by their values at
a finite set of points, and derivatives are approximated by
differences between values at adjacent points.

33.2.3 Leapfrog Scheme (again)

The numerical solution of the differential equations requires
that they be transformed into algebraic form.

This is done by the now-familiar method of finite differences.

The continuous variables are represented by their values at
a finite set of points, and derivatives are approximated by
differences between values at adjacent points.

The atmosphere is partitioned into several discrete horizon-
tal layers, and each layer is divided up into grid cells.

Then the variables are evaluated at the centre of each cell.

33.2.3 Leapfrog Scheme (again)

The numerical solution of the differential equations requires
that they be transformed into algebraic form.

This is done by the now-familiar method of finite differences.

The continuous variables are represented by their values at
a finite set of points, and derivatives are approximated by
differences between values at adjacent points.

The atmosphere is partitioned into several discrete horizon-
tal layers, and each layer is divided up into grid cells.

Then the variables are evaluated at the centre of each cell.

Similarly, the time interval under consideration is sliced into
a finite number of discrete time steps.

33.2.3 Leapfrog Scheme (again)

The numerical solution of the differential equations requires
that they be transformed into algebraic form.

This is done by the now-familiar method of finite differences.

The continuous variables are represented by their values at
a finite set of points, and derivatives are approximated by
differences between values at adjacent points.

The atmosphere is partitioned into several discrete horizon-
tal layers, and each layer is divided up into grid cells.

Then the variables are evaluated at the centre of each cell.

Similarly, the time interval under consideration is sliced into
a finite number of discrete time steps.

Thus, the continuous evolution of the variables is approxi-
mated by the change from step to step.

In a sense, the finite difference method corre-
sponds to a reversal of history.

In a sense, the finite difference method corre-
sponds to a reversal of history.

Lewis Fry Richardson described the procedure:

Although the infinitesimal calculus has been
a splendid success, yet there remain problems
in whach 1t 1s cumbrous or unworkable. When
such difficulties are encountered i1t may be
well to return to the manner in which they
did things before the calculus was 1nvented,
postponing the passage to the limit until af-
ter the problem has been solved for a moder-
ate number of moderately small differences.

(Richardson, 1927)

The leapfrog time scheme

We consider again the method of advancing the solution in
time known as the leapfrog scheme.

The leapfrog time scheme

We consider again the method of advancing the solution in
time known as the leapfrog scheme.

Let U denote a typical dependent variable, governed by an
equation of the form

dU

—=F(U).

The leapfrog time scheme

We consider again the method of advancing the solution in
time known as the leapfrog scheme.

Let U denote a typical dependent variable, governed by an

equation of the form
dU
—=F(U).

The continuous time domain ¢ is replaced by a sequence of
discrete moments {0, At,2At,... nAt,... }.

The solution at these moments is denoted by U" = U(nAt).

The leapfrog time scheme

We consider again the method of advancing the solution in
time known as the leapfrog scheme.

Let U denote a typical dependent variable, governed by an

equation of the form
dU
—=F(U).

The continuous time domain ¢ is replaced by a sequence of
discrete moments {0, At,2At,... nAt,... }.
The solution at these moments is denoted by U" = U(nAt).

If this solution is known up to time ¢ = nAt, the right-hand
term F" = F(U") can be computed.

Thus, we can integrate the equation forward in time.

The advection equation is, again,

The advection equation is, again,

The time derivative is approximated by a centered difference

Un—l—l . Un—l

2At ’

The advection equation is, again,

The time derivative is approximated by a centered difference

Un—l—l . Un—l

2At ’

Thus, the forecast value U"! may be computed from the
old value U"~ ! and the tendency F':

Ut — prl Loas P

The advection equation is, again,

The time derivative is approximated by a centered difference

Un—l—l . Un—l

2At ’

Thus, the forecast value U"! may be computed from the
old value U"~ ! and the tendency F':

gt =yl oA B
This process of stepping forward from moment to moment is

repeated a large number of times, until the desired forecast
range is reached.

For the physical equation, a single initial condition U is
sufficient to determine the solution.

For the physical equation, a single initial condition U is
sufficient to determine the solution.

One problem with the leapfrog scheme (and other three-
time-level schemes) is that two values of U are required to
start the computation.

For the physical equation, a single initial condition U is
sufficient to determine the solution.

One problem with the leapfrog scheme (and other three-
time-level schemes) is that two values of U are required to
start the computation.

In addition to the physical initial condition U O, a computa-
tional initial condition U! is required.

For the physical equation, a single initial condition U is
sufficient to determine the solution.

One problem with the leapfrog scheme (and other three-
time-level schemes) is that two values of U are required to
start the computation.

In addition to the physical initial condition U O, a computa-
tional initial condition U! is required.

This cannot be obtained using the leapfrog scheme, so nor-
mally a simple non-centered step

Ut =U%+ At FY

is used to provide the value at ¢t = At.

For the physical equation, a single initial condition U is
sufficient to determine the solution.

One problem with the leapfrog scheme (and other three-
time-level schemes) is that two values of U are required to
start the computation.

In addition to the physical initial condition U O, a computa-
tional initial condition U! is required.

This cannot be obtained using the leapfrog scheme, so nor-
mally a simple non-centered step

Ut =U%+ At FY
is used to provide the value at ¢t = At.
From then on, the leapfrog scheme can be used.

However, the errors of the first step will persist.

For the physical equation, a single initial condition U is
sufficient to determine the solution.

One problem with the leapfrog scheme (and other three-
time-level schemes) is that two values of U are required to
start the computation.

In addition to the physical initial condition U O, a computa-
tional initial condition U! is required.

This cannot be obtained using the leapfrog scheme, so nor-
mally a simple non-centered step

Ut =U%+ At FY
is used to provide the value at ¢t = At.
From then on, the leapfrog scheme can be used.
However, the errors of the first step will persist.

The computational initial condition can be defined in several
ways:

e Set U = UY. Since u! = v + wAt + -+, this introduces
errors of order O(At), and is not recommended.

e Set U = UY. Since u! = v + wAt + -+, this introduces
errors of order O(At), and is not recommended.

e Use a forward time scheme for the first time step. Since
the forward time step is only used once, the total error is

still of O(At).

e Set U = UY. Since u! = v + wAt + -+, this introduces
errors of order O(At), and is not recommended.

e Use a forward time scheme for the first time step. Since
the forward time step is only used once, the total error is

still of O(At).

e An alternative is to use an Euler-backwards (Matsuno)
scheme for the first time step.

e Set U = UY. Since u! = v + wAt + -+, this introduces
errors of order O(At), and is not recommended.

e Use a forward time scheme for the first time step. Since
the forward time step is only used once, the total error is

still of O(At).

e An alternative is to use an Euler-backwards (Matsuno)
scheme for the first time step.

e Use half of the initial time step for the forward time step,
followed by leapfrog time steps. This will reduce the error
introduced in the unstable first step.

At

Schematic of the leapfrog scheme with a small starting step.

Computational Mode: Simple Case

We analyse the oscillation equation with w = 0:
dU
dt

The true solution is U = U O, constant.

0

Computational Mode: Simple Case

We analyse the oscillation equation with w = 0:
dU
dt

The true solution is U = U O, constant.

0

The leapfrog approximation to this is just

et = et with the forward step Ul =0V,

Computational Mode: Simple Case

We analyse the oscillation equation with w = 0:
dU
dt

The true solution is U = U O, constant.

0

The leapfrog approximation to this is just

et = et with the forward step Ul =0V,

We consider two particular choices of Ul.

First, suppose the exact value Ul = U' is chosen. Then the
numerical solution is U" = U for all n, which is exact.

Computational Mode: Simple Case

We analyse the oscillation equation with w = 0:
dU
dt

The true solution is U = U O, constant.

0

The leapfrog approximation to this is just

et = et with the forward step Ul =0V,

We consider two particular choices of Ul.

First, suppose the exact value Ul = U' is chosen. Then the
numerical solution is U" = U for all n, which is exact.

Second, suppose U! = —U". The solution is U" = (—1)"U",
which is comprised entirely of the computational mode.

Computational Mode: Simple Case

We analyse the oscillation equation with w = 0:
dU
dt

The true solution is U = U O, constant.

0

The leapfrog approximation to this is just

et = et with the forward step Ul =0V,

We consider two particular choices of Ul.

First, suppose the exact value Ul = U' is chosen. Then the
numerical solution is U" = U for all n, which is exact.

Second, suppose U! = —U". The solution is U" = (—1)"U",
which is comprised entirely of the computational mode.

This illustrates the importance of a careful choice of the
computational initial condition.

Robert-Asselin time filter

The second problem is that, for nonlinear equations, the
leapfrog scheme has a tendency to increase the amplitude
of the computational mode with time.

This can separate the space dependence in a checkerboard
fashion between the even and odd time steps.

Robert-Asselin time filter

The second problem is that, for nonlinear equations, the
leapfrog scheme has a tendency to increase the amplitude
of the computational mode with time.

This can separate the space dependence in a checkerboard
fashion between the even and odd time steps.

The problem can be solved by restarting every 50 steps or
so, or by applying a Robert—Asselin time filter.

Robert-Asselin time filter

The second problem is that, for nonlinear equations, the
leapfrog scheme has a tendency to increase the amplitude
of the computational mode with time.

This can separate the space dependence in a checkerboard
fashion between the even and odd time steps.

The problem can be solved by restarting every 50 steps or
so, or by applying a Robert—Asselin time filter.

After U"T! is obtained, a slight time smoothing is applied
to U": B B

Robert-Asselin time filter

The second problem is that, for nonlinear equations, the
leapfrog scheme has a tendency to increase the amplitude
of the computational mode with time.

This can separate the space dependence in a checkerboard
fashion between the even and odd time steps.

The problem can be solved by restarting every 50 steps or
so, or by applying a Robert—Asselin time filter.

After U"T! is obtained, a slight time smoothing is applied
to U": B B

Note that the added term is like smoothing in time, an
approximation of an ideally time-centered smoother:

UM = U™+ ,y<Un+1 _ U™+ Un—l)

The smoother
UM = U™+ ,y<Un+1 _oU™ + Un—l)

reduces the amplitude of different frequencies v by a factor
(1 — 4vysin?(vAt/2)).

The smoother
UM = U™+ ,y<Un+1 _oU™ + Un—l)

reduces the amplitude of different frequencies v by a factor
(1 — 4vysin?(vAt/2)).

x * *
Exercise: Prove this. Hint: write U" = U exp(ivnAt).

* * *

The smoother
UM = U™+ ,y<Un+1 _oU™ + Un—l)

reduces the amplitude of different frequencies v by a factor
(1 — 4vysin?(vAt/2)).

x * *
Exercise: Prove this. Hint: write U" = U exp(ivnAt).

* * *

The computational mode, whose period is 2At, is reduced
by (1 — 4v) every time step.

The smoother
UM = U™+ ,y<Un+1 _oU™ + Un—l)

reduces the amplitude of different frequencies v by a factor
(1 — 4vysin?(vAt/2)).

x * *
Exercise: Prove this. Hint: write U" = U exp(ivnAt).
* * *

The computational mode, whose period is 2At, is reduced
by (1 — 4v) every time step.

Because the field at t = (n — 1)At is replaced by the already
filtered value, the R-A filter introduces a slight distortion
of the pure centered filter.

The smoother
UM = U™+ ,y<Un+1 _oU™ + Un—l)

reduces the amplitude of different frequencies v by a factor
(1 — 4vysin?(vAt/2)).

x * *
Exercise: Prove this. Hint: write U" = U exp(ivnAt).
* * *

The computational mode, whose period is 2At, is reduced
by (1 — 4v) every time step.

Because the field at t = (n — 1)At is replaced by the already
filtered value, the R-A filter introduces a slight distortion
of the pure centered filter.

A full analysis requires that the combined leapfrog scheme
and time filter be analysed together (Asselin, 1972).

The smoother
U" =U"+ U™ —oum 4 yn—h

reduces the amplitude of different frequencies v by a factor
(1 — 4ysin?(vAt/2)).

x x *
Exercise: Prove this. Hint: write U" = UYexp(ivnAt).
x * *

The computational mode, whose period is 2At¢, is reduced
by (1 —4v) every time step.

Because the field at t = (n — 1)At is replaced by the already
filtered value, the R-A filter introduces a slight distortion
of the pure centered filter.

A full analysis requires that the combined leapfrog scheme
and time filter be analysed together (Asselin, 1972).

This filter is widely used with the leapfrog scheme, with -
of the order of 0.01.

Time schemes for dU /dt = F'(U)

[jr'ili-l—l_[jr'ili—l

(a) e = (L) Leapfrog (good for
hyperbolic equations,
unstable for parabolic

B equations)
(af} el ppmess _ F{{'”l}'
24t —E 4 I
r ="y cr{U""’l — 20" & IT”_I} Leapfrog smoothed with the
Robert—Asselin time filter;
a~ 1%

(b) Uﬂzr_['m = F{U™) Euler {forward, good for
diffusive terms, unstable
for hyvperbolic equations)

(c) UHE:UH == 5 (U“ +gﬂ+1) Crank—Nicholson or centered
implicit

py EFRHL_prn AU (gt : P : .

(c') = = J¥ (5); 8 < 0.5 Implicit, slightly damping

(d) U“er_[fﬁ == PR Fully implicit or backward

Time schemes for dU /dt = F'(U)

m+41 _ Jrn
L L

CU — F(om); T = F(I*)
I = F ™)

oo p (2242°)

LR (g - o
Ut U = P,

L py

U'“+;_U“ _ F(UHHJE”}

TSUN = LU + 2R (U

+2P (U2) 4 P(UMHY)]

FEuler-backward or Matsuno:
good for damping high

frequency waves

Another predictor—corrector
scheme {Heun)

Adams-Bashford (second
order 1n time).

Runge-Kutta (fourth order)

Time schemes for dU /dt = F'(U)

U — (aU* + F(U™)) /b

- {[:ﬂ +r* W)/ N-times Lorenz’s N-cycle, N =
e b multiple of 4; Nth order
a+—a—1/(NAt); b «b— 1/(NAL)

]
L]

(j Uﬂtgfﬂ_l = [(U") + F, (UﬂHJgUﬂ_i) Semi-implicit
(k) U::—’m = F,(U™); U“zr—[” = Ei) Fractional steps

For schemes (j) and (k), the right hand side is split into
two terms: F(U) = F1(U)+ F5(U).

Break here

Two Toy Equations

The following two “toy equations” serve as prototypes for
dissipative and for wave-like process in the atmosphere.

Two Toy Equations

The following two “toy equations” serve as prototypes for
dissipative and for wave-like process in the atmosphere.
e The Friction Equation
aU
—=
with solution U = U exp(—«t) decaying with time.

—rU , k>0

Two Toy Equations

The following two “toy equations” serve as prototypes for
dissipative and for wave-like process in the atmosphere.
e The Friction Equation
aU
—=
with solution U = U exp(—«t) decaying with time.

—rU , k>0

e The Oscillation Equation
aU

— = wU ,

dt

with solution U = UV exp(iwt), oscillating in time.

Two Toy Equations

The following two “toy equations” serve as prototypes for
dissipative and for wave-like process in the atmosphere.
e The Friction Equation
aU
—=
with solution U = U exp(—«t) decaying with time.

—rU , k>0

e The Oscillation Equation
aU

— = wU ,

dt

with solution U = UV exp(iwt), oscillating in time.

If we substitute U = pexp(i¢) in the oscillation equation, then

ey _

dt_o and O =uw

Two Toy Equations

The following two ‘“toy equations” serve as prototypes for
dissipative and for wave-like process in the atmosphere.

@ The Friction Equation
dU
et

with solution U = U exp(—~xt) decaying with time.

—rU , k>0

@ The Oscillation Equation
aU

— = wU

dt

with solution U = UV exp(iwt), oscillating in time.

If we substitute U = pexp(i¢) in the oscillation equation, then
dp
—= =
Thus the solution U has a constant modulus, and a phase
that increases or decreases linearly with time.

0 and O =uw

The Friction Equation

We consider now the friction equation:
dU

= kU k>0 with U=U" at t=0

The Friction Equation

We consider now the friction equation:
dU
— = kU, k>0 with U=U" at t=0

Of course, the analytical solution is U(t) = U exp(—~t), which
decays monotonically with time.

The Friction Equation

We consider now the friction equation:
dU
— = kU, k>0 with U=U" at t=0

Of course, the analytical solution is U(t) = U exp(—~t), which
decays monotonically with time.

The simplest numerical scheme is the Euler forward method.
The time derivative in the differential equation is approxi-
mated by a forward difference:

Un—i—l _yn

- n
N = —rU".

The Friction Equation

We consider now the friction equation:
dU
— = kU, k>0 with U=U" at t=0

Of course, the analytical solution is U(t) = U exp(—~t), which
decays monotonically with time.

The simplest numerical scheme is the Euler forward method.
The time derivative in the differential equation is approxi-
mated by a forward difference:

Un—i—l _yn
At

It is easy to find the solution of this difference equation:
U™ = U1 — kA",

= —gU".

The Friction Equation

We consider now the friction equation:
aU
—-=—+U, k>0 with U=U" at t=0

0

Of course, the analytical solution is U(t) = U" exp(—kt), which

decays monotonically with time.

The simplest numerical scheme is the Euler forward method.
The time derivative in the differential equation is approxi-
mated by a forward difference:

Un—i—l _yn
At

It is easy to find the solution of this difference equation:

U™ = U1 — kA"
This solution decays monotonically in time provided

kAL < 1

= —gU".

Again, the solution decays monotonically in time provided

kAL < 1

Again, the solution decays monotonically in time provided

kAL < 1

The Euler scheme is stable for this friction equation.

Again, the solution decays monotonically in time provided

kAL < 1

The Euler scheme is stable for this friction equation.

However, the scheme is only first-order accurate: for a fixed
time 7 = nAt, the error is

e(1) = U1 — kAH)™ — U exp(—knAt)| = sUTk2AL + O(AL?).

* * *

Again, the solution decays monotonically in time provided

kAL < 1

The Euler scheme is stable for this friction equation.

However, the scheme is only first-order accurate: for a fixed
time 7 = nAt, the error is

e(1) = U1 — kAH)™ — U exp(—knAt)| = sUTk2AL + O(AL?).

* * *
Exercise: Prove this.

* * *

Again, the solution decays monotonically in time provided

kAL < 1

The Euler scheme is stable for this friction equation.

However, the scheme is only first-order accurate: for a fixed
time 7 = nAt, the error is

e(1) = U1 — kAH)™ — U exp(—knAt)| = sUTk2AL + O(AL?).

* * *
Exercise: Prove this.
* * *

We might attempt to obtain a more accurate solution by
using a centered difference for the time derivative, as in the
leapfrog scheme.

Let us look at this possibility now.

The leapfrog scheme for the Friction Equation is:

Un—l—l . Un—l

_ n
AL — —xU".

The leapfrog scheme for the Friction Equation is:

Un—l—l . Un—l

_ n
AL — —xU".

A solution in the form of a geometric progression, U = U'p"
for some constant p, will decrease monotonically provided
0<p<l.

The leapfrog scheme for the Friction Equation is:

Un—l—l . Un—l

_ n
AL — —xU".

A solution in the form of a geometric progression, U = U'p"
for some constant p, will decrease monotonically provided
0<p<l.

This is the condition for the character of the finite difference
solution to resemble that of the continuous equation.

The leapfrog scheme for the Friction Equation is:

Un—l—l . Un—l

_ n
AL — —xU".

A solution in the form of a geometric progression, U = U'p"
for some constant p, will decrease monotonically provided
0<p<l.

This is the condition for the character of the finite difference
solution to resemble that of the continuous equation.

Substituting this solution into the FDE, there are two pos-
sibilities:

p+ = —KAL + V1 + K2AL2 and p— = —KAL — V1+ K2A¢2.

The leapfrog scheme for the Friction Equation is:

Un—l—l . Un—l

_ n
AL — —xU".

A solution in the form of a geometric progression, U = U'p"
for some constant p, will decrease monotonically provided
0<p<l.

This is the condition for the character of the finite difference
solution to resemble that of the continuous equation.

Substituting this solution into the FDE, there are two pos-
sibilities:

p+ = —KAL + V1 + K2AL2 and p— = —KAL — V1+ K2A¢2.

It is easy to see that |p;| < 1 for all At so that a decaying
solution is obtained.

The leapfrog scheme for the Friction Equation is:
Un—1—1 . Un—l
2At
A solution in the form of a geometric progression, U"" = U 0,0”

for some constant p, will decrease monotonically provided
0<p<l.

= —gU".

This is the condition for the character of the finite difference
solution to resemble that of the continuous equation.

Substituting this solution into the FDE, there are two pos-
sibilities:
p+ = —KAL + \/1 + K2AL? and p— = —KAt — \/1 + K2A2.

It is easy to see that |p4| < 1 for all At so that a decaying
solution is obtained.

* * *

Exercise: Prove this. Hint: if y = —z + V1 + 22, then
y(0)=1;y>0; 9 <0so0<y<1.

However, |p_| = [kAt + V1 + k2At2] > 1 for all At, so this
solution grows without limit with n.

However, |p_| = [kAt + V1 + k2At2] > 1 for all At, so this
solution grows without limit with n.

The first solution (p4) gives the physical mode, which is sim-
ilar in character to the solution of the differential equation.

However, |p_| = [kAt + V1 + k2At2] > 1 for all At, so this
solution grows without limit with n.

The first solution (p4) gives the physical mode, which is sim-
ilar in character to the solution of the differential equation.

The second solution (p—_) is called the computational mode.
It appears as a result of replacing a first-order derivative by
a second-order difference.

However, |p_| = [kAt + V1 + k2At2] > 1 for all At, so this
solution grows without limit with n.

The first solution (p4) gives the physical mode, which is sim-
ilar in character to the solution of the differential equation.

The second solution (p—_) is called the computational mode.
It appears as a result of replacing a first-order derivative by
a second-order difference.

The computational mode has no counterpart in the physi-
cal equation; it 1s a spuritous numerical artifact.

However, |p_| = [kAt + V1 + k2At2] > 1 for all At, so this
solution grows without limit with n.

The first solution (p4) gives the physical mode, which is sim-
ilar in character to the solution of the differential equation.

The second solution (p—_) is called the computational mode.
It appears as a result of replacing a first-order derivative by
a second-order difference.

The computational mode has no counterpart in the physi-
cal equation; it 1s a spuritous numerical artifact.

Since p_ < 0, its sign alternates each time-step and, since it
grows with time, it leads to numerical instability.

However, |p_| = [kAt + V1 + k2At2] > 1 for all At, so this
solution grows without limit with n.

The first solution (p4) gives the physical mode, which is sim-
ilar in character to the solution of the differential equation.

The second solution (p—_) is called the computational mode.
It appears as a result of replacing a first-order derivative by
a second-order difference.

The computational mode has no counterpart in the physi-
cal equation; it 1s a spuritous numerical artifact.

Since p_ < 0, its sign alternates each time-step and, since it
grows with time, it leads to numerical instability.

Thus, despite its second-order accuracy, the leapfrog scheme
produces unacceptable errors for the friction equation.

However, |p_| = [kAt + V1 + k2At2] > 1 for all At, so this
solution grows without limit with n.

The first solution (p4) gives the physical mode, which is sim-
ilar in character to the solution of the differential equation.

The second solution (p—_) is called the computational mode.
It appears as a result of replacing a first-order derivative by
a second-order difference.

The computational mode has no counterpart in the physi-
cal equation; it 1s a spuritous numerical artifact.

Since p_ < 0, its sign alternates each time-step and, since it
grows with time, it leads to numerical instability.

Thus, despite its second-order accuracy, the leapfrog scheme
produces unacceptable errors for the friction equation.

The instability of the leapfrog scheme would appear to make
it unsuitable for use.

However, |p_| = [kAt + V1 + k2At2] > 1 for all At, so this
solution grows without limit with n.

The first solution (p4) gives the physical mode, which is sim-
ilar in character to the solution of the differential equation.

The second solution (p—_) is called the computational mode.
It appears as a result of replacing a first-order derivative by
a second-order difference.

The computational mode has no counterpart in the physi-
cal equation; it 1s a spuritous numerical artifact.

Since p_ < 0, its sign alternates each time-step and, since it
grows with time, it leads to numerical instability.

Thus, despite its second-order accuracy, the leapfrog scheme
produces unacceptable errors for the friction equation.

The instability of the leapfrog scheme would appear to make
it unsuitable for use.

But we know better: read on!

The Oscillation Equation

If we apply the leapfrog scheme to the oscillation equation

Z—(Z:W, with U=0U" at t=0,

a markedly different result is obtained.

The Oscillation Equation

If we apply the leapfrog scheme to the oscillation equation

Z—(Z:W, with U=0U" at t=0,

a markedly different result is obtained.

The analytical solution is U(t) = U exp(iwt).

The Oscillation Equation

If we apply the leapfrog scheme to the oscillation equation

‘ii—(t]:wU, with U=0U" at t=0,

a markedly different result is obtained.

The analytical solution is U(t) = U exp(iwt).

Using the leapfrog scheme and again seeking a solution U" =
UYp" for constant p, there are again two possibilities:

o0+ = WAL £ V1 — WAL

The Oscillation Equation

If we apply the leapfrog scheme to the oscillation equation

‘ii—(t]:wU, with U=0U" at t=0,

a markedly different result is obtained.

The analytical solution is U(t) = U exp(iwt).

Using the leapfrog scheme and again seeking a solution U" =
UYp" for constant p, there are again two possibilities:

o0+ = WAL £ V1 — WAL

For |wAt| <1, it is clear that |p+| = 1 so that two oscillating
solutions are obtained.

The Oscillation Equation

If we apply the leapfrog scheme to the oscillation equation

‘ii—(t]:wU, with U=0U" at t=0,

a markedly different result is obtained.

The analytical solution is U(t) = U exp(iwt).

Using the leapfrog scheme and again seeking a solution U" =
UYp" for constant p, there are again two possibilities:

o0+ = WAL £ V1 — WAL

For |wAt| <1, it is clear that |p+| = 1 so that two oscillating
solutions are obtained.

For small wAt we have p. ~ +1 and p_ ~ —1.

Again, for small wAt we have p; ~ +1 and p_ ~ —1.

Again, for small wAt we have p; ~ +1 and p_ ~ —1.

The former approximates the analytical solution. The latter
is the computational mode, which alternates in sign from
step to step.

Again, for small wAt we have p; ~ +1 and p_ ~ —1.

The former approximates the analytical solution. The latter
is the computational mode, which alternates in sign from
step to step.

For |wAt| > 1, either |p4| > 1 or |p—| > 1. Thus the leapfrog
scheme is unstable in this case.

Again, for small wAt we have p; ~ +1 and p_ ~ —1.

The former approximates the analytical solution. The latter
is the computational mode, which alternates in sign from
step to step.

For |wAt| > 1, either |p4| > 1 or |p—| > 1. Thus the leapfrog
scheme is unstable in this case.

The leapfrog scheme is stable for the oscillation equation,
provided
WAL < 1.

Again, for small wAt we have p; ~ +1 and p_ ~ —1.

The former approximates the analytical solution. The latter
is the computational mode, which alternates in sign from
step to step.

For |wAt| > 1, either |p4| > 1 or |p—| > 1. Thus the leapfrog
scheme is unstable in this case.

The leapfrog scheme is stable for the oscillation equation,
provided
WAL < 1.

Friction Equation Oscillation Equation
Euler Scheme Conditionally Stable = UNSTABLE

Leapfrog Scheme UNSTABLE Conditionally Stable

e Write a MATLAB program to solve the oscillation equation

dU
—=
the analytical solution of which is U(t) = exp(it), using
—the Euler forward method
—the leapfrog method

iU, U’=1 (w=1)

Draw conclusions about the stability of the two schemes.

e Write a MATLAB program to solve the oscillation equation
dU

—=

the analytical solution of which is U(t) = exp(it), using

iU, U’=1 (w=1)

—the Euler forward method
—the leapfrog method

Draw conclusions about the stability of the two schemes.

e Write a MATLAB program to solve the friction equation
du
=

the analytical solution of which is U(t) = exp(—t), using
—the Euler forward method

—the leapfrog method

U, U'=1 (k=1)

Draw conclusions about the stability of the two schemes.

Conclusion of §3.2.3

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

