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§3.2.2 The Leapfrog Method
• We have studied various simple solutions of the shallow

water equations by making approximations.

• In particular, by means of the perturbation method the
equations have been linearised, making them amenable
to analytical investigation.

• However, to obtain solutions in the general case, it is
necessary to solve the full nonlinear system.

• In numerical weather prediction (NWP) the fully nonlin-
ear primitive equations are solved by numerical means.

• In the atmosphere, the nonlinear advection process is a
dominant factor.

• To get some idea of the methods used, we look at the sim-
ple problem of formulating time-integration algorithms
for the solution of the simple advection equation.
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There are several distinct approaches to the formulation of
computer methods for solving differential equations. We
will confine ourselves to the finite difference method.

Other approaches include finite element method and the
spectral method.

The central idea of the finite difference approach is to
approximate the derivatives in the equation by differences
between adjacent points in space or time, and thereby
reduce the differential equation to a difference equation.

• An analytical problem becomes an algebraic one.

• A problem with an infinite degree of freedom is replaced
by one with a finite degree of freedom.

• A continuous problem goes over to a discrete one.
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The Finite Difference Method
We start by looking at the Taylor expansion of f (x):

f (x + ∆x) = f (x) + f ′(x).∆x + 1
2f

′′(x)∆x2 + [O(∆x3)] (1)

f (x−∆x) = f (x)− f ′(x).∆x + 1
2f

′′(x)∆x2 + [O(∆x3)] (2)
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We neglect these and obtain approximations for the deriva-
tive of f (x) as follows:

f ′(x) =
f (x + ∆x)− f (x)

∆x
+O(∆x) = f ′F +O(∆x)

f ′(x) =
f (x)− f (x−∆x)

∆x
+O(∆x) = f ′B +O(∆x) .

These are called the forward and backward differences.

Keeping only leading terms, we incur errors of order O(∆x).
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We can do better than this: subtracting (2) from (1) yields:

f ′(x) =
f (x + ∆x)− f (x−∆x)

2∆x
+O(∆x2) = f ′C +O(∆x2)
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Adding (1) and (2) gives the corresponding expression for
the second derivative:

f ′′(x) =
f (x + ∆x)− 2f (x) + f (x−∆x)

∆x2
+O(∆x2)

These centered differences are of accuracy O(∆x2).

We can continue taking more and more terms, but obviously
there is a trade-off between accuracy and efficiency.

Fourth-order accurate schemes are sometimes used in NWP,
but second order accuracy is more popular.
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Consider the function f (x) = A sin(kx).

We know that the derivative is kA cos(kx).

• Show that a forward difference approximation gives

f ′F (x) = kA cos[k(x + ∆x/2)] ·
[
sin(k∆x/2)

k∆x/2

]
• Show that the centered difference approximation yields

f ′C(x) = kA cos[kx] ·
[
sin(k∆x)

k∆x

]
• Compare these to the true derivative f ′(x) and investigate

their behaviour for small ∆x.

• Demonstrate thus that the centered difference is of higher
order accuracy.
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Grid Resolution and Accuracy
The size of the gridstep ∆x determines the accuracy of the
numerical scheme.

For the simple sine function the error depended on k∆x =
2π∆x/L, that is, on the ratio of the grid size ∆x to the wave-
length L.
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numerical scheme.

For the simple sine function the error depended on k∆x =
2π∆x/L, that is, on the ratio of the grid size ∆x to the wave-
length L.

For synoptic scale waves in the atmosphere a typical value
of L is 1000 km.

To make the ratio equal to 0.1 we need to have a grid size
of about 100 km.

This is larger than the typical gridsizes used in operational
NWP models.

The higher the resolution, that is, the smaller the grid-size,
the heavier the computational burden.

There is a trade-off between resolution and accuracy.
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The Leapfrog Method
We consider the equation describing the conservation of a
quantity Y (x, t) following the 1D motion of a fluid flow:

dY

dt
≡
(
∂Y

∂t
+ u

∂Y

∂x

)
= 0 .
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The Leapfrog Method
We consider the equation describing the conservation of a
quantity Y (x, t) following the 1D motion of a fluid flow:

dY

dt
≡
(
∂Y

∂t
+ u

∂Y

∂x

)
= 0 .

If the velocity is taken to be constant, u = c, or if we linearise
about a mean flow ū = c, the equation becomes

∂Y

∂t
+ c

∂Y

∂x
= 0 .

This is the linear advection equation.

It is analogous to a factor of the wave equation:(
∂2

∂t2
− c2

∂2

∂x2

)
Y =

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
Y = 0 ,

and its general solution is Y = Y (x− ct).
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Since the advection equation is linear, we can construct a
general solution from Fourier components

Y = a exp[ik(x− ct)] ; k = 2π/L .
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Since the advection equation is linear, we can construct a
general solution from Fourier components

Y = a exp[ik(x− ct)] ; k = 2π/L .

We take the following initial condition for Y :

Y (x, 0) = a exp[ikx]

Next, we approximate the differential equation by a finite
difference equation (FDE) using centered differences for both
the space and time derivatives.

The continuous variables are replaced by discrete gridpoints
at their integral values and the problem is solved on a finite
difference grid.

Let the variables x and t be represented by the horizontal
and vertical axes. Positive time corresponds to the upper
half plane. The initial data occur on the x-axis.
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Space-Time Grid: Space axis horizontal
Time axis vertical

n = 5 +——–+——–+——–+——–+——–+——–+
I I I I I I I
I I I I I I I

n = 4 +——–+——–+——–+——–+——–+——–+
I I I I I I I
I I I I I I I

n = 3 +——–+——–+——–+——–+——–+——–+
I I I I I I I
I I I I I I I

n = 2 +——–+——–+——–+——–+——–+——–+
I I I I I I I
I I I I I I I

n = 1 +——–+——–+——–+——–+——–+——–+
I I I I I I I
I I I I I I I

n = 0 +——–+——–+——–+——–+——–+——–+
m=-3 m=-2 m=-1 m=0 m=1 m=2 m=3
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We denote the value of Y at a grid point by:

Y (m∆x, n∆t) = Y n
m .
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Solving for the value at time (n + 1)∆t gives

Y n+1
m = Y n−1

m −
(
c∆t

∆x

)
(Y nm+1 − Y nm−1)

The value at the time (n+1)∆t is obtained by adding a term
to the value at (n−1)∆t; the method is known as the leapfrog
method because of this leap over the time n∆t.

The ratio µ ≡ c∆t

∆x
will be found to be crucial.
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Inter-dependency of Points

n + 1 + ⊕ +

n ⊕ • ⊕

n - 1 + ⊕ +

m-1 m m+1

The evaluation of the equation at point • involves values of
the variable at points ⊕. Solving for Y n+1

m thus requires

Y n−1
m , Y nm−1 and Y nm+1 .

The leapfrog scheme splits the grid into two independent sub-grids.
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Grid Splitting

n = 4 •———⊕——–•——–⊕———•
I I I I I
I I I I I

n = 3 ⊕———•——–⊕——–•———⊕
I I I I I
I I I I I

n = 2 •———⊕——–•——–⊕———•
I I I I I
I I I I I

n = 1 ⊕———•——–⊕——–•———⊕
I I I I I
I I I I I

n = 0 •———⊕——–•——–⊕———•
m=-2 m=-1 m=0 m=1 m=2

The finite difference grid splits into two sub-grids.

Steps must be taken to avoid divergence of the two solutions.
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Assuming that we know the solution up to time n∆t, the
values at time (n + 1)∆t can be calculated, and the solution
advanced by one timestep in this way.
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or, using the Courant Number,

Y n+1
m = Y n−1

m − µ(Y nm+1 − Y nm−1)

Assuming that we know the solution up to time n∆t, the
values at time (n + 1)∆t can be calculated, and the solution
advanced by one timestep in this way.

Then the whole procedure can be repeated to advance the
solution to (n + 2)∆t, and so on.
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Under what conditions does the solution of the finite differ-
ence equation approximate that of the original differential
equation?

? ? ?

Intuitively, we would expect that a good approximation
would be obtained provided the grid steps ∆x and ∆t are
small enough.

However, it turns out that this is not enough, and that the

value of the ratio

µ =
c∆t

∆x
is found to be of critical importance.

This “surprising result” has important practical
implications for operational NWP.

Break here
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The CFL Stability Criterion
Let us assume a solution of the FDE in the form
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The CFL Stability Criterion
Let us assume a solution of the FDE in the form

Y nm = aAn exp[ikm∆x]

Substituting this in the equation, defining µ = c∆t/∆x and
dividing by a common factor gives

A2 + (2iµ sin k∆x)A− 1 = 0

This is a quadratic for the amplitude A, with solutions

A± = −iµ sin k∆x±
√

1− µ2 sin2 k∆x .

The roots of a quadratic equation may be either real or
complex, depending on the value of the coefficients.

We write

A± = −iσ ±
√

1− σ2 where σ ≡ µ sin k∆x

We consider in turn the two cases.
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Case I: |µ| ≤ 1
The quantity under the square-root sign is positive, so the
modulus of A is given by

|A|2 = (1− σ2) + σ2 = 1 .
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Case I: |µ| ≤ 1
The quantity under the square-root sign is positive, so the
modulus of A is given by

|A|2 = (1− σ2) + σ2 = 1 .

The modulus of A is seen to be unity. Thus, we may write

A = exp(iψ) where ψ is real .

Note that

<{A+} = +
√

1− σ2 ={A+} = −σ
<{A−} = −

√
1− σ2 ={A+} = −σ

The two values of the phase are

ψ1 = − arcsinσ

and
ψ2 = π − ψ1 .
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The solution of the equation may now be written

Y nm =
[
D exp(iψ1n) + E exp[i(−ψ1 + π)n]

]
exp(ikm∆x)

where D and E are arbitrary constants.
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Exercise:
Check in detail the algebra leading to this solution.
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Once again, the solution is
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Y nm = (a− E) exp[ik(m∆x + ψ1n/k)]︸ ︷︷ ︸
Physical Mode

+ (−1)nE exp[ik(m∆x− ψ1n/k)]︸ ︷︷ ︸
Computational Mode

The first term of this solution is called the physical mode
and corresponds to the solution of the differential equation.

The second term is called the computational mode.

It arises through the use of centered differences resulting in
the approximation of a first order differential equation by a
second order difference equation (with an extra solution).

For µ and k∆x small we have

ψ1 ≈ −µk∆x = −kc∆t and ψ2 ≈ π + µk∆x = π + kc∆t

If the ratio µ is small, the physical mode solution is given
approximately by

Y ≈ a exp[ik(m∆x− cn∆t)]

which is just the analytical solution.
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The centered difference approximation cannot be used for
the first timestep: We don’t know the values at time t = −∆t.
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the first timestep: We don’t know the values at time t = −∆t.

Instead, we must use another approximation for the first
step, typically an uncentered forward time step.

In essence, this amounts to specifing another “initial con-
tition”, the computational initial condition, at t = ∆t.

The value of the additional “initial condition” determines
the amplitude of the computational mode. It should be
chosen to minimize this.

The above solution implies

Y 0
m = a exp(ikm∆x)

Y 1
m = [a exp(iψ1)− 2E cosψ1] exp(ikm∆x)

Requiring E = 0, we find that Y 1
m = exp(iψ1)Y

0
m.

In this simple case, we can eliminate the computational
mode. In general, it is much more difficult.
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Case II: |µ| > 1
Recall that the roots of the quadratic are

A± = −iσ ±
√

1− σ2 where σ ≡ µ sin k∆x
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Then the two roots of the quadratic are pure imaginary

A = i
(
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√
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Therefore either |A+| > 1 or |A−| > 1, i.e., the modulus of
one of the roots will exceed unity.

In that case the amplitude of the solution of the finite dif-
ference equation will grow without bound for large time.
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If |µ| > 1, there will be some wavelengths for which

σ2 = µ2 sin2 k∆x > 1 .

Then the two roots of the quadratic are pure imaginary

A = i
(
−σ ±

√
σ2 − 1

)
Therefore either |A+| > 1 or |A−| > 1, i.e., the modulus of
one of the roots will exceed unity.

In that case the amplitude of the solution of the finite dif-
ference equation will grow without bound for large time.

This phenomenon is called computational instability.
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In case of computational instability, the solution of the
finite difference equation cannot possibly resemble the
physical solution.
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physical solution.

The physical solution remains of constant amplitude for all
time. The numerical solution grows without limit with time.

We thus require that |µ| ≤ 1. This condition for stability is

known as the CFL Criterion:

c∆t

∆x
≤ 1

after Courant, Friedichs and Lewy (1928), who first pub-
lished the result.

It implies that, if we refine the space grid, that is, decrease
∆x, we must also shorten the time step ∆t.

Thus, halving the grid size in a two dimensional domain
results in an eightfold increase in computation time.
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Unconditionally Stable Schemes.
A large part of the research effort in Met Éireann recently
has been devoted to the development of integration schemes
which are free of the CFL constraint.
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Unconditionally Stable Schemes.
A large part of the research effort in Met Éireann recently
has been devoted to the development of integration schemes
which are free of the CFL constraint.

The semi-Lagrangian scheme for advection is based on the
idea of approximating the Lagrangian form of the time deriva-
tive.

It is so formulated that the numerical domain of dependence
always includes the physical domain of dependence. This
necessary condition for stability is satisfied automatically
by the scheme.

The semi-Lagrangian algorithm has enabled us to integrate
the primitive equations using a time step of 15 minutes.

This can be compared to a typical timestep of 2.5 minutes
for Eulerian schemes.
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The consequential saving of computation time means that
the operational numerical guidance is available to the fore-
casters much earlier than would otherwise be the case.
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The consequential saving of computation time means that
the operational numerical guidance is available to the fore-
casters much earlier than would otherwise be the case.

Lagrangian time-stepping is now used in the majority of
global and regional NWP Models.

The Irish Meteorological Service (now Met Éireann) was
the first NWP centre to implement such a scheme in an
operational setting.

We discuss semi-Lagrangian schemes in a later lecture.
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End of §3.2.2
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