

The ENIAC Integrations

Numerical Solution of the BVE

Peter Lynch

School of Mathematical Sciences

Outline

Background

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

Contents

Background

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

The dynamical behaviour of planetary waves in the atmosphere is modelled by the barotropic vorticity equation (BVE):

$$\frac{d(\zeta + f)}{dt} = 0.$$

The dynamical behaviour of planetary waves in the atmosphere is modelled by the barotropic vorticity equation (BVE):

$$\frac{d(\zeta + f)}{dt} = 0.$$

Rossby (1939) used a simplified (linear) form of this equation for his study of atmospheric waves.

The dynamical behaviour of planetary waves in the atmosphere is modelled by the barotropic vorticity equation (BVE):

$$\frac{d(\zeta + f)}{dt} = 0.$$

Rossby (1939) used a simplified (linear) form of this equation for his study of atmospheric waves.

Charney, Fjørtoft & von Neumann (1950) integrated the BVE to produce the earliest numerical weather predictions on the ENIAC.

They integrated the equation on a rectangular domain, in planar geometry.

Contents

Background

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

$$\mathbf{V} = \mathbf{k} \times \nabla \psi \quad \nabla \cdot \mathbf{V} = 0$$

$$u = -\frac{\partial \psi}{\partial y} \quad v = +\frac{\partial \psi}{\partial x}$$

$$\mathbf{V} = \mathbf{k} \times \nabla \psi \quad \nabla \cdot \mathbf{V} = 0$$

$$u = -\frac{\partial \psi}{\partial y} \quad v = +\frac{\partial \psi}{\partial x}$$

$$\begin{aligned}\frac{d \bullet}{dt} &= \frac{\partial \bullet}{\partial t} + u \frac{\partial \bullet}{\partial x} + v \frac{\partial \bullet}{\partial y} \\ &= \frac{\partial \bullet}{\partial t} - \frac{\partial \psi}{\partial y} \frac{\partial \bullet}{\partial x} + \frac{\partial \psi}{\partial x} \frac{\partial \bullet}{\partial y} \\ &= \frac{\partial \bullet}{\partial t} + J(\psi, \bullet)\end{aligned}$$

$$\mathbf{V} = \mathbf{k} \times \nabla \psi \quad \nabla \cdot \mathbf{V} = 0$$

$$u = -\frac{\partial \psi}{\partial y} \quad v = +\frac{\partial \psi}{\partial x}$$

$$\begin{aligned}\frac{d \bullet}{dt} &= \frac{\partial \bullet}{\partial t} + u \frac{\partial \bullet}{\partial x} + v \frac{\partial \bullet}{\partial y} \\ &= \frac{\partial \bullet}{\partial t} - \frac{\partial \psi}{\partial y} \frac{\partial \bullet}{\partial x} + \frac{\partial \psi}{\partial x} \frac{\partial \bullet}{\partial y} \\ &= \frac{\partial \bullet}{\partial t} + J(\psi, \bullet)\end{aligned}$$

$$\nabla \cdot \mathbf{V} = 0 \quad \zeta = \nabla^2 \psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2}$$

Since f does not vary with time, we have

$$\frac{\partial}{\partial t}(\zeta + f) = \frac{\partial \zeta}{\partial t} = \frac{\partial \nabla^2 \psi}{\partial t}$$

Since f does not vary with time, we have

$$\frac{\partial}{\partial t}(\zeta + f) = \frac{\partial \zeta}{\partial t} = \frac{\partial \nabla^2 \psi}{\partial t}$$

Thus, the BVE may be written

$$\frac{\partial \nabla^2 \psi}{\partial t} + J(\psi, \nabla^2 \psi + f) = 0$$

This is a single partial differential equation with just one dependent variable, the streamfunction $\psi(x, y, t)$.

Since f does not vary with time, we have

$$\frac{\partial}{\partial t}(\zeta + f) = \frac{\partial \zeta}{\partial t} = \frac{\partial \nabla^2 \psi}{\partial t}$$

Thus, the BVE may be written

$$\frac{\partial \nabla^2 \psi}{\partial t} + J(\psi, \nabla^2 \psi + f) = 0$$

This is a single partial differential equation with just one dependent variable, the streamfunction $\psi(x, y, t)$.

Once initial and boundary values are given, the equation can be solved for $\psi = \psi(x, y, t)$.

The Jacobian operator is defined as

$$J(\psi, \zeta) = \left(\frac{\partial \psi}{\partial x} \frac{\partial \zeta}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial \zeta}{\partial x} \right)$$

The Jacobian operator is defined as

$$J(\psi, \zeta) = \left(\frac{\partial \psi}{\partial x} \frac{\partial \zeta}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial \zeta}{\partial x} \right)$$

The Jacobian operator represents advection:

$$\begin{aligned}\mathbf{v} \cdot \nabla \zeta &= u \frac{\partial \zeta}{\partial x} + v \frac{\partial \zeta}{\partial y} \\ &= - \frac{\partial \psi}{\partial y} \frac{\partial \zeta}{\partial x} + \frac{\partial \psi}{\partial x} \frac{\partial \zeta}{\partial y} \\ &= J(\psi, \zeta)\end{aligned}$$

The Jacobian operator is defined as

$$J(\psi, \zeta) = \left(\frac{\partial \psi}{\partial x} \frac{\partial \zeta}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial \zeta}{\partial x} \right)$$

The Jacobian operator represents advection:

$$\begin{aligned}\mathbf{v} \cdot \nabla \zeta &= u \frac{\partial \zeta}{\partial x} + v \frac{\partial \zeta}{\partial y} \\ &= - \frac{\partial \psi}{\partial y} \frac{\partial \zeta}{\partial x} + \frac{\partial \psi}{\partial x} \frac{\partial \zeta}{\partial y} \\ &= J(\psi, \zeta)\end{aligned}$$

It is essentially nonlinear. The BVE must be solved by numerical means. We come to this next.

Contents

Background

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

$$\frac{\partial}{\partial t} \nabla^2 \psi = -J(\psi, \nabla^2 \psi + f)$$

$$\frac{\partial}{\partial t} \nabla^2 \psi = -J(\psi, \nabla^2 \psi + f)$$

Assume that $\psi(x, y) = \psi_0(x, y)$ **at** $t = 0$.

$$\frac{\partial}{\partial t} \nabla^2 \psi = -J(\psi, \nabla^2 \psi + f)$$

Assume that $\psi(x, y) = \psi_0(x, y)$ **at** $t = 0$.

We write the system of equations

$$\zeta = \nabla^2 \psi \quad (1)$$

$$\frac{\partial \zeta}{\partial t} = -J(\psi, \zeta + f) \quad (2)$$

$$\nabla^2 \frac{\partial \psi}{\partial t} = \frac{\partial \zeta}{\partial t} \quad (3)$$

$$\frac{\partial}{\partial t} \nabla^2 \psi = -J(\psi, \nabla^2 \psi + f)$$

Assume that $\psi(x, y) = \psi_0(x, y)$ at $t = 0$.

We write the system of equations

$$\zeta = \nabla^2 \psi \quad (1)$$

$$\frac{\partial \zeta}{\partial t} = -J(\psi, \zeta + f) \quad (2)$$

$$\nabla^2 \frac{\partial \psi}{\partial t} = \frac{\partial \zeta}{\partial t} \quad (3)$$

We assume that the values of $\psi(x, y)$ on the boundary remain unchanged during the integration.

ALGORITHM:

- ▶
- ▶ **Given:** $\psi^n(x, y)$ **at time** $t = n\Delta t$.
- ▶
- ▶ **Compute** $\zeta^n(x, y)$ **using (1)**.
- ▶
- ▶ **Solve (2) for** $(\partial\zeta/\partial t)^n$.
- ▶
- ▶ **Solve (3) with homogeneous boundary conditions for** $(\partial\psi/\partial t)^n$.
- ▶
- ▶ **Advance** ψ **to time** $t = (n + 1)\Delta t$ **using**
$$\psi^{n+1} = \psi^{n-1} + 2\Delta t(\partial\psi/\partial t)^n$$
.

Contents

Background

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

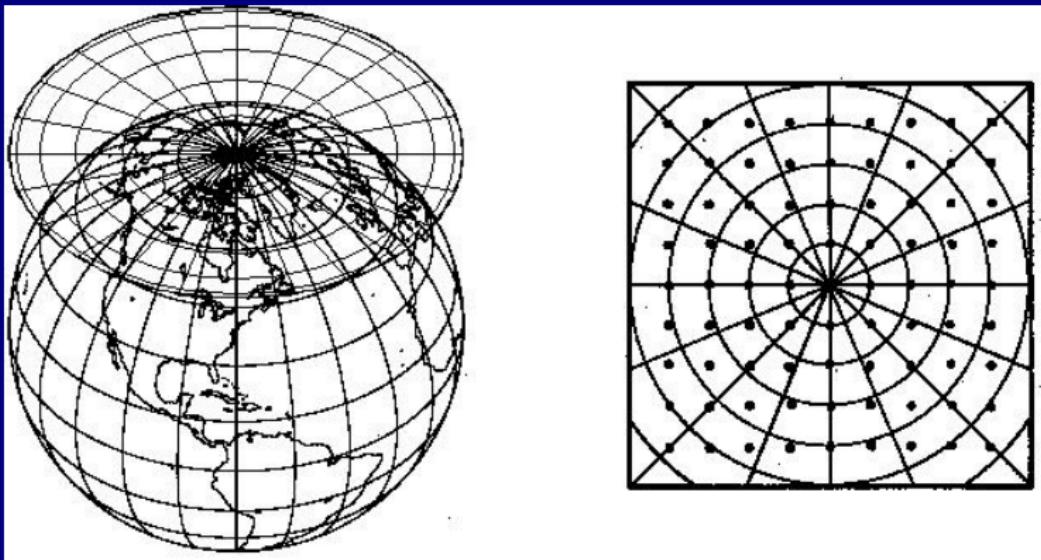


Figure: Polar Stereographic projection

Map Factor

$$\mu = \frac{1}{1 + \sin \phi}$$

Contents

Background

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

We need to find the streamfunction by solving a Poisson equation of the form

$$\nabla^2 \Phi = F \quad \text{with} \quad \Phi = 0 \text{ on the boundary}$$

on a rectangular domain.

We need to find the streamfunction by solving a Poisson equation of the form

$\nabla^2 \Phi = F$ with $\Phi = 0$ on the boundary
on a rectangular domain.

We introduce a discrete grid

$$\begin{aligned} x &\longrightarrow \{x_0, x_1, x_2, \dots, x_M = M\Delta x\} \\ y &\longrightarrow \{y_0, y_1, y_2, \dots, y_N = N\Delta y\} \end{aligned}$$

We need to find the streamfunction by solving a Poisson equation of the form

$\nabla^2 \Phi = F$ with $\Phi = 0$ on the boundary
on a rectangular domain.

We introduce a discrete grid

$$\begin{aligned} x &\longrightarrow \{x_0, x_1, x_2, \dots, x_M = M\Delta x\} \\ y &\longrightarrow \{y_0, y_1, y_2, \dots, y_N = N\Delta y\} \end{aligned}$$

For simplicity, we assume

$$\Delta x = \Delta y = \Delta s.$$

We need to find the streamfunction by solving a Poisson equation of the form

$\nabla^2 \Phi = F$ with $\Phi = 0$ on the boundary
on a rectangular domain.

We introduce a discrete grid

$$\begin{aligned} x &\longrightarrow \{x_0, x_1, x_2, \dots, x_M = M\Delta x\} \\ y &\longrightarrow \{y_0, y_1, y_2, \dots, y_N = N\Delta y\} \end{aligned}$$

For simplicity, we assume

$$\Delta x = \Delta y = \Delta s.$$

We use a spectral method that was devised by John von Neumann for the ENIAC integrations.

We recall some properties of the Fourier expansion:

$$\Phi_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\Phi}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

We recall some properties of the Fourier expansion:

$$\Phi_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\Phi}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

The inverse transform is

$$\tilde{\Phi}_{k\ell} = \left(\frac{2}{M}\right) \left(\frac{2}{N}\right) \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} \Phi_{ij} \sin\left(\frac{ik\pi}{M}\right) \sin\left(\frac{j\ell\pi}{N}\right)$$

We recall some properties of the Fourier expansion:

$$\Phi_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\Phi}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

The inverse transform is

$$\tilde{\Phi}_{k\ell} = \left(\frac{2}{M}\right) \left(\frac{2}{N}\right) \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} \Phi_{ij} \sin\left(\frac{ik\pi}{M}\right) \sin\left(\frac{j\ell\pi}{N}\right)$$

We note that

$$\begin{aligned} & \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} \sin\left(\frac{im\pi}{M}\right) \sin\left(\frac{jn\pi}{N}\right) \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right) \\ &= \delta_{ik} \delta_{j\ell} \left(\frac{M}{2}\right) \left(\frac{N}{2}\right) \end{aligned}$$

The usual five-point approximation to $\nabla^2\Phi$ is

$$(\nabla^2\Phi)_{mn} \approx \left(\frac{\Phi_{m+1,n} + \Phi_{m-1,n} + \Phi_{m,n+1} + \Phi_{m,n-1} - 4\Phi_{m,n}}{\Delta s^2} \right)$$

The usual five-point approximation to $\nabla^2\Phi$ is

$$(\nabla^2\Phi)_{mn} \approx \left(\frac{\Phi_{m+1,n} + \Phi_{m-1,n} + \Phi_{m,n+1} + \Phi_{m,n-1} - 4\Phi_{m,n}}{\Delta s^2} \right)$$

We expand Φ in a double Fourier series

$$\Phi_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\Phi}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

The usual five-point approximation to $\nabla^2\Phi$ is

$$(\nabla^2\Phi)_{mn} \approx \left(\frac{\Phi_{m+1,n} + \Phi_{m-1,n} + \Phi_{m,n+1} + \Phi_{m,n-1} - 4\Phi_{m,n}}{\Delta s^2} \right)$$

We expand Φ in a double Fourier series

$$\Phi_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\Phi}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

We use approximations like the following:

$$\frac{\partial^2}{\partial x^2} \sin\left(\frac{km\pi}{M}\right) \approx -4 \sin^2\left(\frac{k\pi}{2M}\right) \sin\left(\frac{km\pi}{M}\right)$$

[Exercise: confirm the details.]

Thus:

$$\nabla^2 \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right) \approx$$
$$-\frac{4}{\Delta s^2} \left[\sin^2\left(\frac{k\pi}{2M}\right) + \sin^2\left(\frac{\ell\pi}{2N}\right) \right] \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

Thus:

$$\nabla^2 \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right) \approx \\ -\frac{4}{\Delta s^2} \left[\sin^2\left(\frac{k\pi}{2M}\right) + \sin^2\left(\frac{\ell\pi}{2N}\right) \right] \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

The Laplacian is applied term-by-term to Φ :

$$\nabla^2 \Phi_{mn} \approx \\ -\frac{4}{\Delta s^2} \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \left[\sin^2\left(\frac{k\pi}{2M}\right) + \sin^2\left(\frac{\ell\pi}{2N}\right) \right] \tilde{\Phi}_{k\ell} \times \\ \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

We now expand the right hand side function:

$$F_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{F}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

We now expand the right hand side function:

$$F_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{F}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

Now we equate the coefficients of $\nabla^2\phi$ and F :

$$\left[\sin^2\left(\frac{k\pi}{2M}\right) + \sin^2\left(\frac{\ell\pi}{2N}\right) \right] \tilde{\phi}_{k\ell} = (-\Delta s^2/4) \tilde{F}_{k\ell}$$

or

$$\tilde{\phi}_{k\ell} = \frac{(-\Delta s^2/4) \tilde{F}_{k\ell}}{\sin^2\left(\frac{k\pi}{2M}\right) + \sin^2\left(\frac{\ell\pi}{2N}\right)}$$

We now expand the right hand side function:

$$F_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{F}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

Now we equate the coefficients of $\nabla^2\phi$ and F :

$$\left[\sin^2\left(\frac{k\pi}{2M}\right) + \sin^2\left(\frac{\ell\pi}{2N}\right) \right] \tilde{\phi}_{k\ell} = (-\Delta s^2/4) \tilde{F}_{k\ell}$$

or

$$\tilde{\phi}_{k\ell} = \frac{(-\Delta s^2/4) \tilde{F}_{k\ell}}{\sin^2\left(\frac{k\pi}{2M}\right) + \sin^2\left(\frac{\ell\pi}{2N}\right)}$$

Now $\tilde{\phi}_{k\ell}$ is known, and we can invert it:

$$\Phi_{mn} = \frac{\Delta s^2}{MN} \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\phi}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

We can compute the inverse transform in one go:

$$\Phi_{mn} = -\frac{\Delta s^2}{MN} \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \left[\sin^2\left(\frac{k\pi}{2M}\right) + \sin^2\left(\frac{\ell\pi}{2N}\right) \right]^{-1} \times F_{ij} \sin\left(\frac{im\pi}{M}\right) \sin\left(\frac{jn\pi}{N}\right) \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

We can compute the inverse transform in one go:

$$\Phi_{mn} = -\frac{\Delta s^2}{MN} \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \left[\sin^2\left(\frac{k\pi}{2M}\right) + \sin^2\left(\frac{\ell\pi}{2N}\right) \right]^{-1} \times F_{ij} \sin\left(\frac{im\pi}{M}\right) \sin\left(\frac{jn\pi}{N}\right) \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

We now substitute

$$F_{ij} \longrightarrow \left(\frac{\partial \zeta}{\partial t} \right)_{ij}.$$

Then

$$\Phi_{mn} = \left(\frac{\partial \psi}{\partial t} \right)_{mn}$$

and we have the solution for ϕ .

The equation

$$\frac{d(\zeta + f)}{dt} = 0.$$

was used for the four integrations on the ENIAC.

The equation

$$\frac{d(\zeta + f)}{dt} = 0.$$

was used for the four integrations on the ENIAC.

Charney, Fjørtoft and von Neumann (*Tellus*, 1950) used z rather than ψ . This necessitates an approximation involving the β -term.

The equation

$$\frac{d(\zeta + f)}{dt} = 0.$$

was used for the four integrations on the ENIAC.

Charney, Fjørtoft and von Neumann (*Tellus*, 1950) used z rather than ψ . This necessitates an approximation involving the β -term.

Lynch (*BAMS*, 2008) showed that the ψ -form yields forecasts that are slightly more accurate.

This confirmed a hypothesis advanced earlier by Norman Phillips.

Charney et al. used the 500mb analyses of the National Weather Service, discretized and digitized by hand.

Charney et al. used the 500mb analyses of the National Weather Service, discretized and digitized by hand.

The computation grid was 19×16 points, with a resolution of about 600 km.

Charney et al. used the 500mb analyses of the National Weather Service, discretized and digitized by hand.

The computation grid was 19×16 points, with a resolution of about 600 km.

The ENIAC forecasts had an “electrifying effect” on the meteorological community, and led ultimately to operational NWP.

Contents

Background

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

- ▶ ENIAC code in MatLab.
- ▶
- ▶ PHONIAC on a mobile phone.
- ▶
- ▶ What about an iPod?

