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The dynamical behaviour of planetary waves in the
atmosphere is modelled by the barotropic vorticity
equation (BVE):

d(¢+f)

a0
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Rossby (1939) used a simplified (linear) form of this
equation for his study of atmospheric waves.
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The dynamical behaviour of planetary waves in the
atmosphere is modelled by the barotropic vorticity
equation (BVE):

d(¢+f)

a0

Rossby (1939) used a simplified (linear) form of this
equation for his study of atmospheric waves.

Charney, Fjortoft & von Neumann (1950) integrated
the BVE to produce the earliest numerical weather
predictions on the ENIAC.

They integrated the equation on a rectangular
domain, in planar geometry.
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Since f does not vary with time, we have

¢ Eqn
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Since f does not vary with time, we have

) 8¢ avRy
TN =3 =&

Thus, the BVE may be written
OV21)
ot

This is a single partial differential equation with just
one dependent variable, the streamfunction ¢(x, y, f).

+J(, V2 +f) =0
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Since f does not vary with time, we have

) LA VR
TN =3 =&

Thus, the BVE may be written
OV21)
ot

This is a single partial differential equation with just
one dependent variable, the streamfunction ¢(x, y, f).

+J(, V2 +f) =0

Once initial and boundary values are given, the
equation can be solved for » = ¥(x, y, t).
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The Jacobian operator is defined as

Y L)
J(,C) = (a_x@ - @a)
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The Jacobian operator is defined as

(99 IC  OYI(
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The Jacobian operator represents advection:

V.-V¢( = u=+v—=
oY a¢ 9y ¢
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The Jacobian operator is defined as

_ (9%9¢ _040¢
(I/”O_(a_xa_y 8y8x)

The Jacobian operator represents advection:

V.V( = u=+v=
oY a¢ 9y ¢

oy 0x ax 6y
= J(¥.¢)

It is essentially nonlinear. The BVE must be solved by
numerical means. We come to this next.
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J o _ 2
5 Vo0 = —J(W, V2 4 f)

Assume that ¢(x, y) = Yo(x, y) at t = 0.
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J o _ 2
5 Vo0 = —J(W, V2 4 f)

Assume that ¢(x, y) = Yo(x, y) at t = 0.

We write the system of equations

¢ = v 0
B =~ Ch @)
0o
Vi%r T ot 3)
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_v2¢ -

—J(, V3 + 1)

Assume that ¢(x, y) = Yo(x, y) at t = 0.

We write the system of equations

¢
a¢

ot
L0
Voot

We assume that the values of ¢'(x, y) on the boundary
remain unchanged during the integration. i

FD Method

AV (1)
—J(, ¢+ 1) )
¢

T (3)



ALGORITHM:

Given: ¢"(x, y) at time { = nAt.
Compute ("(x, y) using (1).

Solve (2) for (0¢/0t)".

>
>
>
>
>
| 4
>

Solve (3) with homogeneous boundary
conditions for (0vy)/0t)".

| 2
» Advance ¢ to time { = (n+ 1)At using
P = =1 4 2ALH(B/OL)". sa8
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Figure: Polar Stereographic projection
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We need to find the streamfunction by solving a
Poisson equation of the form

V2o =F with & =0 onthe boundary

on a rectangular domain.

V20 = F
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We need to find the streamfunction by solving a
Poisson equation of the form

V2o =F with & =0 onthe boundary
on a rectangular domain.
We introduce a discrete grid

X — {Xo, X1, Xo,..., Xy = MAx}
y — {YO>Y17}/27--->YN:NAY}
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We need to find the streamfunction by solving a
Poisson equation of the form

V2o =F with & =0 onthe boundary
on a rectangular domain.

We introduce a discrete grid

X — {Xo, X1, Xo,..., Xy = MAx}
y — {YO>Y17}/27--->YN:NAY}

For simplicity, we assume

Ax =Ay =As.
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We need to find the streamfunction by solving a
Poisson equation of the form

V2o =F with & =0 onthe boundary
on a rectangular domain.
We introduce a discrete grid

X — {Xo, X1, Xo,..., Xy = MAx}
y = {YO>Y17Y2a--->YN:NAY}

For simplicity, we assume
Ax =Ay =As.
We use a spectral method that was devised by John i1

von Neumann for the ENIAC integrations.
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We recall some properties of the Fourier expansion:

i S kmmn ‘nm
q)mn = Z Zq)kg Sin (7) Sin <W>

k=1 ¢=1
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We recall some properties of the Fourier expansion:
M—1 N—1 ‘nr
S = ®yy Sin sin | ——
m= 3 8uen (7)o (%)

The inverse transform is

o= (3) (S0 () ()

j=
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We recall some properties of the Fourier expansion:
M—1 N—1 ‘nr
O sin [ ——
v EE s (7)o (%)
k=1 (=1
The inverse transform is
y 1 ” jex
b= — ®;i sin sin | —
o= () (D) T Z ewen (7)o ()

We note that
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The usual five-point approximation to V2¢ is

clDm-|—1,n + ¢m—1,n + ¢m,n+1 + ¢m,n—1 - 4'q)m,n

2 ~
Vo= ( =

V2o =F
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The usual five-point approximation to V2¢ is

(Vzcb)mn ) (¢m+1,n + ¢m—1,n + ¢An1;72+1 + ¢m,n—1 — 4¢m,n)

We expand ¢ in a double Fourier series

M—-1 N-1
= sin sin gn—ﬂ
Pre N

k=1 ¢=1
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The usual five-point approximation to V2¢ is

(Vzcb)mn ) (¢m+1,n + ¢m—1,n + ¢An1;72+1 + ¢m,n—1 — 4¢m,n)

We expand ¢ in a double Fourier series
M—1 N—1
~ . (kmm\ . [¢nm
S = Z Py Sin (7> sin (W)

We use approximations like the following:

ia sin { 77 ~ _4sin? (57 gin (KO
Ox2 M)~ 2M M

[Exercise: confirm the details.] v

V2o = F



(8] (52 () on ()
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Thus:

kmmn ‘nr
2 . it . %
\V4 sm( v )sm(—N)
e sin? i sin? @ sin Wi sin Al
NG M) " 2N M N

The Laplacian is applied term-by-term to ¢:

M—1 N—1
4 [sm ( )+sm <£W>}&> x
T A o k¢
AS? —~ 2N
sin —kmﬂ sin i
M N

V2o =F

Ve, =~
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We now expand the right hand side function:

~ km . [fn
[T = Fyesin (ﬁ) sin (#)
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We now expand the right hand side function:
M—1 N—1
~ . (km . (¢n
i = Fresin <7ﬁ> sin (#)
Now we equate the coefficients of V2® and F:

[sin2 (g;’) + sin? (.’fN)} P = (—AS?/4)F,

(—As?/4)Fiq
 sin? (£2) + sin® (LX)

or

?
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We now expand the right hand side function:

~ . (km . (In
i = Fresin (ﬁ) sin (#)
k=1 ¢=1
Now we equate the coefficients of V2® and F:
. k % .
[Sln2 (2;,) + sin® (ZN)} bip = (—AS?/4)Fy

o (—As?/4)Fiq
e sin® (£2) + sin® (&)

or

Now &, is known, and we can invert it:

As? & . ({Inm -
= > Z ke Sin ( ) sin (W) -

k=1 (=1
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We can compute the inverse transform in one go:

q) B ASQM 1N-1M-1N-1 Sln +S|n i _1><
2N
i=1 j=1 k=1 (=1

J

= i [ 20 iy (12 st @ i (48
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We can compute the inverse transform in one go:

o _ A32M1N1M1N1 o +air? e\
2N
i=1 j=1 k=1 =1

J

Fysin (7Y sin (177 sin —km” sin (27
1SN "m N M N

We now substitute
¢
F// = <a>u .

oY
S (5> - 488

and we have the solution for ¢.

X

Then

V20 = F



The equation
d(¢+f)
at
was used for the four integrations on the ENIAC.

= (0.

V2o =F
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The equation
d(¢+f)
at
was used for the four integrations on the ENIAC.

= (0.

Charney, Fjortoft and von Neumann (Tellus, 1950)
used z rather than . This necessitates an
approximation involving the s-term.
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The equation
d(¢+f)
at
was used for the four integrations on the ENIAC.

= (0.

Charney, Fjortoft and von Neumann (Tellus, 1950)
used z rather than . This necessitates an
approximation involving the s-term.

Lynch (BAMS, 2008) showed that the ¢-form yields
forecasts that are slightly more accurate.

This confirmed a hypothesis advanced earlier by
Norman Phillips.
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Charney et al. used the 500mb analyses of the
National Weather Service, discretized and digitized by
hand.
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Charney et al. used the 500mb analyses of the
National Weather Service, discretized and digitized by
hand.

The computation grid was 19 x 16 points, with a
resolution of about 600 km.
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Charney et al. used the 500mb analyses of the
National Weather Service, discretized and digitized by
hand.

The computation grid was 19 x 16 points, with a
resolution of about 600 km.

The ENIAC forecasts had an “electrifying effect” on
the meteorological community, and led ultimately to
operational NWP.
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ENIAC code in MatLab.

PHONIAC on a mobile phone.

What about an iPod?
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