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The dynamical behaviour of planetary waves in the
atmosphere is modelled by the barotropic vorticity
equation (BVE):

d(ζ + f )
dt

= 0 .

Rossby (1939) used a simplified (linear) form of this
equation for his study of atmospheric waves.

Charney, Fjørtoft & von Neumann (1950) integrated
the BVE to produce the earliest numerical weather
predictions on the ENIAC.

They integrated the equation on a rectangular
domain, in planar geometry.
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V = k×∇ψ ∇ · V = 0

u = −∂ψ
∂y

v = +
∂ψ

∂x

d •
dt

=
∂ •
∂t

+ u
∂ •
∂x

+ v
∂ •
∂y

=
∂ •
∂t

− ∂ψ

∂y
∂ •
∂x

+
∂ψ

∂x
∂ •
∂y

=
∂ •
∂t

+ J(ψ, •)

∇ · V = 0 ζ = ∇2ψ =
∂2ψ

∂x2 +
∂2ψ

∂y2
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Since f does not vary with time, we have

∂

∂t
(ζ + f ) =

∂ζ

∂t
=
∂∇2ψ

∂t

Thus, the BVE may be written

∂∇2ψ

∂t
+ J(ψ,∇2ψ + f ) = 0

This is a single partial differential equation with just
one dependent variable, the streamfunction ψ(x , y , t).

Once initial and boundary values are given, the
equation can be solved for ψ = ψ(x , y , t).
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The Jacobian operator is defined as

J(ψ, ζ) =

(
∂ ψ

∂x
∂ζ

∂y
− ∂ψ

∂y
∂ ζ

∂x

)

The Jacobian operator represents advection:

V · ∇ζ = u
∂ζ

∂x
+ v

∂ζ

∂y

= −∂ψ
∂y

∂ζ

∂x
+
∂ψ

∂x
∂ζ

∂y
= J(ψ, ζ)

It is essentially nonlinear. The BVE must be solved by
numerical means. We come to this next.
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∂

∂t
∇2ψ = −J(ψ,∇2ψ + f )

Assume that ψ(x , y) = ψ0(x , y) at t = 0.

We write the system of equations

ζ = ∇2ψ (1)
∂ζ

∂t
= −J(ψ, ζ + f ) (2)

∇2∂ψ

∂t
=

∂ζ

∂t
(3)

We assume that the values of ψ(x , y) on the boundary
remain unchanged during the integration.
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ALGORITHM:

I

I Given: ψn(x , y) at time t = n∆t .
I

I Compute ζn(x , y) using (1).
I

I Solve (2) for (∂ζ/∂t)n.
I

I Solve (3) with homogeneous boundary
conditions for (∂ψ/∂t)n.

I

I Advance ψ to time t = (n + 1)∆t using
ψn+1 = ψn−1 + 2∆t(∂ψ/∂t)n.
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Figure: Polar Stereographic projection

Map Factor µ =
1

1 + sinφ
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We need to find the streamfunction by solving a
Poisson equation of the form

∇2Φ = F with Φ = 0 on the boundary

on a rectangular domain.

We introduce a discrete grid

x −→ {x0, x1, x2, . . . , xM = M∆x}
y −→ {y0, y1, y2, . . . , yN = N∆y}

For simplicity, we assume

∆x = ∆y = ∆s .

We use a spectral method that was devised by John
von Neumann for the ENIAC integrations.
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We recall some properties of the Fourier expansion:

Φmn =
M−1∑
k=1

N−1∑
`=1

Φ̃k` sin
(

kmπ
M

)
sin

(
`nπ
N

)

The inverse transform is

Φ̃k` =

(
2
M

) (
2
N

) M−1∑
i=1

N−1∑
j=1

Φij sin
(

ikπ
M

)
sin

(
j`π
N

)

We note that
M−1∑
i=1

N−1∑
j=1

sin
(

imπ
M

)
sin

(
jnπ
N

)
sin

(
kmπ
M

)
sin

(
`nπ
N

)
= δikδj`

(
M
2

) (
N
2

)
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The usual five-point approximation to ∇2Φ is

(∇2Φ)mn ≈
(

Φm+1,n + Φm−1,n + Φm,n+1 + Φm,n−1 − 4Φm,n

∆s2

)

We expand Φ in a double Fourier series

Φmn =
M−1∑
k=1

N−1∑
`=1

Φ̃k` sin
(

kmπ
M

)
sin

(
`nπ
N

)

We use approximations like the following:

∂2

∂x2 sin
(

kmπ
M

)
≈ −4 sin2

(
kπ
2M

)
sin

(
kmπ
M

)
[Exercise: confirm the details.]
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Thus:

∇2 sin
(

kmπ
M

)
sin

(
`nπ
N

)
≈

− 4
∆s2

[
sin2

(
kπ
2M

)
+ sin2

(
`π

2N

)]
sin

(
kmπ
M

)
sin

(
`nπ
N

)

The Laplacian is applied term-by-term to Φ:

∇2Φmn ≈

− 4
∆s2

M−1∑
k=1

N−1∑
`=1

[
sin2

(
kπ
2M

)
+ sin2

(
`π

2N

)]
Φ̃k` ×

sin
(

kmπ
M

)
sin

(
`nπ
N

)
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We now expand the right hand side function:

Fmn =
M−1∑
k=1

N−1∑
`=1

F̃k` sin
(

kmπ
M

)
sin

(
`nπ
N

)

Now we equate the coefficients of ∇2Φ and F :[
sin2

(
kπ
2M

)
+ sin2

(
`π

2N

)]
Φ̃k` = (−∆s2/4)F̃k`

or

Φ̃k` =
(−∆s2/4)F̃k`

sin2 (
kπ
2M

)
+ sin2 (

`π
2N

)
Now Φ̃k` is known, and we can invert it:

Φmn =
∆s2

MN

M−1∑
k=1

N−1∑
`=1

Φ̃k` sin
(

kmπ
M

)
sin

(
`nπ
N

)
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We can compute the inverse transform in one go:

Φmn = −∆s2

MN

M−1∑
i=1

N−1∑
j=1

M−1∑
k=1

N−1∑
`=1

[
sin2

(
kπ
2M

)
+ sin2

(
`π

2N

)]−1

×

Fij sin
(

imπ
M

)
sin

(
jnπ
N

)
sin

(
kmπ
M

)
sin

(
`nπ
N

)

We now substitute

Fij −→
(
∂ζ

∂t

)
ij
.

Then
Φmn =

(
∂ψ

∂t

)
mn

and we have the solution for Φ.

Background ψ Eqn FD Method PS Map ∇2Φ = F Conclusion



We can compute the inverse transform in one go:

Φmn = −∆s2

MN

M−1∑
i=1

N−1∑
j=1

M−1∑
k=1

N−1∑
`=1

[
sin2

(
kπ
2M

)
+ sin2

(
`π

2N

)]−1

×

Fij sin
(

imπ
M

)
sin

(
jnπ
N

)
sin

(
kmπ
M

)
sin

(
`nπ
N

)

We now substitute

Fij −→
(
∂ζ

∂t

)
ij
.

Then
Φmn =

(
∂ψ

∂t

)
mn

and we have the solution for Φ.
Background ψ Eqn FD Method PS Map ∇2Φ = F Conclusion



The equation
d(ζ + f )

dt
= 0 .

was used for the four integrations on the ENIAC.

Charney, Fjørtoft and von Neumann (Tellus, 1950)
used z rather than ψ. This necessitates an
approximation involving the β-term.

Lynch (BAMS, 2008) showed that the ψ-form yields
forecasts that are slightly more accurate.

This confirmed a hypothesis advanced earlier by
Norman Phillips.
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Charney et al. used the 500mb analyses of the
National Weather Service, discretized and digitized by
hand.

The computation grid was 19× 16 points, with a
resolution of about 600 km.

The ENIAC forecasts had an “electrifying effect” on
the meteorological community, and led ultimately to
operational NWP.
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I ENIAC code in MatLab.
I

I PHONIAC on a mobile phone.
I

I What about an iPod?
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