

The ENIAC Integrations

Numerical Solution of the BVE

Peter Lynch

School of Mathematical Sciences

Outline

Background

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

Background

ψ Eqn

FD Method

PS Map

$\nabla^2\phi = F$

Conclusion

Contents

Background

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

Contents

Background

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

Since f does not vary with time, we have

$$\frac{\partial}{\partial t}(\zeta + f) = \frac{\partial \zeta}{\partial t} = \frac{\partial \nabla^2 \psi}{\partial t}$$

Thus, the BVE may be written

$$\frac{\partial \nabla^2 \psi}{\partial t} + J(\psi, \nabla^2 \psi + f) = 0$$

This is a single partial differential equation with just one dependent variable, the streamfunction $\psi(x, y, t)$.

Once initial and boundary values are given, the equation can be solved for $\psi = \psi(x, y, t)$.

$$\mathbf{V} = \mathbf{k} \times \nabla \psi \quad \nabla \cdot \mathbf{V} = 0$$

$$u = -\frac{\partial \psi}{\partial y} \quad v = +\frac{\partial \psi}{\partial x}$$

$$\begin{aligned} \frac{d \bullet}{dt} &= \frac{\partial \bullet}{\partial t} + u \frac{\partial \bullet}{\partial x} + v \frac{\partial \bullet}{\partial y} \\ &= \frac{\partial \bullet}{\partial t} - \frac{\partial \psi}{\partial y} \frac{\partial \bullet}{\partial x} + \frac{\partial \psi}{\partial x} \frac{\partial \bullet}{\partial y} \\ &= \frac{\partial \bullet}{\partial t} + J(\psi, \bullet) \end{aligned}$$

$$\nabla \cdot \mathbf{V} = 0 \quad \zeta = \nabla^2 \psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2}$$

The Jacobian operator is defined as

$$J(\psi, \zeta) = \left(\frac{\partial \psi}{\partial x} \frac{\partial \zeta}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial \zeta}{\partial x} \right)$$

The Jacobian operator represents advection:

$$\begin{aligned} \mathbf{V} \cdot \nabla \zeta &= u \frac{\partial \zeta}{\partial x} + v \frac{\partial \zeta}{\partial y} \\ &= -\frac{\partial \psi}{\partial y} \frac{\partial \zeta}{\partial x} + \frac{\partial \psi}{\partial x} \frac{\partial \zeta}{\partial y} \\ &= J(\psi, \zeta) \end{aligned}$$

It is essentially nonlinear. The BVE must be solved by numerical means. We come to this next.

Contents

Background

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

ALGORITHM:

- ▶
- ▶ **Given:** $\psi^n(x, y)$ at time $t = n\Delta t$.
- ▶
- ▶ **Compute** $\zeta^n(x, y)$ using (1).
- ▶
- ▶ **Solve (2) for** $(\partial\zeta/\partial t)^n$.
- ▶
- ▶ **Solve (3) with homogeneous boundary conditions for** $(\partial\psi/\partial t)^n$.
- ▶
- ▶ **Advance ψ to time** $t = (n + 1)\Delta t$ using $\psi^{n+1} = \psi^{n-1} + 2\Delta t(\partial\psi/\partial t)^n$.

$$\frac{\partial}{\partial t} \nabla^2 \psi = -J(\psi, \nabla^2 \psi + f)$$

Assume that $\psi(x, y) = \psi_0(x, y)$ **at** $t = 0$.

We write the system of equations

$$\zeta = \nabla^2 \psi \quad (1)$$

$$\frac{\partial \zeta}{\partial t} = -J(\psi, \zeta + f) \quad (2)$$

$$\nabla^2 \frac{\partial \psi}{\partial t} = \frac{\partial \zeta}{\partial t} \quad (3)$$

We assume that the values of $\psi(x, y)$ **on the boundary** remain unchanged during the integration.

Contents

Background

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

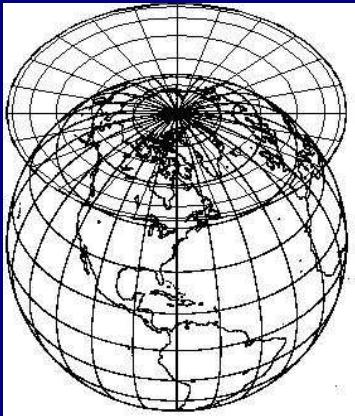
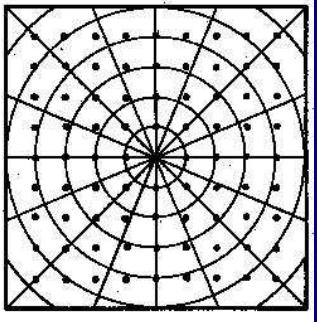


Figure: Polar Stereographic projection

Map Factor $\mu = \frac{1}{1 + \sin \phi}$

We need to find the streamfunction by solving a Poisson equation of the form

$$\nabla^2\phi = F \quad \text{with} \quad \phi = 0 \quad \text{on the boundary}$$

on a rectangular domain.

We introduce a discrete grid

$$\begin{aligned} x &\longrightarrow \{x_0, x_1, x_2, \dots, x_M = M\Delta x\} \\ y &\longrightarrow \{y_0, y_1, y_2, \dots, y_N = N\Delta y\} \end{aligned}$$

For simplicity, we assume

$$\Delta x = \Delta y = \Delta s.$$

We use a spectral method that was devised by John von Neumann for the ENIAC integrations.

Contents

Background

The Equation for the Streamfunction

Finite Difference Approximation

Polar Stereographic Projection

Solving the Poisson Equation

Conclusion

We recall some properties of the Fourier expansion:

$$\Phi_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\Phi}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

The inverse transform is

$$\tilde{\Phi}_{k\ell} = \left(\frac{2}{M}\right) \left(\frac{2}{N}\right) \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} \Phi_{ij} \sin\left(\frac{ik\pi}{M}\right) \sin\left(\frac{j\ell\pi}{N}\right)$$

We note that

$$\begin{aligned} &\sum_{i=1}^{M-1} \sum_{j=1}^{N-1} \sin\left(\frac{im\pi}{M}\right) \sin\left(\frac{jn\pi}{N}\right) \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right) \\ &= \delta_{ik}\delta_{j\ell} \left(\frac{M}{2}\right) \left(\frac{N}{2}\right) \end{aligned}$$

The usual five-point approximation to $\nabla^2\phi$ is

$$(\nabla^2\phi)_{mn} \approx \left(\frac{\Phi_{m+1,n} + \Phi_{m-1,n} + \Phi_{m,n+1} + \Phi_{m,n-1} - 4\Phi_{m,n}}{\Delta s^2} \right)$$

We expand ϕ in a double Fourier series

$$\Phi_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\Phi}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

We use approximations like the following:

$$\frac{\partial^2}{\partial x^2} \sin\left(\frac{km\pi}{M}\right) \approx -4 \sin^2\left(\frac{k\pi}{2M}\right) \sin\left(\frac{km\pi}{M}\right)$$

[Exercise: confirm the details.]

We now expand the right hand side function:

$$F_{mn} = \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{F}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

Now we equate the coefficients of $\nabla^2\phi$ and F :

$$\left[\sin^2\left(\frac{k\pi}{2M}\right) + \sin^2\left(\frac{\ell\pi}{2N}\right) \right] \tilde{\Phi}_{k\ell} = (-\Delta s^2/4) \tilde{F}_{k\ell}$$

or

$$\tilde{\Phi}_{k\ell} = \frac{(-\Delta s^2/4) \tilde{F}_{k\ell}}{\sin^2\left(\frac{k\pi}{2M}\right) + \sin^2\left(\frac{\ell\pi}{2N}\right)}$$

Now $\tilde{\Phi}_{k\ell}$ is known, and we can invert it:

$$\Phi_{mn} = \frac{\Delta s^2}{MN} \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \tilde{\Phi}_{k\ell} \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

Thus:

$$\nabla^2 \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right) \approx -\frac{4}{\Delta s^2} \left[\sin^2\left(\frac{k\pi}{2M}\right) + \sin^2\left(\frac{\ell\pi}{2N}\right) \right] \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right)$$

The Laplacian is applied term-by-term to ϕ :

$$\begin{aligned} \nabla^2\phi_{mn} &\approx -\frac{4}{\Delta s^2} \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \left[\sin^2\left(\frac{k\pi}{2M}\right) + \sin^2\left(\frac{\ell\pi}{2N}\right) \right] \tilde{\Phi}_{k\ell} \times \\ &\quad \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right) \end{aligned}$$

We can compute the inverse transform in one go:

$$\begin{aligned} \Phi_{mn} &= -\frac{\Delta s^2}{MN} \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} \sum_{k=1}^{M-1} \sum_{\ell=1}^{N-1} \left[\sin^2\left(\frac{k\pi}{2M}\right) + \sin^2\left(\frac{\ell\pi}{2N}\right) \right]^{-1} \times \\ &\quad F_{ij} \sin\left(\frac{im\pi}{M}\right) \sin\left(\frac{jn\pi}{N}\right) \sin\left(\frac{km\pi}{M}\right) \sin\left(\frac{\ell n\pi}{N}\right) \end{aligned}$$

We now substitute

$$F_{ij} \longrightarrow \left(\frac{\partial \zeta}{\partial t} \right)_{ij}.$$

Then

$$\Phi_{mn} = \left(\frac{\partial \psi}{\partial t} \right)_{mn}$$

and we have the solution for ϕ .

