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Contents The dynamical behaviour of planetary waves in the
atmosphere is modelled by the barotropic vorticity
Background equation (BVE):

d(¢ +f)
at

=0.

Rossby (1939) used a simplified (linear) form of this
equation for his study of atmospheric waves.

Charney, Fjortoft & von Neumann (1950) integrated
the BVE to produce the earliest numerical weather
predictions on the ENIAC.

They integrated the equation on a rectangular
domain, in planar geometry.
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The Equation for the Streamfunction

Since f does not vary with time, we have
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Thus, the BVE may be written
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This is a single partial differential equation with just

one dependent variable, the streamfunction ¢(x, y, t).

Once initial and boundary values are given, the
equation can be solved for ¢ = ¢(x, y, t).
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The Jacobian operator is defined as

0P oC _ 0y o¢
ox oy B oy 8x>

I 0) = (

The Jacobian operator represents advection:
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It is essentially nonlinear. The BVE must be solved by sa8

numerical means. We come to this next.
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Finite Difference Approximation

FD Method

ALGORITHM:

Given: ¢"(x, y) at time t = nAt.

Compute ("(x, y) using (1).

Solve (2) for (0¢/0t)".
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Solve (3) with homogeneous boundary
conditions for (0v/0t)".
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» Advance ¢ to time t = (n+ 1)At using
P = "1+ 2AH(3p /O)".

FD Method
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Assume that ¢(x, y) = ¢o(x,y) at t = 0.
We write the system of equations
¢ = V%
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We assume that the values of v)(x, y) on the boundary
remain unchanged during the integration.

FD Method
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Polar Stereographic Projection
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Figure: Polar Stereographic projection SORING UiE Fo Eson 2 HEL

1

Map Factor o= o

PS Map

We need to find the streamfunction by solving a We recall some properties of the Fourier expansion:
Poisson equation of the form
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V2o =F  with ® =0 on the boundary sin )

on a rectangular domain.
_ The inverse transform is
We introduce a discrete grid
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We note that
For simplicity, we assume

Ax = Ay = As.
We use a spectral method that was devised by John

von Neumann for the ENIAC integrations.
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The usual five-point approximation to V2¢ is
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We use approximations like the following:
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[Exercise: confirm the details.]

We now expand the right hand side function:
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Now we equate the coefficients of V2® and F:
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Now &, is known, and we can invert it:
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and we have the solution for ¢.

We now substitute




The equation

was used for the four integrations on the ENIAC.

Charney, Fjortoft and von Neumann (Tellus, 1950)
used z rather than . This necessitates an
approximation involving the j-term.

Lynch (BAMS, 2008) showed that the ¢ -form yields
forecasts that are slightly more accurate.

This confirmed a hypothesis advanced earlier by
Norman Phillips.
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Conclusion

Charney et al. used the 500mb analyses of the
National Weather Service, discretized and digitized by
hand.

The computation grid was 19 x 16 points, with a
resolution of about 600 km.

The ENIAC forecasts had an “electrifying effect” on
the meteorological community, and led ultimately to
operational NWP.

ENIAC code in MatLab.
PHONIAC on a mobile phone.

What about an iPod?

Conclusion Conclusion



