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Introduction to 
Data Assimilation

Based on a presentation of
Alan O’Neill

Data Assimilation Research Centre
University of Reading

Outline

• Motivation
• Univariate (scalar) data assimilation
• Multivariate (vector) data assimilation

– Optimal Interpolation (BLUE)
– 3D-Variational Method
– Kalman Filter
– 4D-Variational Method

• Applications to earth system science

Motivation
What is data assimilation?

Data assimilation is the technique 
whereby observational data are 
combined with output from a 
numerical model to produce an 
optimal estimate of the evolving state 
of the system.

Why We Need Data Assimilation

• range of observations
• range of techniques
• different errors
• data gaps
• quantities not measured
• quantities linked

Current & Future Satellite Coverage
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O3 measured by MIPAS/Envisat

Chemical analysis Assimilation of O3 data into GCM

2020 VISION
• By 2020 the Earth will be viewed from 

space with better than 1km/1min 
resolution

• Computer power will be ~1000 times 
greater than it is today

• To exploit this technological revolution, 
the world must be digitised

Welcome to Music World

High-tech SamplerWhat experts get What end-users want

Well-balanced high-quality 
blended music

Synthesis of tracks10 soundtracks 

Vital to ensure Return On Investment!

Welcome to Digi World

What users get What end-users want

4D digital movie of
the Earth System

High-tech Sampler

Level 2 for
individual sensor

Synthesis via Assimilation of EO 
data into Earth System Model
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NOAA-15 NOAA-16 NOAA-17

Goes-W Goes-E Meteosat Goes-W GMS(Goes-9)

Impact on NWP at the Met Office

Mar 99. 3D-Var 
and ATOVS

Jul 99. ATOVS over Siberia, 
sea-ice from SSM/I

Oct 99. ATOVS as radiances, 
SSM/I winds

May 00. Retune 
3D-Var

Feb/Apr 01. 2nd satellites, 
ATOVS + SSM/I

Weather forecasting

NWP Forecast Skill

Satellite data have contributed to
the continuous improvement of 
forecast quality with enormous
benefits for society.

Numerical Weather Prediction:
Sophisticated atmospheric models.
Most mature assimilation techniques 

(able to ingest sounding radiances).
Very big user of EO data. 

SH

NH

Day 7

Day 5

Day 3

Some Uses of 
Data Assimilation

• Operational weather forecasting
• Ocean forecasting
• Seasonal weather forecasting
• Land-surface process
• Global climate datasets
• Planning satellite measurements
• Evaluation of models  and observations

Preliminary Concepts

What We Want To Know
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What We Also Want To Know

Errors in models

Errors in observations

What observations to make
Numerical 

ModelDAS

DATA ASSIMILATION SYSTEM

O

Data 
Cache

A

A

B

F

model

observations

Error Statistics

The Data Assimilation Process

observations forecasts

estimates of state & parameters

compare 
reject 
adjust

errors in obs. & forecasts 

X

t

observation

model 
trajectory

Data Assimilation:
an analogy

Driving with your eyes closed: 

Open your eyes every 10 seconds 
and correct your trajectory !!!

Break here
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Basic Concept of 
Data Assimilation

• Information is accumulated in time 
into the model state and propagated 
to all variables.

What are the benefits of 
data assimilation?

• Quality control
• Combination of data
• Errors in data and in model
• Filling in data poor regions
• Designing observational systems
• Maintaining consistency
• Estimating unobserved quantities

Methods of Data Assimilation

• Optimal interpolation (or approx. to it)  

• 3D variational method (3DVar)

• 4D variational method (4DVar)

• Kalman filter (with approximations)

Types of Data Assimilation

• Intermittent
• Continous

Intermittent Assimilation

analysis analysisanalysis
model model

obsobsobsobsobs obs

Continuous Assimilation

analysis + model

obs
obs

obs
obsobs

obs
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Statistical Approach to 
Data Assimilation

Data Assimilation 
Made Simple
(scalar case)

Least Squares Method
(Minimum Variance)
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The precision of the analysis is the sum of the precisions 
of the measurements. The analysis therefore has higher 
precision  than any single measurement
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Variational Approach
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Comments

• The analysis is obtained by adding first guess 
to the innovation.

• Optimal weight is background error variance 
multiplied by inverse of total variance.

• Precision of analysis is sum of precisions of 
background and observation.

• Error variance of analysis is error variance of 
background reduced by (1- optimal weight).

Simple Assimilation Cycle

• Observation used once and then 
discarded.

• Forecast phase to update     and    
• Analysis phase to update     and 
• Obtain background as

• Obtain variance of background as
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Multivariate Data Assimilation

Multivariate Case
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State Vectors
x

bx
tx

ax

state vector (column matrix)

true state

background state

analysis, estimate of tx

Ingredients of Good Estimate 
of the State Vector (“analysis”)
• Start from a good “first guess” (forecast 

from previous good analysis)
• Allow for errors in observations and first 

guess (give most weight to data you 
trust)

• Analysis should be smooth
• Analysis should respect known physical 

laws

Some Useful Matrix Properties
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Observations

• Observations are gathered into an 
observation vector      , called the observation 
vector.

• Usually fewer observations than variables in 
the model; they are irregularly spaced; and 
may be of a different kind to those in the 
model.

• Introduce an observation operator to map 
from model state space to observation space.

y

)(xx H→

Errors

Variance becomes 
Covariance Matrix

• Errors in xi are often correlated
– spatial structure in flow
– dynamical or chemical relationships

• Variance for scalar case becomes 
Covariance Matrix for vector case COV

• Diagonal elements are the variances of xi

• Off-diagonal elements are covariances
between xi and xj

• Observation of xi affects estimate of xj
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The Error Covariance Matrix

( )

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

><><><

><><><
><><><

>==<

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

nnnn

n

n

n

n

eeeeee

eeeeee
eeeeee

eee

e

e
e

...
......
......
......

...

...

...                 

.

.

.

21

22212

12111

T

21
T

2

1

εε

εε

P

2
iiiee σ>=<

Background Errors

• They are the estimation errors of the 
background state:

• average (bias)
• covariance

tbb xx −=ε
>< bε

>><−><−=< T
bb ))(( εεεεB

Observation Errors
• They contain errors in the observation 

process (instrumental error), errors in 
the design of , and 
“representativeness errors”, i.e. 
discretizaton errors that prevent      from 
being a perfect representation of the 
true state. 
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Control Variables

• We may not be able to solve the 
analysis problem for all components of 
the model state (e.g. cloud-related 
variables, or need to reduce resolution)

• The work space is then not the model 
space but the sub-space in which we 
correct       , called control-variable 
space

bx
xxx δ+= ba

Innovations and Residuals

• Key to data assimilation is the use of 
differences between observations and 
the state vector of the system

• We call                               the innovation

• We call                               the analysis
residual

)( bxy H−
)( axy H−

Give important information

Analysis Errors

• They are the estimation errors of the 
analysis state that we want to minimize.

taa xx −=ε

Covariance matrix A
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Using the Error 
Covariance Matrix

Recall that an error covariance matrix  
for the error in    has the form:

 T >=< εεC

If               where     is a matrix, then the 
error covariance for      is given by:

Hxy = H

x

y
THCHC =y

C

BLUE Estimator
• The BLUE estimator is given by:

• The analysis error covariance matrix is:

• Note that: 
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Statistical Interpolation with 
Least Squares Estimation

• Called Best Linear Unbiased Estimator 
(BLUE).

• Simplified versions of this algorithm 
yield the most common algorithms used 
today in meteorology and 
oceanography.

Assumptions Used in BLUE
• Linearized observation operator:

• and       are positive definite.
• Errors are unbiased: 

• Errors are uncorrelated:

• Linear anlaysis: corrections to background 
depend linearly on (background – obs.).

• Optimal analysis: minimum variance estimate.

)()()( bb xxHxx −=− HH
B R

0)( ttb >=−>=<−< xyxx H
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Optimal Interpolation
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“analysis”

“background”
(forecast)

observation
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• linearity H H

• matrix inverse

• limited area

observation 
operator
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)( bxy H−=Δ at obs. point

bx

data void
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Spreading of Information from 
Single Pressure Obs.

p

θ
MIPAS observations 6 day model forecast

Analysis

Ozone at 10hPa, 12Z 23rd Sept 2002

bx
3D variational data assimilation - ozone at 10hPa

bx )( bh xy −
3D variational data assimilation - ozone at 10hPa

bx )( bh xy −

))(( bh xyK −

3D variational data assimilation - ozone at 10hPa

bx )( bh xy −

))(( bb h xyKx −+ ))(( bh xyK −

The data assimilation cycle: ozone at 10hPa
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Estimating Error Statistics

• Error variances reflect our uncertainty in the 
observations or background.

• Often assume they are stationary in time and 
uniform over a region of space.

• Can estimate by observational method or as 
forecast differences (NMC method).

• More advanced, flow dependent errors 
estimated by Kalman filter.

Estimating Covariance Matrix 
for Observations, R

• R is usually quite simple: 
– Diagonal, 
or, for nadir-sounding satellites,
– Non-zero values between points in vertical 

only 
• Calibration against independent 

measurements

Estimating the Error Covariance 
Matrix B

• Model B with simple functions based on 
comparisons of forecasts with 
observations:

• Error growth in short-range forecasts 
“verifying” at the same time (NMC 
method)

>−−≈< T)]24()48()][24()48([ hhhh ffff xxxxB

state vector at time t from forecast 48h or 24 h earlier

)exp( LdB ijjiij −∝ σσ horiz. fn x vert. fn2 2

3d-Variational Data 
Assimilation

Variational Data Assimilation

)(xJ

x
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x

)(xJ

ax

Equivalent Variational
Optimization Problem

• BLUE analysis can be obtained by minimizing 
a cost (penalty, performance) function:

• The analysis      is optimal (closest in least-
squares sense to     ).

• If the background and observation errors are 
Gaussian, then     is also the maximum 
likelihood estimator.
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Remarks on 3D-VAR

• Can add constraints to the cost function, 
e.g. to help maintain “balance”

• Can work with non-linear observation 
operator H.

• Can assimilate radiances directly 
(simpler observational errors).

• Can perform global analysis instead of 
OI approach of radius of influence.
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Variational Data Assimilation

nonlinear operator 
assimilate y directly 
global analysis

Effect of Observed Variables 
on Unobserved Variables

• Implicitly through the governing 
equations of the (forecast) model.

• Explicitly through the off-diagonal terms 
in B:
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assume that y1 is a measurement of x1, but x2 not measured

Choice of State Variables and 
Preconditioning

• Free to choose which variables to use to 
define state vector, x(t)

• We’d like to make B diagonal
– may not know covariances very well 
– want to make the minimization of J more 

efficient by “preconditioning”: transforming 
variables to make surfaces of constant J 
nearly spherical in state space

x2

x1

Cost Function for Correlated Errors

x2

x1

Cost Function for 

Uncorrelated Errors



14

x2

x1

Cost Function for 
Uncorrelated Errors            

Scaled Variables
4D-Variational Assimilation

4D Variational Data Assimilation

given X(to), the 
forecast is 
deterministic

vary X(to) for best fit to data
to t

obs. & 
errors

4D-VAR For Single Observation
at time t
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4D-Variational Assimilation
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Minimize the cost function by finding the gradient 

(“Jacobian”) with respect to the control variables in 

)( 0tJ x∂
)( 0tx

4D-VAR Continued

The 2nd term on the RHS of the cost function 
measures the distance to the background       
at the beginning of the interval. The term 
helps join up the sequence of optimal 
trajectories found by minimizing the cost 
function for the observations. The “analysis”
is then the optimal trajectory in state space. 
Forecasts can be run from any point on the 
trajectory, e.g. from the middle. 
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Some Matrix Algebra

Az
x
z

x
x

x

Az
x
z

x

xAzxz

xx
x

x

xx

TT

00

T

T

T

00

0

   :results  theseCombining

   shown that becan it Then 

)()(  :form following  thehave Let 

Then   

))((

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
∂
∂

=

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
∂
∂

=

J

J

JJ

JJ

JJ adjoint of the model
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4D-VAR Procedure

• Choose               for example.
• Integrate full (non-linear) model forward in 

time and calculate    for each observation.
• Map    back to t=0 by backward integration of 

TLM, and sum for all observations to give the 
gradient of the cost function.

• Move down the gradient to obtain a better 
initial state (new trajectory “hits” observations 
more closely)

• Repeat until some STOP criterion is met.
note: not the most efficient algorithm
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Comments
• 4D-VAR can also be formulated by the method of 

Lagrange multipliers to treat the model equations as 
a constraint. The adjoint equations that arise in this 
approach are the same equations we have derived 
by using the chain rule of partial differential 
equations.

• If model is perfect and B0 is correct, 4D-VAR at final 
time gives same result as extended Kalman filter (but 
the covariance of the analysis is not available in 4d-
VAR).

• 4d-VAR analysis therefore optimal over its time 
window, but less expensive than Kalman filter.

Incremental Form of 4D-VAR

• The 4d-VAR algorithm presented earlier is 
expensive to implement. It requires repeated 
forward integrations with the non-linear 
(forecast) model and backward integrations 
with the TLM.

• When the initial background (first-guess) 
state and resulting trajectory are accurate, an 
incremental method can be made much 
cheaper to run on a computer. 

Incremental Form of 4D-VAR
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4D Variational Data Assimilation

• Advantages
– consistent with the governing eqs.
– implicit links between variables

• Disadvantages
– very expensive
– model is strong constraint

Some Useful References
• Atmospheric Data Analysis by R. Daley, Cambridge 

University Press.
• Atmospheric Modelling, Data Assimilation and 

Predictability by E. Kalnay, C.U.P.
• The Ocean Inverse Problem by C. Wunsch, C.U.P.
• Inverse Problem Theory by A. Tarantola, Elsevier.
• Inverse Problems in Atmospheric Constituent 

Transport by I.G. Enting, C.U.P.
• ECMWF Lecture Notes at www.ecmwf.int
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