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Applications to earth system science

o What is data assimilation?
Motivation

Data assimilation is the technique
whereby observational data are
combined with output from a
numerical model to produce an
optimal estimate of the evolving state
of the system.

Why We Need Data Assimilation Current & Future Satellite Coverage

range of observations
range of techniques
different errors

data gaps

guantities not measured
quantities linked




Chemical analysis Assimilation of O3 data into GCM

2020 VISION

» By 2020 the Earth will be viewed from
space with better than 1km/1min
resolution

» Computer power will be ~1000 times
greater than it is today

« To exploit this technological revolution,
the world must be digitised

Welcome to Music World Welcome to Digi World

e
f

What experts get High-tech Sampler What end-users want WWhatusersiget High-tech Sampler What end-users want
10 soundtracks Synthesis of tracks Well-balanced high-quality Level 2 for Synthesis via Assimilation of EO 4D digital movie of
blended music individual sensor data into Earth System Model the Earth System

Vital to ensure Return On Investment!
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SSM/I winds

Jul 99. ATOVS over Siberia, May 00. Retune
sea-ice from SSM/I 3D-Var

Feb/Apr 01. 2nd satellites,
ATOVS + SSM/I

Numerical Weather Prediction:
» Sophisticated atmospheric mode
» Most mature assimilation techniq

» Very big user of EO data.

NWP Forecast Skill

Satellite data have contributed to « |
the continuous improvement of
forecast quality with enormous
benefits for society.

Is.
ues

(able to ingest sounding radiances).

Day 3

Day 5

Day 7

Some Uses of
Data Assimilation

» Operational weather forecasting

» Ocean forecasting

» Seasonal weather forecasting
 Land-surface process

» Global climate datasets

 Planning satellite measurements
 Evaluation of models and observations

Preliminary Concepts

What We Want To Know

X(t) atmos. state vector

S(t) surface fluxes

C model parameters

X(t) = (x(1),s(t),c)




What We Also Want To Know

Errors in models
Errors in observations

What observations to make

DATA ASSIMILATION SYSTEM

Error Statistics
model
observations

The Data Assimilation Process

opservations

forecasts

estimates of state & parameters
) €rrors in obs. & forecasts

@ observation

model
trajectory

»

Data Assimilation:
an analogy

Driving with your eyes closed:

Open your eyes every 10 seconds
and correct your trajectory !!!

Break here




Basic Concept of
Data Assimilation

 Information is accumulated in time
into the model state and propagated
to all variables.

What are the benefits of
data assimilation?

 Quality control

* Combination of data

 Errors in data and in model

* Filling in data poor regions

e Designing observational systems
* Maintaining consistency

e Estimating unobserved quantities

Methods of Data Assimilation

Optimal interpolation (or approx. to it)

« 3D variational method (3DVar)

4D variational method (4DVar)

Kalman filter (with approximations)

Types of Data Assimilation

¢ Intermittent
* Continous

Intermittent Assimilation

obs  obs obs obs obs obs

model

Continuous Assimilation

obs obs obs
obs obs obs

EREe

‘ analysis + model ‘

</\_/'\./"




Statistical Approach to
Data Assimilation

Data Assimilation
Made Simple
(scalar case)

Least Squares Method
(Minimum Variance)

T,=Ti+&

Tp =1, +E;

<g>=<¢g,>=0

<(&)’ >=0

<(g,)? >=0,

< &¢, >=0,the two measurements are uncorrelated
Estimate T, as a linear combination of the observations
T, =aTl +4a,l,

The analysisshould be unbiased : < T, >=<T, >
=a+a,=1

Least Squares Method
Continued

Estimate T, by minimizing its mean squared error :

o) =<(T,-T)" >=< (& (T, - T)+a,(T, - T,))* >
=<(a¢ + a2€])2 >= alo-lz + a20'22

subject to the constraint a, +a, =1

Least Squares Method

. %12 Continu:c:i %5
%lz+%22 %}zﬂL%zz

The precision of the analysis is the sum of the precisions
of the measurements. The analysis therefore has higher
precision than any single measurement




Variational Approach
1 {(r T @ —TZ)Z}

2 0 0,

J(M)

i ichdd/_ —
T, is the value of T for which AT =0

Simple Sequential Assimilation
Let T,=T, T=T,
T,=T,+W(T,-T,) where (T, -T,) isthe"innovation".

The optimal weight W is given by :

J(T)
W =0,%(0, " +0,7%)™, and the analysiserror varianceis :
0,2 =(1-W)g,’
-
Comments Simple Assimilation Cycle

» The analysis is obtained by adding first guess
to the innovation.

» Optimal weight is background error variance
multiplied by inverse of total variance.

 Precision of analysis is sum of precisions of
background and observation.

« Error variance of analysis is error variance of
background reduced by (1- optimal weight).

Observation used once and then
discarded.

Forecast phase to update T, and o,
Analysis phase to update T,and o’
Obtain background as

T (ti+1) =M [Ta (ti)]

 Obtain variance of background as

o) (t) =0, (t)  alternatively  o,°(t,.,) =ac,’(t)

Multivariate Data Assimilation

Multivariate Case

X

X
state vector  x(t)=|

n

Y1
observation vector y(t)= |y,

Ym




Ingredients of Good Estimate

SIEIS e of the State Vector (“analysis”)

X state vector (column matrix) « Start from a good “first guess” (forecast
from previous good analysis)

Xt true state * Allow for errors in observations and first
guess (give most weight to data you
trust)

Xb background state + Analysis should be smooth

_ _  Analysis should respect known physical

X, analysis, estimate of X laws

Some Useful Matrix Properties Observations

Transpose of a product : (AB)T =BTAT » Observations are gathered into an
) observation vector , called the observation
Inverse of a product: (AB) " =B™A™ vector. Yy

» Usually fewer observations than variables in

. Ty\-1 _ “1\T
Inverseof a transpose . (A ) - (A ) the model; they are irregularly spaced; and

Positive definiteness for symmetrix matrix A : malé b|e of a different kind to those in the
model.
T
V X, the scalar xAx" > 0, unless x = 0. « Introduce an observation operator to map

from model state space to observation space.

X — H(X)

(this property is conserved through inversion)

Variance becomes
Covariance Matrix

+ Errors in x; are often correlated

Errors — spatial structure in flow
— dynamical or chemical relationships

» Variance for scalar case becomes
Covariance Matrix for vector case

+ Diagonal elements are the variances of x;

» Off-diagonal elements are covariances
between x; and X

* Observation of x; affects estimate of x;




ey The Error Covariance Matrix

&

e=| "’ e=( & . . .

<eg > <eg> . .

<E. > <88, > .

P=<ge >=

<ee > <€6,> . . . <ee >

Background Errors

» They are the estimation errors of the
background state:

* average (bias) < gb >

e covariance

B=<(e—<¢g,>)(e—<g, >)" >

Observation Errors

» They contain errors in the observation
process (instrumental error), errors in
the design of H, and
“representativeness errors”, i.e.
discretizaton errors that prevent X, from
being a perfect representation of the
true state.

g =yY—H(X,) <&, >

0

R=<(g,—<&,>)g,—<&,>)" >

Control Variables

* We may not be able to solve the
analysis problem for all components of
the model state (e.g. cloud-related
variables, or need to reduce resolution)

» The work space is then not the model
space but the sub-space in which we
correct Xb' called control-variable

space _
X, =X, + X

Innovations and Residuals

» Key to data assimilation is the use of
differences between observations and
the state vector of the system

« Wecall Y — H (Xb) the innovation
« Wecal Y — H (Xa) the analysis

residual
Give important information

Analysis Errors

» They are the estimation errors of the
analysis state that we want to minimize.

&, =X, =X,

Covariance matrix A




Using the Error
Covariance Matrix

Recall that an error covariance matrix C
for the error in X has the form:

C=<ce' >

If Yy =HX where H is a matrix, then the
error covariance for Yy is given by:

C, =HCH’

BLUE Estimator
» The BLUE estimator is given by:
X, =X, + K(y =H(x,))
K=BH"(HBH'" +R)™

» The analysis error covariance matrix is:

A=(1-KH)B
* Note that:

BH"(HBH" +R)* = (B +H'R'H) 'H'R

Statistical Interpolation with
Least Squares Estimation

 Called Best Linear Unbiased Estimator
(BLUE).

 Simplified versions of this algorithm
yield the most common algorithms used
today in meteorology and
oceanography.

Assumptions Used in BLUE

* Linearized observation operator:
H(X)-H(x,) =H(X-x,)

B and R are positive definite.
 Errors are unbiased:

<X, =X, >=<y—-H(x,)>=0
« Errors are uncorrelated:

< (Xb _Xt)(y_ H (Xt))T >=0

« Linear anlaysis: corrections to background
depend linearly on (background — obs.).

» Optimal analysis: minimum variance estimate.

Optimal Interpolation

observation

/operator

X, =X, + K(y —H(x,))

observation

e linearity H—H

“analysis”

“background”
(forecast)

e matrix inverse

- ——— ¢ limited area
K=BH'(HBH' +R)

A=y-H(x,) —at obs. point

/\
A .

< datla vojd
A A A

< A

/
Xb

A A
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Spreading of Information from
Single Pressure Obs.

latitude

mpdsaku33221
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Ozone at 10hPa, 127 23rd Sept 2002

Analysis
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MIPAS observations 6 day model forecast

‘Tizone vikatd jppmy

3D variational data assimilation - ozone at 10hPa
Xy
First guess at 18:00:00 1-Sep-2002

‘Tizone vikatd jppmy

3D variational data assimilation - ozone at 10hPa
Xy y=h(x,)

First guess at 18:00:00 1-Sep-2002

Obs - Fg at 18:00:00 1-Sep-2002

‘Tizone vikatd jppmy

3D variational data assimilation - ozone at 10hPa
Xy y=h(x,)

First guess at 18:00:00 1-Sep-2002 Oirs - Fg at 18:00:00 1-Sep-2002

K(y -h(x,)

The data assimilation cycle: ozone at 10hPa
Xy y=h(x,)

First guess at 18:00:00 1-Sep-2002 Oirs - Fg at 18:00:00 1-Sep-2002

X, +K(y—h(x,)) K(y—h(x,))

11



Estimating Error Statistics

« Error variances reflect our uncertainty in the
observations or background.

» Often assume they are stationary in time and
uniform over a region of space.

» Can estimate by observational method or as
forecast differences (NMC method).

» More advanced, flow dependent errors
estimated by Kalman filter.

Estimating Covariance Matrix
for Observations, R

* Ris usually quite simple:
— Diagonal,
or, for nadir-sounding satellites,

— Non-zero values between points in vertical
only

« Calibration against independent
measurements

Estimating the Error Covariance
Matrix B

» Model B with simple functions based on
comparisons of forecasts with
observations:

B, « 0,0, exp(— dijz/ 1% horiz. fn x vert. fn
 Error growth in short-range forecasts

“verifying” at the same time (NMC
method)

B ~<[X, (48h) —x, (24h)][x (48h) —x, (24h)]" >

state vector at time t from forecast 48h or 2/4 h earlier

3d-Variational Data
Assimilation

Variational Data Assimilation

J(X)

Equivalent Variational
Optimization Problem

» BLUE analysis can be obtained by minimizing
a cost (penalty, performance) function:
J(X) = (x=%,) B (x=X,) +(y =H())"R™(y ~H(x))
J() =3, +3,(x)
X, =minJ

» The analysis X, is optimal (closest in least-
squares sense to X, ).

« If the background and observation errors are

Gaussian, then Xais also the maximum
likelihood estimator.

12



Remarks on 3D-VAR

» Can add constraints to the cost function,
e.g. to help maintain “balance”

» Can work with non-linear observation
operator H.

» Can assimilate radiances directly
(simpler observational errors).

» Can perform global analysis instead of
Ol approach of radius of influence.

Variational Data Assimilation
J(x) =
(X=%,) BT (x=X,)+
(y-H() ' R™(y-H(x)

nonlinear operator
assimilate y directly
global analysis

Effect of Observed Variables
on Unobserved Variables

« Implicitly through the governing
equations of the (forecast) model.

 Explicitly through the off-diagonal terms
in B:

/
B 1 T o R () TR

‘ assume that y, is a measurement of x,, but x, not measured ‘

Choice of State Variables and
Preconditioning

 Free to choose which variables to use to
define state vector, x(t)

« We'd like to make B diagonal
—may not know covariances very well

— want to make the minimization of J more
efficient by “preconditioning”: transforming
variables to make surfaces of constant J
nearly spherical in state space

Cost Function for Correlated Errors

X

Cost Function for

X, Uncorrelated Errors

13



Cost Function for
Uncorrelated Errors
X2 Scaled Variables

4D-Variational Assimilation

4D Variational Data Assimilation

obs. &

errors
N

given X(t,), the
forecast is
deterministic

t, t
vary X(t,) for best fit to data

4D-VAR For Single Observation

attime t
‘J(X(X01t))
X2 P~ I~
X where H(X) =
— (xX)=y

\ -

t

4D-Variational Assimilation
J(X(to)) :%i[yi -H (Xi)]TRiil[yi -H (Xi)]

2 X(G) X ()] B X)X ()]

where Xx(t;) =M, _;(x(t,)) i.e.the modelis treated
as a strong constraint

Minimize the cost function by finding the gradient 0J /X(t,)

(“Jacobian”) with respect to the control variables i~ X(t;)

4D-VAR Continued

The 2n term on the RHS of the cost function
measures the distance to the background

at the beginning of the interval. The term
helps join up the sequence of optimal
trajectories found by minimizing the cost

function for the observations. The “analysis”
is then the optimal trajectory in state space.
Forecasts can be run from any point on the
trajectory, e.g. from the middle.

14



Some Matrix Algebra

J=J(X(X))) ¥ Jadjoint of the model
T M:x, a X
Then ﬂz ﬁ Q v
0X, \ 0%, ) OX
Let J have the following form: J =z" (x)Az(x)

.
Then it can be shown that el = [@] Az
OX oX

T T
Combining these results: a9 _[x (a—zj Az
0X, |\ 0%, ) \OX

4D-VAR for Single Observation
J(x(xo)) =Z Iy —H (XOEDTT Ry = H (x(%,)

By using results on slide "Some Matrix Algebra™:
0J

P —LoLH' Ry —H (x(x,))] =—Lg_,d
0
U T
where L{ , = (&(J = M adjoint of tangent
0 6X0
linear model
Lo = Ll",lat "'LllatzLOAtl
s L

0t

7T T T

4D-VAR Procedure

Choose X, ,X; for example.

Integrate full (non-linear) model forward in
time and calculate d for each observation.
Map d back to t=0 by backward integration of
TLM, and sum for all observations to give the
gradient of the cost function.

Move down the gradient to obtain a better
initial state (new trajectory “hits” observations
more closely)

Repeat until some STOP criterion is met.

‘ note: not the most efficient algorithm ‘

Comments

* 4D-VAR can also be formulated by the method of
Lagrange multipliers to treat the model equations as
a constraint. The adjoint equations that arise in this
approach are the same equations we have derived
by using the chain rule of partial differential
equations.

« If model is perfect and B, is correct, 4D-VAR at final
time gives same result as extended Kalman filter (but
the covariance of the analysis is not available in 4d-
VAR).

» 4d-VAR analysis therefore optimal over its time
window, but less expensive than Kalman filter.

Incremental Form of 4D-VAR

The 4d-VAR algorithm presented earlier is
expensive to implement. It requires repeated
forward integrations with the non-linear
(forecast) model and backward integrations
with the TLM.

When the initial background (first-guess)
state and resulting trajectory are accurate, an
incremental method can be made much
cheaper to run on a computer.

Incremental Form of 4D-VAR

The incremental form of the cost function is defined by

+%i[yi —H X" (t)) = HiL(t, t) 8%, 1Ty, = H (X" (1)) — H,L(t5, )%, ]
i-0

3(0) =3 (0%,)7B, (%)

Taylor series expansion
about first-guess trajectory

x' (t;)

Minimization can be done in lower dimensional space

15



4D Variational Data Assimilation

» Advantages
—consistent with the governing eqs.
—implicit links between variables
 Disadvantages
—very expensive
—model is strong constraint

Some Useful References

Atmospheric Data Analysis by R. Daley, Cambridge
University Press.

Atmospheric Modelling, Data Assimilation and
Predictability by E. Kalnay, C.U.P.

The Ocean Inverse Problem by C. Wunsch, C.U.P.
Inverse Problem Theory by A. Tarantola, Elsevier.

Inverse Problems in Atmospheric Constituent
Transport by I.G. Enting, C.U.P.

ECMWF Lecture Notes at www.ecmwf.int

END
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