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Weather Prediction by Numerical Process

Perhaps some day in the dim future it will be possible to advance the
computations faster than the weather advances and at a cost less than the
saving to mankind due to the information gained. But that is a dream.

(WPNP, p. vii; Dover Edn., p. xi)

Lewis Fry Richardson’s extraordinary book Weather Prediction by Numerical
Process, published in 1922, is a strikingly original scientific work, one of the
most remarkable books on meteorology ever written. In this book – which we will
refer to as WPNP – Richardson constructed a systematic mathematical method for
predicting the weather and demonstrated its application by carrying out a trial fore-
cast. History has shown that his innovative ideas were fundamentally sound: the
methodology proposed by him is essentially that used in practical weather fore-
casting today. However, the method devised by Richardson was utterly impractical
at the time of its publication, and the results of his trial forecast appeared to be
little short of outlandish. As a result, his ideas were eclipsed for decades and his
wonderful opus gathered dust and was all but forgotten.

1.1 The problem

Imagine you are standing by the ocean shore, watching the sea rise and fall as wave
upon wave breaks on the rocks. At a given moment the water is rising at a rate
of one metre per second – soon it will fall again. Is there an ebb or a flood tide?
Suppose you use the observed rate of change and extrapolate it over the six hours
that elapse between tidal extremes; you will obtain an extraordinary prediction:
the water level should rise by some 20 km, twice the height of Mt Everest. This
forecast is meaningless! The water level is governed by physical processes with a
wide range of timescales. The tidal variations, driven by lunar gravity, have a period
of around 12 hours, linked to the Earth’s rotation. But wind-driven waves and swell
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Figure 1.1 Schematic illustration of pressure variation over a 24 hour period. The
thick line is the mean, long-term variation, the thin line is the actual pressure, with
high frequency noise. The dotted line shows the rate of change, at 12 hours, of the
mean pressure, and the dashed line shows the corresponding rate of change of the
actual pressure. (After Phillips, 1973)

vary on a timescale of seconds. The instantaneous change in level due to a wave is
no guide to the long-term tidal variations: if the observed rise is extrapolated over
a period much longer than the timescale of the wave, the resulting forecast will be
calamitous.

In 1922, Richardson presented such a forecast to the world. He calculated a
change of atmospheric pressure, for a particular place and time, of 145 hPa in
6 hours. This was a totally unrealistic value, too large by two orders of magnitude.
The prediction failed for reasons similar to those that destroy the hypothetical tidal
forecast. The spectrum of motions in the atmosphere is analogous to that of the
ocean: there are long-period variations dominated by the effects of the Earth’s
rotation – these are the meteorologically significant rotational modes – and short-
period oscillations called gravity waves, having speeds comparable to that of sound.
The interaction between the two types of variation is weak, just as is the interaction
between wind-waves and tidal motions in the ocean; and, for many purposes, the
gravity waves, which are normally of small amplitude, may be treated as irrelevant
noise.

Although they have little effect on the long-term evolution of the flow, gravity
waves may profoundly influence the way it changes on shorter timescales. Figure 1.1
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(after Phillips, 1973) schematically depicts the pressure variation over a period of
one day. The smooth curve represents the variation due to meteorological effects;
its gentle slope (dotted line) indicates the long-term change. The rapidly varying
curve represents the actual pressure changes when gravity waves are superim-
posed on the meteorological flow: the slope of the oscillating curve (dashed line) is
precipitous and, if used to determine long-range variations, yields totally mislead-
ing results. What Richardson calculated was the instantaneous rate of change in
pressure for an atmospheric state having gravity-wave components of large ampli-
tude. This tendency, ∂p/∂t ≈ 0.7 Pa s−1, was a sizeable but not impossible value.
Such variations are observed over short periods in intense, localised weather sys-
tems.1 The problem arose when Richardson used the computed value in an attempt to
deduce the long-term change. Multiplying the calculated tendency by a time step of
six hours, he obtained the unacceptable value quoted above. The cause of the failure
is this: the instantaneous pressure tendency does not reflect the long-term change.

This situation looks hopeless: how are we to make a forecast if the tendencies
calculated using the basic equations of motion do not guide us? There are several
possible ways out of the dilemma; their success depends crucially on the decoupling
between the gravity waves and the motions of meteorological significance – we can
distort the former without seriously corrupting the latter.

The most obvious approach is to construct a forecast by combining many time
steps which are short enough to enable accurate simulation of the detailed high-
frequency variations depicted schematically in Fig. 1.1. The existence of these
high-frequency solutions leads to a stringent limitation on the size of the time
step for accurate results; this limitation or stability criterion was discovered in a
different context by Hans Lewy in Göttingen in the 1920s (see Reid, 1976), and was
first published in Courant et al. (1928). Thus, although these oscillations are not
of meteorological interest, their presence severely limits the range of applicability
of the tendency calculated at the initial time. Small time steps are required to
represent the rapid variations and ensure accuracy of the long-term solution. If such
small steps are taken, the solution will contain gravity-wave oscillations about an
essentially correct meteorological flow. One implication of this is that, if Richardson
could have extended his calculations, taking a large number of small steps, his results
would have been noisy but the mean values would have been meteorologically
reasonable (Phillips, 1973). Of course, the attendant computational burden made
this impossible for Richardson.

The second approach is to modify the governing equations in such a way that
the gravity waves no longer occur as solutions. This process is known as filtering

1 For example, Loehrer and Johnson (1995) reported a surface pressure drop of 4 hPa in five minutes in a mesoscale
convective system, or ∂p/∂t ≈ −1.3 Pa s−1.
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the equations. The approach is of great historical importance. The first successful
computer forecasts (Charney et al., 1950) were made with the barotropic vor-
ticity equation (see Chapter 10), which has low-frequency but no high-frequency
solutions. Later, the quasi-geostrophic equations were used to construct more re-
alistic filtered models and were used operationally for many years. An interesting
account of the development of this system appeared in Phillips (1990). The quasi-
geostrophic equations are still of great theoretical interest (Holton, 2004) but are
no longer considered to be sufficiently accurate for numerical prediction.

The third approach is to adjust the initial data so as to reduce or eliminate the
gravity-wave components. The adjustments can be small in amplitude but large
in effect. This process is called initialisation, and it may be regarded as a form
of smoothing. Richardson realised the requirement for smoothing the initial data
and devoted a chapter of WPNP to this topic. We will examine several methods
of initialisation in this work, in particular in Chapter 8, and will show that the
digital-filtering initialisation method yields realistic tendencies when applied to
Richardson’s data.

The absence of gravity waves from the initial data results in reasonable initial
rates of change, but it does not automatically allow the use of large time steps.
The existence of high-frequency solutions of the governing equations imposes a
severe restriction on the size of the time step allowable if reasonable results are
to be obtained. The restriction can be circumvented by treating those terms of the
equations that govern gravity waves in a numerically implicit manner; this distorts
the structure of the gravity waves but not of the low-frequency modes. In effect,
implicit schemes slow down the faster waves thus removing the cause of numerical
instability (see §5.2 below). Most modern forecasting models avoid the pitfall that
trapped Richardson by means of initialisation followed by semi-implicit integration.

1.2 Vilhelm Bjerknes and scientific forecasting

At the time of the First World War, weather forecasting was very imprecise and
unreliable. Observations were scarce and irregular, especially for the upper air and
over the oceans. The principles of theoretical physics played a relatively minor
role in practical forecasting: the forecaster used crude techniques of extrapolation,
knowledge of climatology and guesswork based on intuition; forecasting was more
an art than a science. The observations of pressure and other variables were plotted
in symbolic form on a weather map and lines were drawn through points with
equal pressure to reveal the pattern of weather systems – depressions, anticyclones,
troughs and ridges. The concept of fronts, surfaces of discontinuity between warm
and cold airmasses, had yet to emerge. The forecaster used his experience, memory
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Figure 1.2 A recent painting (from photographs) of the Norwegian scientist
Vilhelm Bjerknes (1862–1951) standing on the quay in Bergen. ( c© Geophysical
Institute, Bergen. Artist: Rolf Groven)

of similar patterns in the past and a menagerie of empirical rules to produce a
forecast map. Particular attention was paid to the reported pressure changes or
tendencies; to a great extent it was assumed that what had been happening up to
now would continue for some time. The primary physical process attended to by
the forecaster was advection, the transport of fluid characteristics and properties by
the movement of the fluid itself.

The first explicit analysis of the weather-prediction problem from a scientific
viewpoint was undertaken at the beginning of the twentieth century when the Nor-
wegian scientist Vilhelm Bjerknes set down a two-step plan for rational forecasting
(Bjerknes, 1904):

If it is true, as every scientist believes, that subsequent atmospheric states develop from
the preceding ones according to physical law, then it is apparent that the necessary and
sufficient conditions for the rational solution of forecasting problems are the following:
1. A sufficiently accurate knowledge of the state of the atmosphere at the initial time.
2. A sufficiently accurate knowledge of the laws according to which one state of the

atmosphere develops from another.
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Bjerknes used the medical terms diagnostic and prognostic for these two steps
(Friedman, 1989). The diagnostic step requires adequate observational data to define
the three-dimensional structure of the atmosphere at a particular time. There was a
severe shortage of observations, particularly over the seas and for the upper air, but
Bjerknes was optimistic:

We can hope . . . that the time will soon come when either as a daily routine, or for certain
designated days, a complete diagnosis of the state of the atmosphere will be available. The
first condition for putting forecasting on a rational basis will then be satisfied.

In fact, such designated days, on which upper air observations were made through-
out Europe, were organised around that time by the International Commission for
Scientific Aeronautics.

The second, or prognostic, step was to be taken by assembling a set of equations,
one for each dependent variable describing the atmosphere. Bjerknes listed seven
basic variables: pressure, temperature, density, humidity and three components of
velocity. He then identified seven independent equations: the three hydrodynamic
equations of motion, the continuity equation, the equation of state and the equations
expressing the two laws of thermodynamics. (As pointed out by Eliassen (1999),
Bjerknes was in error in listing the second law of thermodynamics; he should instead
have specified a continuity equation for water substance.) Bjerknes knew that an ex-
act analytical integration was beyond our ability. His idea was to represent the initial
state of the atmosphere by a number of charts giving the distribution of the variables
at different levels. Graphical or mixed graphical and numerical methods, based on
the fundamental equations, could then be applied to construct a new set of charts
describing the state of the atmosphere, say, three hours later. This process could
be repeated until the desired forecast length was reached. Bjerknes realised that
the prognostic procedure could be conveniently separated into two stages, a purely
hydrodynamic part and a purely thermodynamic part; the hydrodynamics would
determine the movement of an airmass over the time interval and thermodynamic
considerations could then be used to deduce changes in its state. He concluded:

It may be possible some day, perhaps, to utilise a method of this kind as the basis for a
daily practical weather service. But however that may be, the fundamental scientific study
of atmospheric processes sooner or later has to follow a method based upon the laws of
mechanics and physics.

Bjerknes’ speculations are reminiscent of Richardson’s ‘dream’ of practical
scientific weather forecasting.2

A tentative first attempt at mathematically forecasting synoptic changes by the
application of physical principles was made by Felix Exner, working in Vienna. His
account (Exner, 1908) appeared only four years after Bjerknes’ seminal paper. Exner

2 Bjerknes’ ideas on rational forecasting were adumbrated by Cleveland Abbe. See note added in proof, p. 27.
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makes no reference to Bjerknes’ work, which was also published in Meteorologische
Zeitschrift. Though he may be presumed to have known about Bjerknes’ ideas,
Exner followed a radically different line: whereas Bjerknes proposed that the full
system of hydrodynamic and thermodynamic equations be used, Exner’s method
was based on a system reduced to the essentials. He assumed that the atmospheric
flow is geostrophically balanced and that the thermal forcing is constant in time.
Using observed temperature values, he deduced a mean zonal wind. He then derived
a prediction equation representing advection of the pressure pattern with constant
westerly speed, modified by the effects of diabatic heating. It yielded a realistic
forecast in the case illustrated in Exner’s paper. Figure 1.3 shows his calculated
pressure change (top) and the observed change (bottom) over the four-hour period
between 8 p.m. and midnight on 3 January 1895; there is reasonable agreement
between the predicted and observed changes. However, the method could hardly
be expected to be of general utility. Exner took pains to stress the limitations of
his method, making no extravagant claims for it. But despite the very restricted
applicability of the technique devised by him, the work is deserving of attention
as a first attempt at systematic, scientific weather forecasting. Exner’s numerical
method was summarised in his textbook (Exner, 1917, §70). The only reference by
Richardson to the method was a single sentence (WPNP, p. 43) ‘F. M. Exner has
published a prognostic method based on the source of air supply.’ It would appear
from this that Richardson was not particularly impressed by it!

In 1912, Bjerknes became the first Director of the new Geophysical Institute in
Leipzig. In his inaugural lecture he returned to the theme of scientific forecasting.
He observed that ‘physics ranks among the so-called exact sciences, while one may
be tempted to cite meteorology as an example of a radically inexact science’. He
contrasted the methods of meteorology with those of astronomy, for which predic-
tions of great accuracy are possible, and described the programme of work upon
which he had already embarked: to make meteorology into an exact physics of the
atmosphere. Considerable advances had been made in observational meteorology
during the previous decade, so that now the diagnostic component of his two-step
programme had become feasible.

. . . now that complete observations from an extensive portion of the free air are being
published in a regular series, a mighty problem looms before us and we can no longer
disregard it. We must apply the equations of theoretical physics not to ideal cases only, but
to the actual existing atmospheric conditions as they are revealed by modern observations.
These equations contain the laws according to which subsequent atmospheric conditions
develop from those that precede them. It is for us to discover a method of practically
utilising the knowledge contained in the equations. From the conditions revealed by the
observations we must learn to compute those that will follow. The problem of accurate
pre-calculation that was solved for astronomy centuries ago must now be attacked in all
earnest for meteorology. (Bjerknes, 1914a)
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Figure 1.3 Top: Exner’s calculated pressure change between 8 p.m. and midnight,
3 January 1895. Bottom: observed pressure change for the same period [Units:
hundredths of an inch of mercury. Steigt = rises; Fällt = falls]. (Exner, 1908)

Bjerknes expressed his conviction that the acid test of a science is its utility in fore-
casting: ‘There is after all but one problem worth attacking, viz., the precalculation
of future conditions.’ He recognised the complexity of the problem and realised
that a rational forecasting procedure might require more time than the atmosphere
itself takes to evolve, but concluded:
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If only the calculation shall agree with the facts, the scientific victory will be won. Meteo-
rology would then have become an exact science, a true physics of the atmosphere. When
that point is reached, then the practical results will soon develop.

It may require many years to bore a tunnel through a mountain. Many a labourer may
not live to see the cut finished. Nevertheless this will not prevent later comers from riding
through the tunnel at express-train speed.

At Leipzig, Bjerknes instigated the publication of a series of weather charts based on
the data that were collected during the internationally-agreed intensive observation
days and compiled and published by Hugo Hergesell in Strasbourg (these charts are
discussed in detail in Chapter 6). One such publication (Bjerknes, 1914b), together
with the ‘raw data’ in Hergesell (1913), was to provide Richardson with the initial
conditions for his forecast.

Richardson first heard of Bjerknes’ plan for rational forecasting in 1913, when
he took up employment with the Meteorological Office. In the preface to WPNP he
writes:

The extensive researches of V. Bjerknes and his School are pervaded by the idea of using
the differential equations for all that they are worth. I read his volumes on Statics and
Kinematics soon after beginning the present study, and they have exercised a considerable
influence throughout it.

Richardson’s book opens with a discussion of then-current practice in the Met
Office. He describes the use of an Index of Weather Maps, constructed by classifying
old synoptic charts into categories. The Index (Gold, 1920) assisted the forecaster
to find previous maps resembling the current one and therewith to deduce the likely
development by studying the evolution of these earlier cases:

The forecast is based on the supposition that what the atmosphere did then, it will do again
now. There is no troublesome calculation, with its possibilities of theoretical or arithmetical
error. The past history of the atmosphere is used, so to speak, as a full-scale working model
of its present self. (WPNP, p. vii; Dover Edn., p. xi)

Bjerknes had contrasted the precision of astronomical prediction with the ‘radically
inexact’ methods of weather forecasting. Richardson returned to this theme in his
preface:

– the Nautical Almanac, that marvel of accurate forecasting, is not based on the principle that
astronomical history repeats itself in the aggregate. It would be safe to say that a particular
disposition of stars, planets and satellites never occurs twice. Why then should we expect
a present weather map to be exactly represented in a catalogue of past weather? . . . This
alone is sufficient reason for presenting, in this book, a scheme of weather prediction which
resembles the process by which the Nautical Almanac is produced, in so far as it is founded
upon the differential equations and not upon the partial recurrence of phenomena in their
ensemble.
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Richardson’s forecasting scheme amounts to a precise and detailed implementation
of the prognostic component of Bjerknes’ programme. It is a highly intricate proce-
dure: as Richardson observed, ‘the scheme is complicated because the atmosphere
is complicated’. It also involved an enormous volume of numerical computation
and was quite impractical in the pre-computer era. But Richardson was undaunted,
expressing his dream that ‘some day in the dim future it will be possible to advance
the computations faster than the weather advances’. Today, forecasts are prepared
routinely on powerful computers running algorithms that are remarkably similar to
Richardson’s scheme – his dream has indeed come true.

Before discussing Richardson’s forecast in more detail, we will digress briefly
to consider his life and work from a more general viewpoint.

1.3 Outline of Richardson’s life and work

Richardson’s life and work are discussed in a comprehensive and readable biogra-
phy (Ashford, 1985). The Royal Society Memoir of Gold (1954) provides a more
succinct description and the Collected Papers of Richardson, edited by Drazin
(LFR I) and Sutherland (LFR II), include a biographical essay by Hunt (1993);
see also Hunt (1998). Brief introductions to Richardson’s work in meteorology
(by Henry Charnock), in numerical analysis (by Leslie Fox) and on fractals (by
Philip Drazin) are also included in Volume 1 of the Collected Papers. The article
by Chapman (1965) is worthy of attention and some fascinating historical back-
ground material may be found in the review by Platzman (1967). In a recent popular
book on mathematics, Körner (1996) devotes two chapters (69 pages) to various
aspects of Richardson’s mathematical work. The National Cataloguing Unit for
the Archives of Contemporary Scientists has produced a comprehensive catalogue
of the papers and correspondence of Richardson, which were deposited by Oliver
Ashford in Cambridge University Library (NCUACS, 1993). The following sketch
of Richardson’s life is based primarily on Ashford’s book.

Lewis Fry Richardson was born in 1881, the youngest of seven children of
David Richardson and Catherine Fry, both of whose families had been members of
the Society of Friends for generations. He was educated at Bootham, the Quaker
school in York, where he showed an early aptitude for mathematics, and at Durham
College of Science in Newcastle. He entered King’s College, Cambridge in 1900
and graduated with a First Class Honours in the Natural Science Tripos in 1903.
In 1909, he married Dorothy Garnett. They had no offspring but adopted two sons
and a daughter, Olaf (1916–83), Stephen (1920–) and Elaine (1927–).

Over the ten years following his graduation, Richardson held several short re-
search posts (Appendix 2 contains a chronology of the milestones of his life and
career). As a scientist with National Peat Industries, he investigated the optimum
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Figure 1.4 Lewis Fry Richardson (1881–1953). Photograph by Walter Stoneman,
1931, when Richardson was aged 50. (Copy of photograph courtesy of Oliver
Ashford)

method of cutting drains to remove water from peat bogs. The problem was formu-
lated in terms of Laplace’s equation on an irregularly-shaped domain. As this partial
differential equation is not soluble by analytical means, except in special cases, he
devised an approximate graphical method of solving it. More significantly, he then
constructed a finite difference method for solving such systems and described this
more powerful and flexible method in a comprehensive report (Richardson, 1910).

Around 1911, Richardson began to think about the application of his finite differ-
ence approach to the problem of forecasting the weather. He stated in the preface of
WPNP that the idea first came to him in the form of a fanciful idea about a forecast
factory, to which we will return in the final chapter. Richardson began serious work
on weather prediction in 1913, when he joined the Met Office and was appointed
Superintendent of Eskdalemuir Observatory, at an isolated location in Dumfrieshire
in the Southern Uplands of Scotland. In May 1916, he resigned from the Met Office
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in order to work with the Friends Ambulance Unit (FAU) in France. There he spent
over two years as an ambulance driver, working in close proximity to the fighting
and on occasions coming under heavy shell fire. He returned to England after the
cessation of hostilities and was employed once again by the Met Office to work
at Benson, between Reading and Oxford, with W. H. Dines. The conditions of his
employment included experiments with a view to forecasting by numerical process.
He also developed several ingenious instruments for making upper air observations.
However, he was there only one year when the Office came under the authority of
the Air Ministry, which also had responsibility for the Royal Air Force and, as a
committed pacifist, he felt obliged to resign once more.

Richardson then obtained a post as a lecturer in mathematics and physics at
Westminister Training College in London. His meteorological research now focused
primarily on atmospheric turbulence. Several of his publications during this period
are still cited by scientists. In one of the most important – The supply of energy
from and to atmospheric eddies (Richardson, 1920) – he derived a criterion for the
onset of turbulence, introducing what is now known as the Richardson Number. In
another (Richardson, 1926), he investigated the separation of initially proximate
tracers in a turbulent flow, and arrived empirically at his ‘four-thirds law’: the rate
of diffusion is proportional to the separation raised to the power 4/3. This was later
established more rigourously by Kolmogorov (1941) using dimensional analysis.
Bachelor (1950) showed the consistency between Richardson’s four-thirds law and
Kolmogorov’s similarity theory. A simple derivation of the four-thirds law using
dimensional analysis is given by Körner (1996).

In 1926, Richardson was elected a Fellow of the Royal Society. Around that time
he made a deliberate break with meteorological research. He was distressed that his
turbulence research was being exploited for military purposes. Moreover, he had
taken a degree in psychology and wanted to apply his mathematical knowledge in
that field. Among his interests was the quantitative measurement of human sensation
such as the perception of colour. He established for the first time a logarithmic
relationship between the perceived loudness and the physical intensity of a stimulus.
In 1929, he was appointed Principal of Paisley Technical College, near Glasgow,
and he worked there until his retirement in 1940.

From about 1935 until his death in 1953, Richardson thrust himself energetically
into peace studies, developing mathematical theories of human conflict and the
causes of war. Once again he produced ideas and results of startling originality. He
pioneered the application of quantitative methods in this extraordinarily difficult
area. As with his work in numerical weather prediction, the value of his efforts was
not immediately appreciated. He produced two books, Arms and Insecurity (1947),
a mathematical theory of arms races, and Statistics of Deadly Quarrels (1950)
in which he amassed data on all wars and conflicts between 1820 and 1949 in a
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systematic collection. His aim was to identify and understand the causes of war, with
the ultimate humanitarian goal of preventing unnecessary waste of life. However,
he was unsuccessful in finding a publisher for these books (the dates refer to the
original microfilm editions). The books were eventually published posthumously
in 1960, thanks to the efforts of Richardson’s son Stephen. These studies continue
to be a rich source of ideas. A recent review of Richardson’s theories of war and
peace has been written by Hess (1995).

Richardson’s genius was to apply quantitative methods to problems that had
traditionally been regarded as beyond ‘mathematicisation’, and the continuing rel-
evance and usefulness of his work confirms the value of his ideas. He generally
worked in isolation, moving frequently from one subject to another. He lacked
constructive collaboration with colleagues and, perhaps as a result, his work had
great individuality but was also somewhat idiosyncratic. G. I. Taylor (1959) spoke
of him as ‘a very interesting and original character who seldom thought on the same
lines as his contemporaries and often was not understood by them’. Just as for his
work in meteorology, Richardson’s mathematical studies of the causes of war were
ahead of their time. In a letter to Nature (Richardson, 1951) he posed the question
of whether an arms race must necessarily lead to warfare. Reviewing this work, his
biographer (Ashford, 1985, p. 223) wrote ‘Let us hope that before long history will
show that an arms race can indeed end without fighting.’ Just four years later the
collapse of the Soviet Union brought the nuclear arms race to an abrupt end.3

Richardson’s Quaker background and pacifist convictions profoundly influenced
the course of his career. Late in his life, he wrote of the ‘persistent influence of the
Society of Friends, with its solemn emphasis on public and private duty’. Because of
his pacifist principles, he resigned twice from the Met Office, first to face battlefield
dangers in the Friends Ambulance Unit in France, and again when the Office came
under the Air Ministry. He destroyed some of his research results to prevent their
use for military purposes (Brunt, 1954) and even ceased meteorological research for
a time: he published no papers in meteorology between 1930 and 1948. He retired
early on a meagre pension to devote all his energies to peace studies. His work was
misunderstood by many but his conviction and vision gave him courage to persist
in the face of the indifference and occasional ridicule of his contemporaries.

Richardson made important contributions in several fields, the most significant
being atmospheric diffusion, numerical analysis, quantitative psychology and the
mathematical study of the causes of war. He is remembered by meteorologists
through the Richardson Number, a fundamental quantity in turbulence theory, and
for his extraordinary vision in formulating the process of numerical forecasting. The

3 Stommel (1985) noted that the only purchaser of the book Arms and Insecurity, which Richardson was offering
for sale on microfilm in 1948, was the Soviet Embassy in London!
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approximate methods that he developed for the solution of differential equations
are extensively used in the numerical treatment of physical problems.

Richardson’s pioneering work in studying the mathematical basis of human
conflict has led to the establishment of a large number of university departments
devoted to this area. In the course of his peace studies, he digressed to consider the
lengths of geographical borders and coastlines, and discovered the scaling properties
such that the length increases as the unit of measurement is reduced. This work
inspired Benoit Mandelbrot’s development of the theory of fractals (Mandelbrot,
1982). In a tribute to Richardson shortly after his death, his wife Dorothy recalled
that one of his sayings was ‘Our job in life is to make things better for those who
follow us. What happens to ourselves afterwards is not our concern.’ Richardson
had the privilege to make contributions to human advancement in several areas.
The lasting value of his work is a testimony of his wish to serve his fellow man.

1.4 The origin of Weather Prediction by Numerical Process

Richardson first applied his approximate method for the solution of differential
equations to investigate the stresses in masonry dams (Richardson, 1910), a problem
on which he had earlier worked with the statistician Karl Pearson. But the method
was completely general and he realised that it had potential for use in a wide range
of problems. The idea of numerical weather prediction appears to have germinated
in his mind for several years. In a letter to Pearson, dated 6 April 1907, he wrote in
reference to the method that ‘there should be applications to meteorology one would
think’ (Ashford, 1985, p. 25). This is the first inkling of his interest in the subject.
In the preface to WPNP he wrote that the investigation of numerical prediction

grew out of a study of finite differences and first took shape in 1911 as the fantasy which
is now relegated to Ch. 11/2. Serious attention to the problem was begun in 1913 at
Eskdalemuir Observatory, with the permission and encouragement of Sir Napier Shaw,
then Director of the Met Office, to whom I am greatly indebted for facilities, information
and ideas.

The fantasy was that of a forecast factory, which we will discuss in detail in the
final chapter. Richardson had had little or no previous experience of meteorology
when he took up his position as Superintendent of the Observatory in what Gold
(1954) described as ‘the bleak and humid solitude of Eskdalemuir’. Perhaps it was
this lack of formal training in the subject that enabled him to approach the problem
of weather forecasting from such a breathtakingly original and unconventional
angle. His plan was to express the physical principles that govern the behaviour
of the atmosphere as a system of mathematical equations and to solve this system
using his approximate finite difference method. The basic equations had already
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Figure 1.5 Eskdalemuir Observatory in 1911. Office and Computing Room, where
Richardson’s dream began to take shape. (photograph from MC-1911)

been identified by Bjerknes (1904) but with the error noted above: the second law of
thermodynamics was specified instead of conservation of water substance. The same
error was repeated in Bjerknes’ inaugural address at Leipzig (Bjerknes, 1914a).
While this may seem a minor matter it proves that, while Bjerknes outlined a general
philosophical approach, he did not attempt to formulate a detailed procedure, or
algorithm, for applying his method. Indeed, he felt that such an approach was
completely impractical. The complete system of fundamental equations was, for
the first time, set down in a systematic way in Chapter 4 of WPNP. The equations
had to be simplified, using the hydrostatic assumption, and transformed to render
them amenable to approximate solution. Richardson also introduced a plethora of
extra terms to account for various physical processes not considered by Bjerknes.

By the time of his resignation, in 1916, Richardson had completed the formu-
lation of his scheme and had set down the details in the first draft of his book,
then called Weather Prediction by Arithmetic Finite Differences. But he was not
concerned merely with theoretical rigour and wished to include a fully worked
example to demonstrate how the method could be put to use. This example

was worked out in France in the intervals of transporting wounded in 1916–1918. During
the battle of Champagne in April 1917 the working copy was sent to the rear, where it
became lost, to be re-discovered some months later under a heap of coal.

(WPNP, p. ix; Dover Edn., p. xiii)
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One may easily imagine Richardson’s distress at this loss and the great relief that the
re-discovery must have brought him.4 It is a source of wonder that in the appalling
conditions prevailing at the front he had the buoyancy of spirit to carry out one of
the most remarkable and prodigious feats of calculation ever accomplished.

Richardson assumed that the state of the atmosphere at any point could be spec-
ified by seven numbers: pressure, temperature, density, water content and velocity
components eastward, northward and upward. He formulated a description of at-
mospheric phenomena in terms of seven differential equations. To solve them,
Richardson divided the atmosphere into discrete columns of extent 3◦ east–west
and 200 km north–south, giving 120 × 100 = 12 000 columns to cover the globe.
Each of these columns was divided vertically into five cells. The values of the
variables were given at the centre of each cell, and the differential equations were
approximated by expressing them in finite difference form. The rates of change of
the variables could then be calculated by arithmetical means. Richardson calculated
the initial changes in two columns over central Europe, one for mass variables and
one for winds. This was the extent of his ‘forecast’.

How long did it take Richardson to make his forecast? It is generally believed
that he took six weeks for the task but, given the volume of results presented on
his 23 computing forms, it is difficult to understand how the work could have been
expedited in so short a time. The question was discussed in Lynch (1993), which
is reproduced in Appendix 4. The answer is contained in §11/2 of WPNP, but is
expressed in a manner that has led to confusion. On page 219, under the heading
‘The Speed and Organization of Computing’, Richardson wrote:

It took me the best part of six weeks to draw up the computing forms and to work out the
new distribution in two vertical columns for the first time. My office was a heap of hay in a
cold rest billet. With practice the work of an average computer might go perhaps ten times
faster. If the time-step were 3 hours, then 32 individuals could just compute two points so
as to keep pace with the weather.

Could Richardson really have completed his task in six weeks? Given that 32
computers working at ten times his speed would require three hours for the job,5

he himself must have taken some 960 hours – that is 40 days or ‘the best part of
six weeks’ working flat-out at 24 hours a day! At a civilised 40-hour week the
forecast would have extended over six months. It is more likely that Richardson
spent perhaps ten hours per week at his chore and that it occupied him for about
two years, the greater part of his stay in France.

In 1919, Richardson added an introductory example (WPNP, Chapter 2) in which
he integrated a system equivalent to the linearised shallow water equations, starting

4 In an obituary notice, Brunt (1954) stated that the manuscript was lost not once but twice.
5 Richardson’s ‘computers’ were made not of silicon but of flesh and blood.
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from idealised initial conditions defined by a simple analytic formula. This was
done at Benson where he had ‘the good fortune to be able to discuss the hypotheses
with Mr W. H. Dines’. The chapter ends with an acknowledgement to Dines for
having read and criticised it. It seems probable that the inclusion of this example
was suggested by Dines, who might have been more sensitive than Richardson
to the difficulties that readers of WPNP would likely experience. The book was
thoroughly revised in 1920–1 and was finally published by Cambridge University
Press in 1922 at a price of 30 shillings (£1.50), the print run being 750 copies.

Richardson’s book was certainly not a commercial success. Akira Kasahara has
told me that he bought a copy from Cambridge University Press in 1955, more than
thirty years after publication. The book was re-issued in 1965 as a Dover paperback
and the 3 000 copies, priced at $2, about the same as the original hard-back edition,
were sold out within a decade.6 The Dover edition was identical to the original
except for a six-page introduction by Sydney Chapman. Following its appearance,
a retrospective appraisal of Richardson’s work by George Platzman was published
in the Bulletin of the American Meteorological Society (Platzman, 1967; 1968).
This scholarly review has been of immense assistance in the preparation of the
present work.

The initial response to WPNP was unremarkable and must have been disap-
pointing to Richardson. The book was widely reviewed with generally favourable
comments – Ashford (1985) includes a good coverage of reactions – but the im-
practicality of the method and the abysmal failure of the solitary sample forecast
inevitably attracted adverse criticism. Napier Shaw, reviewing the book for Nature,
wrote that Richardson ‘presents to us a magnum opus on weather prediction’. How-
ever, in regard to the forecast, he observed that the wildest guess at the pressure
change would not have been wider of the mark. More importantly for our purposes,
he questioned Richardson’s conclusion that wind observations were the real cause
of the error, and also his dismissal of the geostrophic wind. Edgar W. Woolard, a
meteorologist with the US Weather Bureau, wrote:

The book is an admirable study of an eminently important problem . . . a first attempt in this
extraordinarily difficult and complex field . . . it indicates a line of attack on the problem,
and invites further study with a view to improvement and extension. . . . It is sincerely to
be hoped that the author will continue his excellent work along these lines, and that other
investigators will be attracted to the field which he has opened up. The results cannot fail
to be of direct practical importance as well as of immense scientific value.

However, other investigators were not attracted to the field, perhaps because the
forecast failure acted as a deterrent, perhaps because the book was so difficult
to read, with its encyclopedic but distracting range of topics. Alexander McAdie,

6 WPNP has recently been reprinted by Cambridge University Press (2006).
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Professor of Meteorology at Harvard, wrote ‘It can have but a limited number of
readers and will probably be quickly placed on a library shelf and allowed to rest
undisturbed by most of those who purchase a copy’ (McAdie, 1923). Indeed, this
is essentially what happened to the book.

A most perceptive review by F. J. W. Whipple of the Met Office came closest to
understanding Richardson’s unrealistic forecast, postulating that rapidly-travelling
waves contributed to its failure:

The trouble that he meets is that quite small discrepancies in the estimate of the strengths
of the winds may lead to comparatively large errors in the computed changes of pressure. It
is very doubtful whether sufficiently accurate results will ever be arrived at by the straight-
forward application of the principle of conservation of matter. In nature any excess of air in
one place originates waves which are propagated with the velocity of sound, and therefore
much faster than ordinary meteorological phenomena.

One of the difficulties in the mathematical analysis of pressure changes on the Earth is
that the great rapidity of these adjustments by the elasticity of the air has to be allowed for.
The difficulty does not crop up explicitly in Mr Richardson’s work, but it may contribute
to the failure of his method when he comes to close quarters with a numerical problem.

The hydrostatic approximation used by Richardson eliminates vertically propagat-
ing sound waves, but gravity waves and also horizontally propagating sound waves
(Lamb waves) are present as solutions of his equations. These do indeed travel
‘much faster than ordinary meteorological phenomena’. Nowhere in his book does
Richardson allude to this fact. Whipple appears to have had a far clearer under-
standing of the causes of Richardson’s forecast catastrophe that did Richardson
himself. The consideration of these causes is a central theme of the present work.

A humourist has observed that publishing a book of verse is like dropping a
feather down the Grand Canyon and awaiting the echo. Richardson’s work was not
taken seriously and his book failed to have any significant impact on the practice
of meteorology during the decades following its publication. But the echo finally
arrived and continues to resound around the world to this day: Richardson’s brilliant
and prescient ideas are now universally recognised among meteorologists and his
work is the foundation upon which modern forecasting is built.

1.5 Outline of the contents of WPNP

We will examine Richardson’s numerical forecast in considerable detail in the chap-
ters that follow. For now, it is useful to present a broad outline – a synoptic view –
of his book. The chapter titles are given in Table 1.1. Chapter 1 is a summary of the
contents of the book. Richardson’s plan is to apply his finite difference method to
the problem of weather forecasting. He had previously used both graphical and nu-
merical methods for solving differential equations and had come to favour the latter:
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Table 1.1 Chapter titles of Weather Prediction by
Numerical Process.

Chapter 1 Summary
Chapter 2 Introductory Example
Chapter 3 The Choice of Coordinate Differences
Chapter 4 The Fundamental Equations
Chapter 5 Finding the Vertical Velocity
Chapter 6 Special Treatment for the Stratosphere
Chapter 7 The Arrangement of Points and Instants
Chapter 8 Review of Operations in Sequence
Chapter 9 An Example Worked on Computing Forms
Chapter 10 Smoothing the Initial Data
Chapter 11 Some Remaining Problems
Chapter 12 Units and Notation

whereas Prof. Bjerknes mostly employs graphs, I have thought it better to procede by way
of numerical tables. The reason for this is that a previous comparison of the two methods,
in dealing with differential equations, had convinced me that the arithmetical procedure is
the more exact and the more powerful in coping with otherwise awkward equations.

(WPNP, p. viii; Dover Edn., p. xii)

The fundamental idea is that the numerical values of atmospheric pressures,
velocities, etc., are tabulated at certain latitudes, longitudes and heights so as to
give a general description of the state of the atmosphere at an instant. The physical
laws determine how these quantities change with time. The laws are used to
formulate an arithmetical procedure, which, when applied to the numerical tables,
yields the corresponding values after a brief interval of time, �t . The process can
be repeated so as to yield the state of the atmosphere after 2�t , 3�t , and so on,
until the desired forecast length is reached.

In Chapter 2 the method of numerical integration is illustrated by application to a
simple linear ‘shallow-water’ model. The step-by-step description of Richardson’s
method and calculations in this chapter is clear and explicit and is a splendid intro-
duction to the process of numerical weather prediction. In contrast, the remainder
of the book is heavy going, containing so much extraneous material that the central
ideas are often obscured.

Chapter 3 describes the choice of co-ordinates and the discrete grid to be used.
The choice is guided by (1) the scale of variation of atmospheric variables, (2) the
errors due to replacing infinitesimal by finite differences, (3) the accuracy that is
necessary to satisfy public requirements, (4) the cost, which increases with the num-
ber of points in space and time that have to be dealt with (WPNP, p. 16). Richardson
considered the distribution of observing stations in the British Isles, which were
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separated, on average, by a distance of 130 km. Over the oceans, observations were
‘scarce and irregular’. He concluded that a grid with 128 equally spaced meridians
and 200 km in latitude would be a reasonable choice. In the vertical he chose five
layers, or conventional strata, separated by horizontal surfaces at 2.0, 4.2, 7.2 and
11.8 km, corresponding approximately to the mean heights of the 800, 600, 400 and
200 hPa surfaces. The alternative of using isobaric co-ordinates was considered but
dismissed. The time interval chosen by Richardson was six hours, but this corre-
sponds to 2�t for the leapfrog method of integration; in modern terms, we have
�t = 3 h. The cells of the horizontal grid were coloured alternately red and white,
like the checkers of a chessboard. The grid was illustrated on the frontispiece of
WPNP, reproduced in Fig. 1.6.7

The next three chapters, comprising half the book, are devoted to assembling a
system of equations suitable for Richardson’s purposes. In Chapter 4

the fundamental equations are collected from various sources, set in order and completed
where necessary. Those for the atmosphere are then integrated with respect to height so as
to make them apply to the mean values of the pressure, density, velocity, etc., in the several
conventional strata.

As hydrostatic balance is assumed, there is no prognostic equation for the vertical
velocity. Chapter 5 is devoted to the derivation of a diagnostic equation for this
quantity. Platzman (1967) wrote that Richardson’s vertical velocity equation ‘is the
principal, substantive contribution of the book to dynamic meteorology’. Chapter 6
considers the special measures that must be taken for the uppermost layer, the
stratosphere, a region later described as ‘a happy hunting-ground for meteorological
theorists’ (Richardson and Munday, 1926).

Chapter 7 gives details of the finite difference scheme, explaining the rationale for
the choice of a staggered grid. Richardson considers several possible time-stepping
techniques, including a fully implicit scheme, but opts for the simple leapfrog or
‘step-over’ method. Here can also be found a discussion of variable grid resolution
and the special treatment of the polar caps. In Chapter 8 the forecasting ‘algorithm’
is presented in detail. It is carefully constructed so as to be, in Richardson’s words,
lattice reproducing; that is, where a quantity is known at a particular time and place,
the algorithm enables its value at a later time to be calculated at the same place. The
description of the method is sufficiently detailed and precise to enable a computer
program based on it to be written, so that Richardson’s results can be replicated
(without the toil of two years’ manual calculation).

Chapter 9 describes the celebrated trial forecast and its unfortunate results. The
preparation of the initial data is outlined – the data are tabulated on p. 185 of WPNP.

7 Richardson used 120 meridians, giving a 3◦ east–west distance, for his actual forecast, later realising that 128
meridians (or 2.8125◦) would more conveniently facilitate sub-division near the poles.



1.5 Outline of the contents of WPNP 21

Figure 1.6 Richardson’s idealised computational grid. (Frontispiece of WPNP)

The calculations themselves are presented on a set of 23 computing forms. These
were completed manually: ‘multiplications were mostly worked by a 25 centim
slide rule’ (WPNP, p. 186). The calculated changes in the primary variables over
a six-hour period are compiled on page 211. It is characteristic of Richardson’s
whimsical sense of humour that, on the heading of this page, the word ‘prediction’
is enclosed in quotes; the results certainly cannot be taken literally. Richardson
explains the chief result thus:
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The rate of rise of surface pressure, ∂pG/∂t , is found on Form PXIII as 145 millibars in
6 hours, whereas observations show that the barometer was nearly steady. This glaring
error is examined in detail below in Chapter 9/3, and is traced to errors in the representation
of the initial winds.

(Here, pG is the surface pressure). Richardson described his forecast as ‘a fairly
correct deduction from a somewhat unnatural initial distribution’ (WPNP, p. 211).
We will consider this surprising claim in detail in the ensuing chapters.

The following chapter is given short shrift by Richardson in his summary: ‘In
Chapter 10 the smoothing of observations is discussed.’ The brevity of this resumé
should not be taken to reflect the status of the chapter. In its three pages, Richardson
discusses five alternative smoothing techniques. Such methods are crucial for the
success of modern computer forecasting models. In a sense, Chapter 10 contains the
key to solving the difficulties with Richardson’s forecast. He certainly appreciated
its importance for he stated, at the beginning of the following chapter:

The scheme of numerical forecasting has developed so far that it is reasonable to expect
that when the smoothing of Ch. 10 has been arranged, it may give forecasts agreeing with
the actual smoothed weather.

Chapter 11 considers ‘Some Remaining Problems’ relating to observations and
to eddy diffusion, and also contains the oft-quoted passage depicting the forecast
factory.

Finally, Chapter 12 deals with units and notation and contains a full list of
symbols, giving their meanings in English and in Ido, a then-popular international
language. Richardson had considered such a vast panoply of physical processes that
the Roman and Greek alphabets were inadequate. His array includes several Coptic
letters and a few specially constructed symbols, such as a little leaf indicating
evaporation from vegetation. As a tribute to Richardson’s internationalism, the
present book contains a similar table, giving the modern equivalents of Richardson’s
archaic notation, with meanings in English and Esperanto (see Appendix 1).

The emphasis laid by Richardson on different topics may be gauged from a
page count of WPNP. Roughly half the book is devoted to discussions of a vast
range of physical processes, some having a negligible effect on the forecast. The
approximate budget in Table 1.2 is based on an examination of the contents of
WPNP and on the earlier analyses of Platzman (1967) and Hollingsworth (1994).
Due to the imprecision of the attribution process, the figures should be interpreted
only in a qualitative sense.

The 23 computing forms on which the results of the forecast were presented, were
designed and arranged in accordance with the systematic algorithmic procedure that
Richardson had devised for calculating the solution of the equations. The completed
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Table 1.2 Page-count of Weather Prediction by Numerical Process.

Dynamics Momentum Equations 11
Vertical Velocity 10
The Stratosphere 24

Total Dynamics 45
Numerics Finite Differences 12

Numerical Algorithm 25
Total Numerics 37

Dynamics + Numerics 82

Physics Clouds and Water 12
Energy and Entropy 8

Radiation 19
Turbulence 36

Surface, Soil, Sea 23
Total Physics 98

Miscellaneous Summary 3
Initial Data 7

Analysis of Results 5
Smoothing 3

Forecast Factory 1
Computing Forms 23

Notation and Index 14
Total Miscellaneous 56

Total Pages 236

forms appear on pages 188–210 of WPNP so that the arithmetical work can be
followed in great detail. Richardson arranged, at his own expense, for sets of blank
forms to be printed to assist intrepid disciples to carry out experimental forecasts
with whatever observational data were available. It is not known if these forms,
which cost two shillings per set, were ever put to their intended use.8

The headings of the computing forms (see Table 1.3) indicate the scope of the
computations. ‘The forms are divided into two groups marked P and M according
as the point on the map to which they refer is one where pressure P or momenta
M are tabulated’ (WPNP, p. 186). This arrangement of the computations is quite
analogous to a modern spreadsheet program such as Excel, where the data are
entered and the program calculates results according to prescribed rules. The first
three forms contain input data and physical parameters. The forms may be classified
as follows (Platzman, 1967):

8 I am grateful to Oliver Ashford for providing me with a set of blank forms; they remain to be completed.
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Table 1.3 Headings of the 23 computing forms designed and used by Richardson.

Copies were available separately from his book as Forms whereon to write the numerical
calculations described in Weather Prediction by Numerical Process by Lewis F. Richardson.
Cambridge University Press, 1922. Price two shillings.

Computing
form Title

PI Pressure, Temperature, Density, Water and Continuous Cloud
PII Gas constant. Thermal capacities. Entropy derivatives
PIII Stability, Turbulence, Heterogeneity, Detatched Cloud
PIV For Solar Radiation in the grouped ranges of wave-lengths known as

BANDS
PV For Solar Radiation in the grouped ranges of wave-lengths known as

REMAINDER
PVI For Radiation due to atmospheric and terrestrial temperature
PVII Evaporation at the interface
PVIII Fluxes of Heat at the interface
PIX For Temperature of Radiating Surface. Part I,

Numerator of Ch. 8/2/15#20
PX For Temperature of Radiating Surface. Part II,

Denominator of Ch. 8/2/15#20
PXI Diffusion produced by eddies. See Ch. 4/8. Ch. 8/2/13
PXII Summary of gains of entropy and of water, both per mass of atmosphere

during δt
PXIII Divergence of horizontal momentum-per-area. Increase of pressure
PXIV Stratosphere. Vertical Velocity by Ch. 6/6#21. Temperature Change by

Ch. 6/7/3#8
PXV For Vertical Velocity in general, by equation Ch. 8/2/23#1. Preliminary
PXVI For Vertical Velocity. Conclusion
PXVII For the transport of water and its increase in a fixed element of volume
PXVIII For water in soil ∂w

∂t = · · · , which is equation Ch. 4/10/2#5
PXIX For Temperature in soil. The equation is Ch. 4/10/2, namely ∂θ

∂t = · · ·
MI For Stresses due to Eddy Viscosity
MII Stratosphere. Horizontal velocities and special terms in dynamical

equations
MIII For the Dynamical Equation for the Eastward Component
MIV For the Dynamical Equation for the Northward Component

� Hydrodynamic calculations (11 forms)
– Input data and physical parameters: PI–PIII

– Mass tendency and pressure tendency: PXIII

– Vertical velocity: PXIV–PXVI

– Momentum tendency: MI–MIV
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� Thermodynamic and hydrologic calculations (12 forms)
� Radiation: PIV–PVI
� Ground surface and sub-surface: PVII–PX, PXVIII, PXIX
� Free air: PXI, PXII, PXVII

The hydrodynamic calculations are by far the more important. In repeating the
forecast we will omit the thermodynamic and hydrological calculations, which
prove to have only a minor effect on the computed tendencies. The results on Form
PXIII are of particular interest and include the calculated surface pressure change of
145 hPa/6 h (the observed change in pressure over the period was less than one hPa).

Throughout his career, Richardson continued to consider the possibility of a
second edition of WPNP. He maintained a file in which he kept material for this
purpose and added to it from time to time, the last entry being in 1951. Platzman
(1967) stressed the importance of this Revision File and discussed several items in
it. The file contained an unbound copy of WPNP, on the sheets of which Richardson
added numerous annotations. Interleaved among the printed pages were manuscript
notes and correspondence relating to the book. In 1936, C. L. Godske, an assistant
of Bjerknes, visited Richardson in Paisley to discuss the possibility of continuing
his work using more modern observational data. Richardson gave him access to
the Revision File and, after the visit, wrote to Cambridge University Press suggest-
ing Godske as a suitable author if a second edition should be called for at a later
time (Ashford, 1985, p. 157). After Richardson’s death, the Revision File passed
to Oliver Ashford who in 1967 deposited it in the archives of the Royal Meteoro-
logical Society. The file was misplaced, along with other Richardson papers, when
the Society moved its headquarters from London to Bracknell in 1971. Ashford
expressed a hope that ‘perhaps it too will turn up some day ‘under a heap of coal’.’
The file serendipitously re-appeared around 2000 and Ashford wrote in a letter to
Weather that ‘there is still something of a mystery’ about where the file had been
(Ashford, 2001). The file has now been transferred to the National Meteorological
Archive of the Met Office in Exeter. We will refer repeatedly in the sequel to this
peripatetic file.

1.6 Preview of remaining chapters

The fundamental equations of motion are introduced in Chapter 2. The prognostic
equations, which follow from the physical conservation laws, are presented and a
number of diagnostic relationships necessary to complete the system are derived. In
the case of small amplitude horizontal flow the equations assume a particularly sim-
ple form, reducing to the linear shallow-water equations or Laplace tidal equations.
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These are discussed in Chapter 3, and an analysis of their normal mode solutions is
presented. The numerical integration of the linear shallow-water equations is dealt
with in Chapter 4. Richardson devoted a chapter of his book to this barotropic case,
with the aim of verifying that his finite difference method could yield results of
acceptable accuracy. We consider his use of geostrophic initial winds and show
how the noise in his forecast may be filtered out.

The transformation of the full system of differential equations into algebraic form
is undertaken in Chapter 5. This is done by the method of finite differences in which
continuous variables are represented by their values at a discrete set of grid-points in
space and time, and derivatives are approximated by differences between the values
at adjacent points. The vertical stratification of the atmosphere is considered: the
continuous variation is averaged out by integration through each of five layers and
the equations for the mean values in each layer are derived. A complete system of
equations suitable for numerical solution is thus obtained. A detailed step-by-step
description of Richardson’s solution procedure is given in this chapter.

The preparation of the initial conditions is described in Chapter 6. The sources
of the initial data are discussed, and the transformations required to produce the
needed initial values are outlined. There is also a brief description of the instruments
used in 1910 in the making of these observations. In Chapter 7 the initial tendencies
produced by the numerical model are presented. They are in excellent agreement
with the values that Richardson obtained. The reasons for the small discrepancies
are explained. The results are unrealistic: the reasons for this are analysed and we
begin to consider ways around the difficulties.

The process of initialisation is discussed in Chapter 8. We review early attempts
to define a balanced state for the initial data. The ideas of normal mode initialisa-
tion, filtered equations and the slow manifold are introduced by consideration of a
particularly simple mechanical system, an elastic pendulum or ‘swinging spring’.
These concepts are examined in greater detail in the remaining sections of the
chapter. Finally, the digital filter initialisation technique, which is later applied to
Richardson’s forecast, is presented.

In Chapter 9, we discuss the initialisation of Richardson’s forecast. Richardson’s
discussion on smoothing the initial data is re-examined. When appropriate smooth-
ing is applied to the initial data, using a simple digital filter, the initial tendency of
surface pressure is reduced from the unrealistic 145 hPa/6 h to a reasonable value
of less than 1 hPa/6 h. The forecast is shown to be in good agreement with the
observed pressure change. The rates of change of temperature and wind are also
realistic. To extend the forecast, smoothing in space is found to be necessary. The
results of a 24-hour forecast with such smoothing are presented.

Chapter 10 considers the development of Numerical Weather Prediction (NWP)
in the 1950s, when high-speed electronic computers first came into use. The first
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demonstration that computer forecasting might be practically feasible was carried
out by the Princeton Group (Charney et al., 1950). These pioneers were strongly
impressed by Richardson’s work as presented in his book. With the benefit of ad-
vances in understanding of atmospheric dynamics made since Richardson’s time,
they were able to devise means of avoiding the problems that had ruined his fore-
cast. The Electronic Numerical Integrator and Computer (ENIAC) integrations are
described in detail. There follows a description of the development of primitive
equation modelling. The chapter concludes with a discussion of general circulation
models and climate modelling.

The state of numerical weather prediction today is summarised in Chapter 11. The
global observational system is reviewed, and methods of objectively analysing the
data are described. The exponential growth in computational power is illustrated by
considering the sequence of computers at the Met Office. To present the state of the
art of Numerical Weather Prediction (NWP), the operations of the European Centre
for Medium-Range Weather Forecasts (ECMWF) are reviewed. There follows a
brief outline of current meso-scale modelling. The implications of chaos theory
for atmospheric predictability are considered, and probabilistic forecasting using
ensemble prediction systems is described.

In Chapter 12 we review Richardson’s understanding of the causes of the failure
of his forecast. His wonderful fantasy about a forecast factory is then re-visited. A
parallel between this fantasy and modern massively parallel computers is drawn.
Finally, we arrive at the conclusion that modern weather prediction systems provide
a spectacular realisation of Richardson’s dream of practical numerical weather
forecasting.

Note added at proof stage

Willis and Hooke (2006) have recently reviewed the work of the great American
meteorologist Cleveland Abbe (1838–1916). In his paper ‘The physical basis of
long-range weather forecasting’, Abbe (1901) proposed a mathematical approach
to forecasting by solution of the hydrodynamic and thermodynamic equations.
Indeed, Abbe had been considering rational physical and mathematical approaches
to forecasting for several decades. In 1905, Abbe acted as host to Bjerknes and
arranged speaking engagements for his visit to the United States.




