Magnums

Counting Sets with Surreal Numbers

Peter Lynch
School of Mathematics \& Statistics
University College Dublin

Recreational Maths Colloquium
MUHNAC, Lisbon 28 January 2019.

Outline

Introduction
Georg Cantor
Surreal Numbers
Magnums: Counting Sets with Surreals
Definitions
Odd and Even Numbers
Some Simple Theorems

Outline

Introduction

Georg Cantor

Surreal Numbers

Magnums: Counting Sets with Surreals

Definitions

Odd and Even Numbers

Some Simple Theorems

Magnums and Subsets of \mathbb{N}

The aim of this work is to define a number

$$
m(A)
$$

for subsets A of \mathbb{N} that corresponds to our intuition about the size or magnitude of A.

We call $m(A)$ the magnum of A.

> Magnum = Magnitude Number

Outline

Introduction

Georg Cantor
Surreal Numbers

Magnums：Counting Sets with Surreals
Definitions

Odd and Even Numbers

Some Simple Theorems

Galileo Galilei (1564-1642)

Every number n can be matched with its square n^{2}.

In a sense, there are
as many squares as whole numbers.

Georg Cantor (1845-1918)

Cantor discovered many remarkable properties of infinite sets.

Georg Cantor (1845-1918)

- Invented Set Theory.
- One-to-one Correspondence.
- Infinite and Well-ordered Sets.
- Cardinals and Ordinals.
> Proved $\operatorname{card}(\mathbb{Q})=\operatorname{card}(\mathbb{N})$.
- Proved $\operatorname{card}(\mathbb{R})>\operatorname{card}(\mathbb{N})$.
- Hierarchy of Infinities.

Set Theory: Controversy

Cantor was strongly criticized by

- Henri Poincaré.
- Leopold Kronecker.
> Ludwig Wittgenstein.

Set Theory is a "grave disease" (HP). Cantor is a "corrupter of youth" (LK). "Nonsense; laughable; wrong!" (LW).

Set Theory: A Difficult Birth

Set Theory brought into prominence several paradoxical results.

It was so innovative that many mathematicians could not appreciate its fundamental value and importance.

Gösta Mittag-Leffler was reluctant to publish it in his Acta Mathematica. He said the work was "100 years ahead of its time".

David Hilbert said:
"We shall not be expelled from the paradise that Cantor has created for us."

Equality of Set Size: 1-1 Correspondence

How do we show that two sets are the same size?
For finite sets, this is straightforward counting.

For infinite sets, we must find a 1-1 correspondence.

Infinite Sets

Now we consider sets that are infinite.
We take the natural numbers and the even numbers

$$
\begin{aligned}
& \mathbb{N}=\{1,2,3, \ldots\} \\
& \mathbb{E}=\{2,4,6, \ldots\}
\end{aligned}
$$

By associating each number $n \in \mathbb{N}$ with $2 n \in \mathbb{E}$, we have a perfect 1-to-1 correspondence.

By Cantor's argument, the two sets are the same size:

$$
\operatorname{card}[\mathbb{N}]=\operatorname{card}[\mathbb{E}]
$$

Again,

$$
\operatorname{card}[\mathbb{N}]=\operatorname{card}[\mathbb{E}]
$$

But this is paradoxical: The set of natural numbers contains all the even numbers

$$
\mathbb{E} \subset \mathbb{N}
$$

and also all the odd ones.
In an intuitive sense, \mathbb{N} is larger than \mathbb{E}.

Outline

Introduction

Georg Cantor

Surreal Numbers

Magnums: Counting Sets with Surreals

Definitions

Odd and Even Numbers

Some Simple Theorems

Richard Dedekind (1831-1916)

Irrational Numbers

Richard Dedekind defined irrational numbers by means of cuts of the rational numbers \mathbb{Q}.

For example, $\sqrt{2}$ is defined as (L, R), where

$$
\begin{aligned}
L & =\{\text { All rationals less than } \sqrt{2}\} \\
R & =\{\text { All rationals greater than } \sqrt{2}\}
\end{aligned}
$$

More precisely, and avoiding self-reference,

$$
\begin{aligned}
L & =\left\{x \in \mathbb{Q} \mid x<0 \text { or } x^{2}<2\right\} \\
R & =\left\{x \in \mathbb{Q} \mid x>0 \text { and } x^{2}>2\right\}
\end{aligned}
$$

Irrational Numbers

For each irrational number there is a corresponding cut (L, R).

We can regard the cut as equivalent to the number.

There are rules to manipulate cuts that are equivalent to the arithmetical rules for numbers.

Irrational Numbers

For each irrational number there is a corresponding cut (L, R).

We can regard the cut as equivalent to the number.

There are rules to manipulate cuts that are equivalent to the arithmetical rules for numbers.

The surreal numbers are based upon a dramatic generalization of Dedekind's cuts.

John Conway's ONAG

Donald Knuth＇s Surreal Numbers

Constructing the Surreals

The Surreal numbers \mathbb{S} are constructed inductively.

- Every number x is defined by a pair of sets, the left set and the right set:

$$
x=\{L \mid R\}
$$

- No element of L is greater than or equal to any element of R.
x is the simplest number between L and R.

Constructing the Surreals

We start with 0 , defined as

$$
0=\{\varnothing \mid \varnothing\}=\{\mid\}
$$

Then 1, 2, 3 and so on are defined as

$$
\{0 \mid\}=1 \quad\{1 \mid\}=2 \quad\{2 \mid\}=3
$$

Negative numbers are defined inductively as

$$
-x=\{-R \mid-L\}
$$

so that

$$
\{\mid 0\}=-1 \quad\{\mid-1\}=-2 \quad\{\mid-2\}=-3 \quad \ldots
$$

Constructing the Surreals

Dyadic fractions (of the form $m / 2^{n}$) appear as
$\{0 \mid 1\}=\frac{1}{2} \quad\{1 \mid 2\}=\frac{3}{2} \quad\left\{0 \left\lvert\, \frac{1}{2}\right.\right\}=\frac{1}{4} \quad\left\{\left.\frac{1}{2} \right\rvert\, 1\right\}=\frac{3}{4}$
After an infinite number of stages, all the dyadic fractions have emerged.

At the next stage, all other real numbers appear.
Infinite and infinitesimal numbers also appear.

Surreal Numbers

Figure: Surreal network from 0 to the first infinite number ω.

The First Infinite Number

The first infinite number ω is defined as

$$
\omega=\{0,1,2,3, \ldots \mid\}
$$

We can also introduce

$$
\begin{aligned}
& \qquad \omega+1=\{0,1,2, \ldots \omega \mid\}, \quad \omega-1=\{0,1,2, \ldots \mid \omega\} \\
& 2 \omega=\{0,1,2, \ldots \omega, \omega+1, \ldots \mid\} \quad \frac{1}{2} \omega=\{0,1,2, \ldots \mid \omega, \omega-1, \ldots\} \\
& \text { and many other more exotic numbers. }
\end{aligned}
$$

Figure: Network of early infinite and infinitesimal numbers.

Manipulating Infinite Numbers

The surreal numbers behave beautifully: The class \mathbb{S} is a totally ordered field.

We can define quantities like

$$
\omega^{2} \quad \omega^{\omega} \quad \sqrt{\omega} \quad \log \omega
$$

and many even stranger numbers.

The First Infinitesimal Number $\epsilon=1 / \omega$

On day ω, the number $\epsilon=1 / \omega$ appears.
It can be shown that

$$
\frac{\omega}{\omega}=\omega \times \epsilon=1
$$

Since we are interested in subsets of \mathbb{N}, we will consider surreals less than or equal to ω.

Books about Surreal Numbers

UCD
DUBLIN
(1)

Dac

Outline

Introduction

Georg Cantor

Surreal Numbers

Magnums: Counting Sets with Surreals

Definitions

Odd and Even Numbers

Some Simple Theorems

ABSTRACT

Cardinality is a blunt instrument:
The natural numbers, rationals and algebraic numbers all have the same cardinality.

So, \aleph_{0} fails to discriminate between them.
Our aim is to define a number $m(A)$ for subsets A of \mathbb{N} that corresponds to our intuition about the size or magnitude of A.

We define $m(A)$ as a surreal number.

Desiderata

- For a finite subset A we have $m(A)=\operatorname{card}(A)$
- For a proper subset A of B we have

$$
A \varsubsetneqq B \Longrightarrow m(A)<m(B)
$$

- For the odd and even non-negative numbers

$$
\begin{aligned}
& \mathbb{N}_{O}=\{1,3,5, \ldots\} \quad \Longrightarrow \quad m\left(\mathbb{N}_{O}\right) \approx \frac{1}{2} m(\mathbb{N}) \\
& \mathbb{N}_{E}=\{2,4,6, \ldots\} \quad \Longrightarrow \quad m\left(\mathbb{N}_{E}\right) \approx \frac{1}{2} m(\mathbb{N})
\end{aligned}
$$

Difficulties with Limits

In ONAG (page 43), Conway states that we cannot assume the limit of the sequence $(1,2,3, \ldots)$ is ω.

We cannot conclude that $m(\mathbb{N})=\omega$. Therefore, we will write $m(\mathbb{N})=\varpi$.

The precise specification of ω as a surreal number in the form $\{L \mid R\}$ remains to be done.

Euler's Number

The usual definition of Euler's number is

$$
e=\lim _{n \rightarrow \infty} f(n), \quad \text { where } \quad f(n)=\left(1+\frac{1}{n}\right)^{n}
$$

Evaluating $f(n)$ for $n=\varpi$ we obtain a surreal number

$$
e_{\varpi}=f(\varpi)=\left(1+\frac{1}{\varpi}\right)^{\varpi}
$$

which is not equal to e.

Extending Functions from \mathbb{R} to \mathbb{S}

The extension of many functions from \mathbb{R} to \mathbb{S} can be done without difficulty.

$$
f: x \mapsto x^{2}, x \in \mathbb{R} \quad \text { to } \quad f: x \mapsto x^{2}, x \in \mathbb{S}
$$

so we have $f(\varpi)=\varpi^{2}$ and so on.
This is fine for polynomials, rational functions, the logarithm and trigonometric functions.

Some Examples

$$
f(n)=\left(\frac{n-1}{n}\right)=1-\frac{1}{n} \quad \text { so } \quad f(\varpi)=1-\frac{1}{\varpi}
$$

The value of $f(\varpi)$ may not be defined in all cases:

$$
f(n)=(-1)^{n} \quad \text { extends to } \quad f(\varpi)=(-1)^{\varpi}
$$

and it is not clear what the value of this should be.
We introduce the notation

$$
\Lambda \equiv(-1)^{\infty}
$$

without (yet) defining the value to be assigned to \wedge.

Numerical Examples

For the real numbers, $0.999 \cdots=1$.
For the surreals, this is not the case:

$$
f(n)=\underbrace{0.999 \ldots 9}_{n \text { terms }}=1-10^{-n}, \quad \text { so } f(\varpi)=1-10^{-\varpi}<1 \text {. }
$$

Many more examples could be given, such as

$$
\begin{aligned}
0 . \overline{142857} & =\frac{142,857}{1,000,000}\left[1+10^{-6}+10^{-12}+\ldots\right] \\
& =\frac{1}{7}\left[1-10^{-6 w}\right] .
\end{aligned}
$$

Outline

Introduction

Georg Cantor

Surreal Numbers

Magnums: Counting Sets with Surreals

Definitions

Odd and Even Numbers

Some Simple Theorems

Counting Sequence

We define the characteristic function of $A \subset \mathbb{N}$ by

$$
\chi_{A}(n)= \begin{cases}1, & n \in A \\ 0, & \text { otherwise }\end{cases}
$$

We assume that $a_{1}<a_{2}<a_{3}<\cdots<a_{n}<\ldots$.
Definition
We define the counting sequence κ_{A} to be the sequence of partial sums of the sequence $\left\{\chi_{A}(n)\right\}$:

$$
\kappa_{A}(n)=\sum_{k=1}^{n} \chi_{A}(k)
$$

Clearly, $\kappa(n) \leq n$ and $\kappa_{A}(n)$ counts the number of elements of A less than or equal to n.

The Magnum of A

Definition
If $\kappa_{A}(x)$ is defined for $x=\varpi$, the magnum of $A \subset \mathbb{N}$ is

$$
m(A)=\kappa_{A}(\varpi)
$$

Note that the magnum is a surreal number.
If A is a finite set, $m(A)$ is just $\operatorname{card}(A)$.

Principal Part of $m(A)$

We denote by $M(A)$ the infinite part of $m(A)$.
We write $m(A)$ in its normal form. Then

$$
m(A)=\underbrace{M(A)}_{\text {Infinite }}+\underbrace{(m(A)-M(A))}_{\text {Finite }}
$$

This can be done in a canonical manner.
To compute the magnum, we write

$$
\kappa_{A}(n)=\pi_{A}(n)+\left(\kappa_{A}(n)-\pi_{A}(n)\right)
$$

Then $M(A)=\pi_{A}(\varpi)$ (if this exists).

A Set without a Magnum

Let U be the set of natural numbers with an odd number of decimal digits.
$\chi_{u}(n)=\left\{\begin{array}{l}1 \text { if } n \text { has an odd number of decimal digits }, \\ 0 \text { if } n \text { has an even number of decimal digits . }\end{array}\right.$
If the density of U is $\rho_{U}(N)=\kappa_{U}(n) / N$ then

$$
\begin{aligned}
\rho_{U}(1) & =0.0 \\
\rho_{U}(10) & =0.9 \\
\rho_{U}(100) & =0.09 \\
\rho_{U}(1000) & =0.909 \\
\rho_{U}(10000) & =0.0909
\end{aligned}
$$

Outline

Introduction

Georg Cantor

Surreal Numbers

Magnums: Counting Sets with Surreals

Definitions

Odd and Even Numbers

Some Simple Theorems

Intuition about Sizes

How do we 'know' that \mathbb{N}_{E} is half the size of \mathbb{N}.
We do not. But we have a 'feeling' about it.
Why?
For any large but finite N, about half the numbers less than N are odd and about half are even.

The Odd Numbers

The characteristic sequence for the odd numbers is

$$
\chi_{o}(n)=(1,0,1,0,1,0, \ldots)
$$

and the counting sequence for the odd numbers is

$$
\kappa_{O}(n)=(1,1,2,2,3,3, \ldots)
$$

We can write $\chi_{0}(n)$ and $\kappa_{0}(n)$ as

$$
\chi_{0}(n)=\frac{1-(-1)^{n}}{2} \quad \text { and } \quad \kappa_{O}(n)=\frac{1}{2}\left[n+\frac{1-(-1)^{n}}{2}\right]
$$

Evaluating the counting function at ϖ we get

$$
m\left(\mathbb{N}_{O}\right)=\kappa_{O}(\varpi)=\frac{\varpi}{2}+\frac{1}{4}\left[1-(-1)^{\varpi}\right]=\frac{\varpi}{2}+\frac{1}{4}-\frac{\Lambda}{4} .
$$

The Even Numbers

We repeat this procedure for the even numbers.

$$
\begin{aligned}
& \chi_{E}(n)=(0,1,0,1,0,1, \ldots) \\
& \kappa_{E}(n)=(0,1,1,2,2,3, \ldots)
\end{aligned}
$$

We can write these sequences as

$$
\chi_{E}(n)=\frac{1+(-1)^{n}}{2} \quad \text { and } \quad \kappa_{E}(n)=\frac{1}{2}\left[n-\frac{1-(-1)^{n}}{2}\right]
$$

Evaluating the counting function at ϖ we get

$$
m\left(\mathbb{N}_{E}\right)=\kappa_{E}(\varpi)=\frac{\varpi}{2}-\frac{1}{4}\left[1-(-1)^{\varpi}\right]=\frac{\varpi}{2}-\frac{1}{4}+\frac{\Lambda}{4} .
$$

All Together

$$
\begin{aligned}
& m\left(\mathbb{N}_{O}\right)=\frac{\varpi}{2}+\frac{1}{4}-\frac{\Lambda}{4} \\
& m\left(\mathbb{N}_{E}\right)=\frac{\varpi}{2}-\frac{1}{4}+\frac{\Lambda}{4}
\end{aligned}
$$

Assuming ϖ is an 'even number' $\Lambda=(-1)^{\varpi}=1$ so

$$
\begin{aligned}
& m\left(\mathbb{N}_{O}\right)=\frac{\varpi}{2} \\
& m\left(\mathbb{N}_{E}\right)=\frac{\varpi}{2}
\end{aligned}
$$

Since \mathbb{N}_{E} and \mathbb{N}_{O} are disjoint and $\mathbb{N}_{E} \cup \mathbb{N}_{O}=\mathbb{N}$, it is refreshing to observe that

$$
m\left(\mathbb{N}_{O}\right)+m\left(\mathbb{N}_{E}\right)=\varpi=m(\mathbb{N})
$$

Outline

Introduction

Georg Cantor

Surreal Numbers

Magnums: Counting Sets with Surreals

Definitions

Odd and Even Numbers

Some Simple Theorems

Zeros at the Beginning

Theorem: Suppose the set A has magnum $m(A)$. Then the shifted sequence B defined by

$$
\chi_{B}(1)=0, \quad \chi_{B}(n)=\chi_{A}(n-1), n>1
$$

has magnum

$$
m(B)=m(A)-\chi_{A}(\varpi) .
$$

Corollary: If the sequence B is shifted from A by k places, we have

$$
m(B)=m(A)-\sum_{j=1}^{k} \chi_{A}(\varpi+1-j)
$$

General Arithmetic Sequence

Theorem: The magnum of the arithmetic sequence $A=\{a, a+d, a+2 d, a+3 d, \ldots\}$ is

$$
m(s)=\frac{\varpi}{d}+\left(\frac{d+1-2 a}{2 d}\right)
$$

Squares of Natural Numbers

We now consider the set of squares of natural numbers $S=\{1,4,9,16, \ldots\}$. The characteristic sequence is

$$
\chi_{s}(n)=(1, \underbrace{0,0}_{2 \text { zeros }} ; 1, \underbrace{0,0,0,0}_{4 \text { zeros }} ; 1, \underbrace{0,0,0,0,0,0}_{6 \text { zeros }} ; 1, \ldots)
$$

and the sequence of partial sums of this sequence is

$$
\kappa(n)=(\underbrace{1,1,1}_{3 \text { terms }}, \underbrace{2,2,2,2,2}_{5 \text { terms }}, \underbrace{3,3,3,3,3,3,3}_{7 \text { terms }}, \ldots)
$$

Theorem: The magnum of the sequence of squares is

$$
m(S)=\sqrt{\omega}-\frac{1}{2}+\text { HOT } .
$$

General Geometric Sequence

We now consider the general geometric sequence

$$
G=\left\{\beta r, \beta r^{2}, \beta r^{3}, \ldots\right\}
$$

Theorem: The magnum of the geometric sequence $G=\left\{\beta r, \beta r^{2}, \beta r^{3} \ldots\right\}$ is

$$
m(G)=\frac{\ln \varpi}{\ln r}-\left(\frac{\ln \beta}{\ln r}+\frac{1}{2}\right) .
$$

Thank you

