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Magnums and Subsets of N

The aim of this work is to define a number

m(A)

for subsets A of N that corresponds to our
intuition about the size or magnitude of A.

We call m(A) the magnum of A.

Magnum = Magnitude Number
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Galileo Galilei (1564–1642)

Every number n can be
matched with its square n2.

In a sense, there are
as many squares
as whole numbers.
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Georg Cantor (1845–1918)

Cantor discovered many remarkable
properties of infinite sets.
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Georg Cantor (1845–1918)

I Invented Set Theory.
I One-to-one Correspondence.
I Infinite and Well-ordered Sets.
I Cardinals and Ordinals.
I Proved card(Q) = card(N).
I Proved card(R) > card(N).
I Hierarchy of Infinities.
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Set Theory: Controversy

Cantor was strongly criticized by
I Henri Poincaré.
I Leopold Kronecker.
I Ludwig Wittgenstein.

Set Theory is a “grave disease” (HP).
Cantor is a “corrupter of youth” (LK).
“Nonsense; laughable; wrong!” (LW).
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Set Theory: A Difficult Birth

Set Theory brought into prominence
several paradoxical results.

It was so innovative that many mathematicians could
not appreciate its fundamental value and importance.

Gösta Mittag-Leffler was reluctant to publish it
in his Acta Mathematica. He said the work was
“100 years ahead of its time”.

David Hilbert said:
“We shall not be expelled from the
paradise that Cantor has created for us.”
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Equality of Set Size: 1-1 Correspondence

How do we show that two sets are the same size?

For finite sets, this is straightforward counting.

For infinite sets, we must find a 1-1 correspondence.
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Infinite Sets
Now we consider sets that are infinite.

We take the natural numbers and the even numbers

N = {1,2,3, ...}

E = {2,4,6, ...}

By associating each number n ∈ N with 2n ∈ E,
we have a perfect 1-to-1 correspondence.

By Cantor’s argument, the two sets are the same size:

card[N] = card[E]
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Again,
card[N] = card[E]

But this is paradoxical: The set of natural numbers
contains all the even numbers

E ⊂ N

and also all the odd ones.

In an intuitive sense, N is larger than E.
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Richard Dedekind (1831–1916)
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Irrational Numbers

Richard Dedekind defined irrational numbers
by means of cuts of the rational numbers Q.

For example,
√

2 is defined as (L,R), where

L = {All rationals less than
√

2}
R = {All rationals greater than

√
2}

More precisely, and avoiding self-reference,

L = {x ∈ Q | x < 0 or x2 < 2}
R = {x ∈ Q | x > 0 and x2 > 2}
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Irrational Numbers

For each irrational number there
is a corresponding cut (L,R).

We can regard the cut as
equivalent to the number.

There are rules to manipulate
cuts that are equivalent to the
arithmetical rules for numbers.

The surreal numbers are based upon a
dramatic generalization of Dedekind’s cuts.
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John Conway’s ONAG
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Donald Knuth’s Surreal Numbers
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Constructing the Surreals

The Surreal numbers S are constructed inductively.

I Every number x is defined by a pair
of sets, the left set and the right set:

x = { L | R }

I No element of L is greater than
or equal to any element of R.

x is the simplest number between L and R.
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Constructing the Surreals
We start with 0, defined as

0 = {∅ | ∅} = { | }

Then 1, 2, 3 and so on are defined as

{ 0 | } = 1 { 1 | } = 2 { 2 | } = 3 . . .

Negative numbers are defined inductively as

−x = {−R | − L }

so that

{ | 0 } = −1 { | − 1 } = −2 { | − 2 } = −3 . . .
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Constructing the Surreals

Dyadic fractions (of the form m/2n) appear as

{ 0 | 1 } = 1
2 { 1 | 2 } = 3

2 { 0 | 1
2 } = 1

4 { 1
2 | 1 } = 3

4 . . .

After an infinite number of stages,
all the dyadic fractions have emerged.

At the next stage, all other real numbers appear.

Infinite and infinitesimal numbers also appear.
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Surreal Numbers

Figure: Surreal network from 0 to the first infinite number ω.
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The First Infinite Number

The first infinite number ω is defined as

ω = {0,1,2,3, . . . | }

We can also introduce

ω + 1 = {0,1,2, . . . ω| } , ω − 1 = {0,1,2, . . . |ω}

2ω = {0,1,2, . . . ω, ω+1, . . . | } 1
2ω = {0,1,2, . . . |ω, ω−1, . . . }

and many other more exotic numbers.
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Figure: Network of early infinite and infinitesimal numbers.
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Manipulating Infinite Numbers

The surreal numbers behave beautifully:
The class S is a totally ordered field.

We can define quantities like

ω2 ωω
√
ω logω

and many even stranger numbers.
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The First Infinitesimal Number ε = 1/ω

On day ω, the number ε = 1/ω appears.

It can be shown that
ω

ω
= ω × ε = 1

Since we are interested in subsets of N, we will
consider surreals less than or equal to ω.
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Books about Surreal Numbers
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ABSTRACT

Cardinality is a blunt instrument:
The natural numbers, rationals and algebraic
numbers all have the same cardinality.

So, ℵ0 fails to discriminate between them.

Our aim is to define a number m(A) for subsets
A of N that corresponds to our intuition about
the size or magnitude of A.

We define m(A) as a surreal number.
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Desiderata

I For a finite subset A we have m(A) = card(A)

I For a proper subset A of B we have

A $ B =⇒ m(A) < m(B) .

I For the odd and even non-negative numbers

NO = {1,3,5, . . . } =⇒ m(NO) ≈ 1
2m(N)

NE = {2,4,6, . . . } =⇒ m(NE ) ≈ 1
2m(N)
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Difficulties with Limits

In ONAG (page 43), Conway states that we cannot
assume the limit of the sequence (1,2,3, . . . ) is ω.

We cannot conclude that m(N) = ω.
Therefore, we will write m(N) = $.

The precise specification of $ as a surreal
number in the form { L | R } remains to be done.
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Euler’s Number

The usual definition of Euler’s number is

e = lim
n→∞

f (n) , where f (n) =

(
1 +

1
n

)n

.

Evaluating f (n) for n = $ we obtain a surreal number

e$ = f ($) =

(
1 +

1
$

)$

which is not equal to e.
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Extending Functions from R to S

The extension of many functions from R to S can be
done without difficulty.

f : x 7→ x2 , x ∈ R to f : x 7→ x2 , x ∈ S

so we have f ($) = $2 and so on.

This is fine for polynomials, rational functions,
the logarithm and trigonometric functions.
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Some Examples

f (n) =

(
n − 1

n

)
= 1− 1

n
so f ($) = 1− 1

$

The value of f ($) may not be defined in all cases:

f (n) = (−1)n extends to f ($) = (−1)$

and it is not clear what the value of this should be.

We introduce the notation

Λ ≡ (−1)$

without (yet) defining the value to be assigned to Λ.
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Numerical Examples

For the real numbers, 0.999 · · · = 1.
For the surreals, this is not the case:

f (n) = 0.999 . . . 9︸ ︷︷ ︸
n terms

= 1−10−n , so f ($) = 1−10−$ < 1 .

Many more examples could be given, such as

0.142857 =
142,857

1,000,000
[
1 + 10−6 + 10−12 + . . .

]
=

1
7
[
1− 10−6$] .
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Counting Sequence
We define the characteristic function of A ⊂ N by

χA(n) =

{
1, n ∈ A
0, otherwise

We assume that a1 < a2 < a3 < · · · < an < . . . .

Definition

We define the counting sequence κA to be the sequence
of partial sums of the sequence {χA(n)}:

κA(n) =
n∑

k=1

χA(k)

Clearly, κ(n) ≤ n and κA(n) counts the number
of elements of A less than or equal to n.
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The Magnum of A

Definition

If κA(x) is defined for x = $, the magnum of A ⊂ N is

m(A) = κA($)

Note that the magnum is a surreal number.

If A is a finite set, m(A) is just card(A).
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Principal Part of m(A)

We denote by M(A) the infinite part of m(A).

We write m(A) in its normal form. Then

m(A) = M(A)︸ ︷︷ ︸
Infinite

+
(
m(A)−M(A)

)︸ ︷︷ ︸
Finite

This can be done in a canonical manner.

To compute the magnum, we write

κA(n) = πA(n) +
(
κA(n)− πA(n)

)
Then M(A) = πA($) (if this exists).
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A Set without a Magnum
Let U be the set of natural numbers
with an odd number of decimal digits.

χU(n) =

{
1 if n has an odd number of decimal digits ,
0 if n has an even number of decimal digits .

If the density of U is ρU(N) = κU(n)/N then

ρU(1) = 0.0
ρU(10) = 0.9
ρU(100) = 0.09
ρU(1000) = 0.909
ρU(10000) = 0.0909
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Intuition about Sizes

How do we ‘know’ that NE is half the size of N.

We do not. But we have a ‘feeling’ about it.

Why?

For any large but finite N, about half the numbers
less than N are odd and about half are even.
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The Odd Numbers
The characteristic sequence for the odd numbers is

χO(n) = (1,0,1,0,1,0, . . . )

and the counting sequence for the odd numbers is

κO(n) = (1,1,2,2,3,3, . . . )

We can write χO(n) and κO(n) as

χO(n) =
1− (−1)n

2
and κO(n) = 1

2

[
n +

1− (−1)n

2

]
Evaluating the counting function at $ we get

m(NO) = κO($) =
$

2
+

1
4

[1− (−1)$] =
$

2
+

1
4
− Λ

4
.
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The Even Numbers
We repeat this procedure for the even numbers.

χE (n) = (0,1,0,1,0,1, . . . )

κE (n) = (0,1,1,2,2,3, . . . )

We can write these sequences as

χE (n) =
1 + (−1)n

2
and κE (n) = 1

2

[
n − 1− (−1)n

2

]
Evaluating the counting function at $ we get

m(NE ) = κE ($) =
$

2
− 1

4
[1− (−1)$] =

$

2
− 1

4
+

Λ

4
.
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All Together

m(NO) =
$

2
+

1
4
− Λ

4

m(NE ) =
$

2
− 1

4
+

Λ

4

Assuming $ is an ‘even number’ Λ = (−1)$ = 1 so

m(NO) =
$

2
m(NE ) =

$

2

Since NE and NO are disjoint and NE ·∪ NO = N,
it is refreshing to observe that

m(NO) + m(NE ) = $ = m(N) .
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Zeros at the Beginning
Theorem: Suppose the set A has magnum m(A).
Then the shifted sequence B defined by

χB(1) = 0 , χB(n) = χA(n − 1) , n > 1

has magnum

m(B) = m(A)− χA($) .

Corollary: If the sequence B is shifted from A
by k places, we have

m(B) = m(A)−
k∑

j=1

χA($ + 1− j)
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General Arithmetic Sequence

Theorem: The magnum of the arithmetic sequence
A = {a,a + d ,a + 2d ,a + 3d , . . . } is

m(s) =
$

d
+

(
d + 1− 2a

2d

)
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Squares of Natural Numbers
We now consider the set of squares of natural
numbers S = {1,4,9,16, . . . }. The characteristic
sequence is

χS(n) = (1, 0,0︸︷︷︸
2 zeros

; 1,0,0,0,0︸ ︷︷ ︸
4 zeros

; 1,0,0,0,0,0,0︸ ︷︷ ︸
6 zeros

; 1, . . . )

and the sequence of partial sums of this sequence is

κ(n) = (1,1,1︸ ︷︷ ︸
3 terms

,2,2,2,2,2︸ ︷︷ ︸
5 terms

,3,3,3,3,3,3,3︸ ︷︷ ︸
7 terms

, . . . )

Theorem: The magnum of the sequence of squares is

m(S) =
√
$ − 1

2 + HOT .
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General Geometric Sequence

We now consider the general geometric sequence

G = {βr , βr 2, βr 3, . . . }

Theorem: The magnum of the geometric sequence
G = {βr , βr 2, βr 3 . . . } is

m(G) =
ln$
ln r
−
(

ln β
ln r

+
1
2

)
.
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Thank you
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