ON SUMS OF THREE SQUARES
S.K.K. CHOI, A.V. KUMCHEV, AND R. OSBURN

AsstrAcT. Letrz(n) be the number of representations of a positive integera sum of three squares
of integers. We give two distinct proofs of a conjecture of Wagon concerning the asymptotic value
of the mean square 0%(n).

1. INTRODUCTION

Problems concerning sums of three squares have a rich history. It is a classical result of Gauss
that

C 2 y2 a2
n=X{+ X+ X5

has a solution in integers if and onlynfis not of the form 4(8k + 7) with a, k € Z. Letrz(n)
be the number of representationshads a sum of three squares (counting signs and order). It was
conjectured by Hardy and proved by Bateman [1] that

(1) r3(n) = 4rn*?S5(n),

where the singular serie3;(n) is given by (16) withQ = oo.

While in principle this exact formula can be used to answer almost any question concerning
rs(n), the ensuing calculations can be tricky because of the slow convergence of the singular series
S3(n). Thus, one often sidesteps (1) and attacks problems invoty{ng directly. For example,
concerning the mean value Bf(n), one can adapt the method of solution of the circle problem to
obtain the following

Z ra(n) ~ gﬂ'XS/Z.

n<x

Moreover, such a direct approach enables us to bound the error term in this asymptotic formula.
An application of a result of Landau [9, pp. 200-218] yields

> ra(n) = %17rx3/2 +O(x3%e)

n<x

for all e > 0, and subsequent improvements on the error term have been obtained by Vinogradov
[19], Chamizo and Iwaniec [3], and Heath-Brown [6].

In this note we consider the mean squares@f). Crandall and Wagon [4] (see also [2]) conjec-
tured the following asymptotic formula.
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Theorem. Let r3(n) be the number of representations of a positive integer n as a sum of three
squares of integers. Then

8r*
(2) %rg(n)z ~ 3 3)x2.

Apparently, at the time they proposed this conjecture Crandall and Wagon were unaware of the
earlier work of Miller [11, 12]. He obtained a more general result which, in a special case, gives

> ra(n)? = BX + O(x*),

n<x

whereB is a constant. However, since iniMler's work B arises as a specialization of a more
general (and more complicated) quantity, it is not immediately clearBhat 2%7#‘/4,’(3). The
purpose of this paper is to give two distinct proofs of this fact: one that eval8ateshe form
given by Miller and a direct proof using the Hardy—Littlewood circle method.

2. A DIRECT PROOF. THE CIRCLE METHOD

Ouir first proof exploits the observation that the left side of (2) counts solutions of the equation

MM+ M5+ MG = G + 1M + 7

in integersm, ..., mg with |m;| < X. This is exactly the kind of problem that the circle method was
designed for.
SetN = /x and define

f@) =) e(an?),

m<N

wheree(z) = 2. Then for an integen < x, the number*(n) of representations of as a sum of
three squares gfositiveintegers is

r<(n) = /01 f(@)%e(—an) da.

Sincerz(n) = 8r*(n) + O(r2(n)), wherer,(n) is the number of representationsrofs a sum of two
squares, we have

(3) > ra(n)? =64 re(n)? + O(x**).

n<x n<x

Therefore, it stfices to evaluate the mean square*¢n). Let
P=N/4 and Q=N'2
We introduce the sets
M(q,a) = {@e [PN%1+PN?| :|ge—a < PN?}
and
M=) J Maa. m=[PNZ1+PN?\ M

g<Q l<ax<q
(ag)=1



We have

(4) r(n) = ( /B + /m ) f(@)%e(—an) da

=r*(n, M) + r*(n, m), say.
We now proceed to approximate the mean square @) by that of r*(n,9). By (4) and
Cauchy’s inequality,
(5) Z r’(n)? = Z r*(n, M)* + O((Z122) "% + o),
n<x n<x

where

Ty=) I =) Irnm)P

n<x n<x
(6) |2 :Z < / | (@) da.
n<x m

By Dirichlet’s theorem of diophantine approximation, we can write any #aeata = a/q + S,
where

By Bessel’s inequality,
2

/I f(@)%e(—an) da

n

1<q<N°P?  (@g=1 |8 <P/@N).
Whena € m, we haveg > Q, and hence Weyl's inequality (see Vaughan [18, Lemma 2.4]) yields
(7) If (@) < N"<(qh+ N1+ gN2) "2 « NQ P2,

Furthermore, we have

1
(8) / |f(@)* dor < N?¥,
0
because the integral on the right equals the number of solutions of

Mg + M5 = Mg + N
in integersmy,...,my < N. For each choice of, andm,, this equation hask N¢ solutions.
Combining (6)—(8) and replacingby €/3, we obtain

9) T, < N*<Q™.
Furthermore, another appeal to Bessel's inequality and appeals to (8) and to the trivial estimate
|f(a)l < Nyield

1
(10) T, < / |f (@) da < / |f(@)® da < N*.
M 0
We now define a functiori* on 9t by setting
f*(@) = q1S(g, a)v(e —a/q)  fora € M(qg,a) C M;

here

S(@.a) = ) e(arf/g), V()= %Z mY/2e(Bm).

1<h<q m<x



Our next goal is to approximate the mean squane (@t 9t) by the mean square of the integral

R*(n) :/ *(a)*e(—an) da.
Similarly to (5),
(11) D orrnmy? =) T R()? + O(Zs + (2123)"?),

n<x n<x

where

(12) 23 = Z

n<x

2
fa3—f*a32d01
</m‘() ()} ’

/yz [f(a/)3 - f*(oz)ﬂ e(—an) da

after yet another appeal to Bessel’s inequality. By [18, Theorem 4.1], wteii(q, a),
f(@) = f*(a) + O(q¥*).
Thus,
/ |f(a)® - F(2)*]” dor < g% / (1@ + ¢2*%) da,
Ni(g.a) g

M(g.a)
whence

1
/ ‘f(a)3 - f*(a)3}2da < Q1+26/ |f(@)]* d + PQHON2.
m 0

Bounding the last integral using (8) and substituting the ensuing estimate into (12), we obtain

(13) 23 K QN2+2E + PQ4N_2+3E < QN2+26.

Combining (5), (9)-(11), and (13), we deduce that

(14) Z r*(n)Z — Z R*(n)Z + O(N4+EQ—1/2 + N3+EQ1/2).
n<x n<x

We now proceed to evaluate the main termin (14). We have

/ﬂ P e do=q7S@ae-an) | o
M(g.a

M(g,0)
SO
R(n) =) A@nl(a,n),
a<Q
where
A@n = > q°S(a.a’(-an/g), I(gn) = / v(B)*e(—Bn) dB.

1<a<q 0(a.0)

(ag)=1
Hence,
(15) D ORM? =) 1(n)°Ss(n, Q) + O((Z4Zs)"? + Xs),
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where

1/2
(16) S Q=Y Aan. 1= [ BRCESELE
4=Q -
2 2
5=y l(n)Z(Z A, n)|) =Y (Z IA@ (M) - 1(a n»|) |
n<x 9<Q n<x 0<Q
By [18, Theorem 2.3] and [18, Theorem 4.2],
(17) I(n) = [(3/2) vn + O(1) = % Vn+0(1), A@n <q¥2
Furthermore, sincé(q, n) is multiplicative inqg, [18, Lemma 4.7] yields
(18) > IA@ ! < [T 2+ 1A 0l + AP )l + )
g<Q p<Q
< I (@ +alp.mp?+3c:p™) < (O,
p<Q
wherec, > 0 is an absolute constant. In particular, we have
(19) ¥, <« N+

We now turn to the estimation @fs. By Cauchy'’s inequality and the second bound in (17),
%5 < (Iog Q) > ) [i(n) - I(n. )P
n<x g<Q
Another application of Bessel's inequality gives
1/2

S -1mals [ e

n<x P/gN?

Using [18, Lemma 2.8] to estimate the last integral, we deduce that

s < logQ> (NP2 + 1) < N*Q**.

4<Q
Substituting this inequality and (19) into (15), we conclude that
(20) Y RO =) 1(*Ss(n Q%+ O(N*“Q%2).
n<x n<x

We then use (17) and (18) to replade) on the right side of (20) by v/n. We get

> 1(n)*Ss(n. Q)% = ’{—2 > nGs(n. Q)% + O(N*).

n<x n<x

Together with (14) and (20), this leads to the asymptotic formula

2
(21) Z r*(n)Z — I_6 Z n63(n’ Q)Z + O(N4+EQ—1/2 + N3+EQ3/2).
n<x n<x
5



Finally, we evaluate the sum on the right side of (21). On observing@bf@t, Q) is in fact a
real number, we have

DG = > Y ) (Gh)S(th31) S0k —a2)® Y | e((an/ah — @2/L)N).

n<t O1,02<Q 1l<ay<q; l<ap<q n<t
(a1,01)=1 (a2,02)=1

As the sum oven equalst + O(1) whena; = a, andq; = ¢, andO(qg,0,) otherwise, we get

Y S QP =t > qiS(a.a)°+O(}),

n<t 0<Q 1<a<q
(ag)=1
where
o= Y qiS(a.a)f < Q¥
g<Q 1l<a<q
(a.g)=1
We find that
> 33N QP?=Bit+0(tQ* + Q°),
n<t
with

=Y > a%s@al

g=1 l<a<q
(ag=1

Thus, by partial summation,
> n&s(n, Q)% = (B1/2)x* + O(¥*Q ™ + xQ).
n<x

Combining this asymptotic formula with (21) we deduce that

> oy = —B X2 + O(x15/8).

n<x
Recalling (3), we see that (2) will follow if we show that
81(2)
77(3)
This, however, follows easily from the well-known formula (see§7.5])
a4 ifg=1(mod 2)

(22) IS(g,a) = ¢ V29 if q=0 (mod 4)
0 if =2 (mod 4)

1=

Indeed, (22) yields

- 8£(2)
q;dd 0 = 7,5

where the last step uses the Euler producf(ef. This completes the proof of our theorem.
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3. Sconp ProOOF OF THEOREM

Rankin [13] and Selberg [17] independently introduced an important method which allows one
to study the analytic behavior of the Dirichlet series

— a(n)

>
n=1

wherea(n) are Fourier cogicients of a holomorphic cusp form for some congruence subgroup of
I' = SLy(Z). Originally the method was for holomorphic cusp forms. Zagier [20] extended the
method to cover forms that are not cuspidal and may not decay rapidly at infiriitjerNiL1, 12]
considered the case wheaén) is the Fourier coficient of non-holomorphic cusp or non-cusp
form of real weight with respect to a Fuchsian group of the first kind. It is this last approach we
wish to discuss. Note that if we apply a Tauberian theorem to the above Dirichlet series, we then
gain information on the asymptotic behavior of the partial sum

> a(n).

n<x
We now discuss Nller’s elegant work. For details regarding discontinuous groups and auto-
morphic forms, see [8, 10, 11, 14, 15, 16]. [t {z€ C : 3(2) > 0} denote the upper half plane
andG = S (2, R) the special linear group of all}22 matrices with determinant G acts onH by

R az+b
92= 2+ d
forg = (i 3) € G. We writey = y(2) = 3(2). Thus we have
_ Y
¥(g2 = lcz+ d|?’
Let dxdydenote the Lebesgue measure in the plane. Then the measure
dxdy
du = V2

is invariant under the action @ on H. A discrete subgroup of G is called aFuchsian group
of the first kindif its fundamental domaim\H has finite volume. Lel’ be a Fuchsian group of
the first kind containing:l wherel is the identity matrix. LetF (T, v, k, 1) denote the space of
(non-holomorphic) automorphic forms of real weid@teigenvaluel = %1 - p% R(p) = 0, and
multiplier systemy. Forke R, ge SL(2,R) andf : H — C, we define the stroke operatpiby

cz+d\ "
(flka)(2 i=( ) f(92

|cz+ d|

whereg = (2 3) e I'. The transformation law fof € #(I', v, Kk, 1) is then

(flka)(@ = x(9)f(2)
for all g € I'. Automorphic formsf € F (T, x, k, 1) have a Fourier expansion at every cusp T,
namely

Acoy) + D BenWisgn s, (4rIn + s ly)e((n + 1)),
n+0
wherey, is the cusp parameter aiag, are the Fourier cdicients of f at«. The functionsi,,
are Whittaker functions (see [1§3]), Aco(y) = 0if ux # 0 and
7



Acaly) = { VT BV it = 0,p % 0.
W=\ oy + by 2logy if 1, = 0,p = 0.

An automorphic formf is called a cusp form i o = b, o = O for all cuspsc of I'. Now consider
the Dirichlet series

S(fg=y Pl
’ — (N+u)°
This series is absolutely convergent B(s) > 2R (o) and has been shown [12] to have meromor-
phic continuation in the entire complex plane. In what follows, we will only be interested in the
casef is not a cusp form. Iff is not a cusp form an®R (o) > 0, thenS,(f, s) has a simple pole at
s = 2R (p) with residue

(23) Bf) = _tes S(f.9) = (4n " (k/2,0) ) el + 2R()Iaol,

ek

whereK denotes a complete set Bfinequivalent cuspsg,. (1 + 2R (p)) > 0 andb*(‘g,p) > 0if

o+ % + g IS a non-negative integer. For the definition of the functippsandb*, see Lemma 3.6

and (69) in [12]. This result (23) and a Tauberian argument then provide the asymptotic behaviour
of the summatory function

> laclPin+ "

n<x

Precisely, we have (see [11, Theorem 2.1] or [12, Theorem 5.2]) that

Xr+s
+

< O(X"*2%777(log x)9),

2 —
(24) >_lafin+ul =) ress(f.9)

n<x zeR

where 2R (p)+r > 0,R = {+2R(p), +2iF(p), 0, —r}, ¥ = (2+8Rp)(5+16Rp)~t, andg =max(Q b—
1); b denotes the order of the pole 8f(f, s)(r + ) 'x*Sats=2Rp (0 < b < 5).

We now consider an application of (24). L&t e Zz™™ be a non-singular symmetric matrix
with even diagonal entries amgfx) = %Q[x] = %XTQX, X € Z™, the associated quadratic form in
m > 3 variables. Here we assume tlgéx) is positive definite. Let(Q, n) denote the number of
representations af by the quadratic forn®Q. Now consider the theta function

Oo(2) = ) M,
xezZm

By [11, Lemma 6.1], the Dirichlet series associated with the automorphicégris

(4r) ™ o(F +9)
where

[e9)

f(9=2 20 E%} q0)°°

for R(s) > m/2. Using (24), Miller proved the following (see [11, Theorem 6.1])
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Theorem (Muller). Let X) = %Q[x] = %XTQX, X € Z™ be a primitive positive definite quadratic
form in m> 3 variables with integral coggcients. Then

> r(Q.ny?=BxX""+ O(x(m‘l)%)

n<x

where

_ m/Zﬁoo (QQ)
B = (4n) 1

andpB«(6g) is given by(23).
We are now in a position to prove our theorem in page 2.

Proof. We are interested in the cagf) = X + x5 + x5 and sor(Q, n) = rs(n) counts the number
of representations afas a sum of three squares. ByiNer's Theorem above,

D ra(n)?=Bx + O(xl“/g)

n<x

whereB is a computable constant. Specifically, we have by (23) (wih3/2 andp = 1/4)

B=

47T2 + 2
5P (3/4.1/4) Z; ¢eu(3/2)l2uol?,

whereK denotes a complete setlif(4)-inequivalent cusps ardly is the 0-th Fourier cd&cient
of 6o(2) at a rational cusp ChooseK = {1, % %}. Then by p. 145 and (67) in [11], we have

la.ol* = WIG(S,)

where: = u/w, (u,w) = 1,w > 1, W, is width of the cusp, and
G(S)P = 27w ?| 5 o(20)|
L x=1 w .

As Wy, = Wyp = 1, Wy = 4, we haveay o> = 1, |ay20/2 = 0, and|ayso/2 = 1. An explicit
description of the functiong.. ,(s) in the casd’y(4) is given by (see (1.17) and p. 247 in [5])

I'(s—1/2)(2s-1)

Gsja(9) = 2 45(1 - 272y A

I'(s)¢(29) ’
[(s—1/2)(2s- 1
a9 = pua(9) = 2751 - 22971 - 22921 r(g);g; )
Thus fors = 3/2, we have
_ o -3\ £(2)
P1/4(3/2) = 27°(1 - 273) 1772%’
£(2)

Go01/2(3/2) = 0001(3/2) = 231 - 2731 - 2_2)’T2r(3/2)§(3)'

Now, from p. 65 in [12], we have
b*(3/4,1/4) = Gi,41/4(3/2).
By Lemma 3.3 and (16) in [12],



1/21/4(8) =T (s+1/ 2)*
and sab*(3/4,1/4) =T'(2). In total,

_ (47T)2i 371 _ 9-3\-1(1 _ o2\ _1/2 {(2)
EEE) (2 =2 =20 G2 )
B
*2A-29) 1”1/2r<3/2>4<3>)
8t
)

Thus

8n4
; ra(n)? ~ 214(3))(2'

O

Remark. Miller's Theorem can also be used to obtain the mean square value of siiins of
3 squares. Precisely, ii(n) is the number of representations mby N > 3 squares, then a
calculation similar to the second proof of our theorem yields (compare with Theorem 3.3 in [2])

3 ran)? = Wt o(X(N—l)%)

where =
B 1 ™ Z(N-1)
~ (N-1)(@-2"NT(N/2?  Z(N)

Wy
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