A SUPERCONGRUENCE FOR GENERALIZED DOMB NUMBERS

ROBERT OSBURN AND BRUNDABAN SAHU

Abstract

Using techniques due to Coster, we prove a supercongruence for a generalization of the Domb numbers. This extends a recent result of Chan, Cooper and Sica and confirms a conjectural supercongruence for numbers which are coefficients in one of Zagier's seven "sporadic" solutions to second order Apéry-like differential equations.

1. Introduction

It is now well-known that the Apéry numbers

$$
A(n):=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}
$$

play a crucial role in the irrationality proof of $\zeta(3)$, satisfy many interesting congruences and are related to modular forms. For example, Gessel [10] showed that

$$
\begin{equation*}
A(n p) \equiv A(p) \quad\left(\bmod p^{3}\right) \tag{1}
\end{equation*}
$$

for any prime $p>3$, while if

$$
F(z)=\frac{\eta^{7}(2 z) \eta^{7}(3 z)}{\eta^{5}(z) \eta^{5}(6 z)} \quad \text { and } \quad t(z)=\left(\frac{\eta(6 z) \eta(z)}{\eta(2 z) \eta(3 z)}\right)^{12}
$$

then by a result of Peters and Stienstra [16], we have

$$
F(z)=\sum_{n=0}^{\infty} A(n) t^{n}(z)
$$

Here $\eta(z)$ is the Dedekind eta-function. Since then, there have been several papers which study arithmetic properties of coefficients of power series expansions in t of modular forms where t is a modular function (see [3], [6], [7], [11], [14], [15], [19], [20]).

Our interest is in the sequence of numbers given by

$$
D(n):=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{2 k}{k}\binom{2(n-k)}{n-k}
$$

The first few terms in the sequence of Domb numbers $\{D(n)\}_{n \geq 0}$ are as follows:

[^0]$$
1,4,28,256,2716,31504, \ldots
$$

This ubiquitous sequence (see $A 002895$ of Sloane [18]) not only arises in the theory of third order Apéry-like differential equations [1], odd moments of Bessel functions in quantum field theory [2], uniform random walks in the plane [4], new series for $1 / \pi$ [5], interacting systems on crystal lattices [9] and the enumeration of abelian squares of length $2 n$ over an alphabet with 4 letters [17], but if

$$
G(z)=\frac{\eta^{4}(z) \eta^{4}(3 z)}{\eta^{2}(2 z) \eta^{2}(6 z)} \quad \text { and } \quad s(z)=\left(\frac{\eta(2 z) \eta(6 z)}{\eta(z) \eta(3 z)}\right)^{6}
$$

then (see [5])

$$
G(z)=\sum_{n=0}^{\infty}(-1)^{n} D(n) s^{n}(z)
$$

Motivated by (1), Chan, Cooper and Sica [6] recently proved the congruence

$$
\begin{equation*}
D(n p) \equiv D(p) \quad\left(\bmod p^{3}\right) \tag{2}
\end{equation*}
$$

The purpose of this short note is to prove a supercongruence for the generalized Domb numbers. Recall that the term supercongruence refers to congruences that are stronger than those suggested by formal group theory (for recent developments in this area, see [12], [13], [21]). For A, B and $C \in \mathbb{N}$, let

$$
\begin{equation*}
D(n, A, B, C):=\sum_{k=0}^{n}\binom{n}{k}^{A}\binom{2 k}{k}^{B}\binom{2(n-k)}{n-k}^{C} \tag{3}
\end{equation*}
$$

Our main result is the following.
Theorem 1.1. Let A, B and $C \in \mathbb{N}$ and $p>3$ be a prime. For any $m, r \in \mathbb{N}$, we have

$$
D\left(m p^{r}, A, B, C\right) \equiv D\left(m p^{r-1}, A, B, C\right) \quad\left(\bmod p^{3 r}\right)
$$

if $A \geq 2$.
Note that Theorem 1.1 recovers (2) in the case $A=2, B=C=1, r=1$ and confirms the numerical observation in Section 3 of [14]. The method of proof for Theorem 1.1 is due to Coster in his influential Ph.D. thesis [8]. Namely, one expresses the summands in (3) as products $g_{A B}(X, k)$ and $g_{A B}^{*}(X, k)$ (see Section 2), then utilizes the combinatorial features of these products. One then writes (3) as two sums, one for which $p \mid k$ and the other for which $p \nmid k$. In the case $p \nmid k$, the sum vanishes modulo an appropriate power of p while for $p \mid k$, the sum reduces to the required result. This strategy not only leads to a generalization of (1) (see Theorem 4.3.1 in [8]), but can be used to prove supercongruences for other similar sequences [15]. Additionally, a proof similar to that of Theorem 1.1 can be employed to show

$$
D\left(m p^{r}, 1,1,1\right) \equiv D\left(m p^{r-1}, 1,1,1\right) \quad\left(\bmod p^{2 r}\right)
$$

thereby confirming another conjectural supercongruence in Section 3 of [14]. The details are left to the interested reader. The numbers $D(n, 1,1,1)$ are coefficients in one of Zagier's seven
"sporadic" solutions (see \#10 in Table 1 or the modular parameterization given by Case E in Table 3 of [20]) to a general family of second order Apéry-like differential equations. Our hope is that the present note will inspire others to further explore the techniques in [8]. In Section 2 , we recall the relevant properties of the products $g_{A B}(X, k)$ and $g_{A B}^{*}(X, k)$ and then prove Theorem 1.1.

2. Proof of Theorem 1.1

We first recall the definition of two products and one sum and list some of their main properties. For more details, see Chapter 4 of [8]. For $A, B \in \mathbb{N}$ and integers $k, j \geq 1$ and X and for a fixed prime $p>3$, we define

$$
\begin{aligned}
& g_{A B}(X, k)=\prod_{i=1}^{k}\left(1-\frac{X}{i}\right)^{A}\left(1+\frac{X}{i}\right)^{B} \\
& g_{A B}^{*}(X, k)=\prod_{\substack{i=1 \\
p \nmid i}}^{k}\left(1-\frac{X}{i}\right)^{A}\left(1+\frac{X}{i}\right)^{B},
\end{aligned}
$$

and

$$
S_{j}(k)=\sum_{\substack{i=1 \\ p \nmid i}}^{k} \frac{1}{i^{j}}
$$

The following proposition (see Lemmas 4.2 .1 and 4.2 .5 in [8]) provides some of the main properties of $g_{A B}(X, k), g_{A B}^{*}(X, k)$ and $S_{j}(k)$.

Proposition 2.1. For any $A, B, m \in \mathbb{N}, X \in \mathbb{Z}$ and integers $k, r \geq 1$, we have
(1) $S_{j}\left(m p^{r}\right) \equiv 0\left(\bmod p^{r}\right)$ for $j \not \equiv 0(\bmod p-1)$,
(2) $S_{2 j-1}\left(m p^{r}\right) \equiv 0\left(\bmod p^{2 r}\right)$ for $j \not \equiv 0\left(\bmod \frac{p-1}{2}\right)$,
(3) $g_{A B}(p X, k)=g_{A B}^{*}(p X, k) g_{A B}\left(X,\left\lfloor\frac{k}{p}\right\rfloor\right)$,
(4) $g_{A B}^{*}(X, k) \equiv 1+(B-A) S_{1}(k) X+\frac{1}{2}\left((A-B)^{2} S_{1}(k)^{2}-(A+B) S_{2}(k)\right) X^{2}\left(\bmod X^{3}\right)$,
(5) $\binom{n}{k}^{A}\binom{n+k}{k}^{B}=(-1)^{A k}\left(\frac{n}{n-k}\right)^{A} g_{A B}(n, k)$.

We now prove Theorem 1.1.

Proof of Theorem 1.1. We first assume that $A \geq 2$ and $B \geq C \geq 1$. Recall that for integers m, $n, r \geq 1$ and $s \geq 0$ with $s \leq r$, we have

$$
\begin{equation*}
\operatorname{ord}_{p}\binom{m p^{r}}{n p^{s}}^{A} \geq A(r-s) \tag{4}
\end{equation*}
$$

Also, by Lemma 2.2 in [15], we have for a prime $p>3$ and integers $m \geq 0, r \geq 1$

$$
\begin{equation*}
\binom{2 m p^{r}}{m p^{r}} \equiv\binom{2 m p^{r-1}}{m p^{r-1}} \quad\left(\bmod p^{3 r}\right) \tag{5}
\end{equation*}
$$

Now, by (1), taking $j=1$ in (2) and (4) of Proposition 2.1, we have

$$
\begin{equation*}
g_{A B}^{*}\left(m p^{r}, n p^{s}\right) \equiv 1 \quad\left(\bmod p^{r+2 s}\right) \tag{6}
\end{equation*}
$$

for any non-negative integers m, n, r and s with $s \leq r$. Furthermore, by (3) and (5) of Proposition 2.1, we have, for $s \geq 1$,

$$
\binom{m p^{r}}{n p^{s}}^{A+2 C}\binom{2 n p^{s}}{n p^{s}}^{B-C}\binom{2 m p^{r-1}}{2 n p^{s-1}}^{C}
$$

$$
\begin{equation*}
=\binom{m p^{r-1}}{n p^{s-1}}^{A+2 C} g_{(A+2 C) 0}^{*}\left(m p^{r}, n p^{s}\right)\binom{2 n p^{s}}{n p^{s}}^{B-C}\binom{2 m p^{r-1}}{2 n p^{s-1}}^{C} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\binom{2 m p^{r}}{2 n p^{s}}^{C}=\binom{2 m p^{r-1}}{2 n p^{s-1}}^{C} g_{C 0}^{*}\left(2 m p^{r}, 2 n p^{s}\right) \tag{8}
\end{equation*}
$$

By (5) and (6), we have

$$
\begin{equation*}
\binom{2 n p^{s}}{n p^{s}}^{B-C} \equiv\binom{2 n p^{s-1}}{n p^{s-1}}^{B-C} \quad\left(\bmod p^{3 s}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{(A+2 C) 0}^{*}\left(m p^{r}, n p^{s}\right) \equiv g_{C 0}^{*}\left(2 m p^{r}, 2 n p^{s}\right) \equiv 1 \quad\left(\bmod p^{r+2 s}\right) \tag{10}
\end{equation*}
$$

As $r \geq s, A \geq 2$ and $C \geq 1$, one can check that (4) and (7)-(9) imply

$$
\begin{equation*}
\frac{\binom{m p^{r}}{n p^{s}}^{A+2 C}\binom{2 n p^{s}}{n p^{s}}^{B-C}}{\binom{2 m p^{r}}{2 n p^{s}}^{C}} \equiv \frac{\binom{m p^{r-1}}{n p^{s-1}}^{A+2 C}\binom{2 n p^{s-1}}{n p^{s-1}}^{B-C}}{\binom{2 m p^{r-1}}{2 n p^{s-1}}^{C}} \quad\left(\bmod p^{3 r}\right) \tag{11}
\end{equation*}
$$

Using the identity

$$
\binom{a-b}{c-d}\binom{b}{d}=\frac{\binom{a}{c}\binom{c}{d}\binom{a-c}{b-d}}{\binom{a}{b}}
$$

we have

$$
D\left(m p^{r}, A, B, C\right)=\binom{2 m p^{r}}{m p^{r}}^{C} \sum_{k=0}^{m p^{r}} \frac{\binom{m p^{r}}{k}^{A+2 C}\binom{2 k}{k}^{B-C}}{\binom{2 m p^{r}}{2 k}^{C}} .
$$

We now split $D\left(m p^{r}, A, B, C\right)$ into two sums, namely

$$
D\left(m p^{r}, A, B, C\right)=\binom{2 m p^{r}}{m p^{r}}^{C} \sum_{\substack{k=0 \\ p \nmid k}}^{m p^{r}} \frac{\binom{m p^{r}}{k}^{A+2 C}\binom{2 k}{k}^{B-C}}{\binom{2 m p^{r}}{2 k}^{C}}+\binom{2 m p^{r}}{m p^{r}}^{C} \sum_{\substack{k=0 \\ p \mid k}}^{m p^{r}} \frac{\binom{m p^{r}}{k}^{A+2 C}\binom{2 k}{k}^{B-C}}{\binom{2 m p^{r}}{2 k}^{C}} .
$$

Since $A \geq 2, B \geq C \geq 1$, the first sum vanishes modulo $p^{3 r}$ using (4) and the result follows by (5) and (11). A similar argument holds in the case $A \geq 2, C>B \geq 1$ upon noting that

$$
\frac{\binom{m p^{r}}{k}^{A+2 B}\binom{2\left(m p^{r}-k\right)}{m p^{r}-k}}{\binom{2 m p^{r}}{2 k}^{B}} \equiv 0 \quad\left(\bmod p^{3 r}\right)
$$

if $p \nmid k$ and

$$
\frac{\binom{m p^{r}}{n p^{s}}^{A+2 B}\binom{2\left(m p^{r}-n p^{s}\right)}{m p^{r}-n p^{s}}^{C-B}}{\binom{2 m p^{r}}{2 n p^{s}}^{B}} \equiv \frac{\binom{m p^{r-1}}{n p^{s-1}}^{A+2 B}\binom{2\left(m p^{r-1}-n p^{s-1}\right)}{m p^{r-1}-n p^{s-1}}^{C-B}}{\binom{2 m p^{r-1}}{2 n p^{s-1}}^{B}} \quad\left(\bmod p^{3 r}\right)
$$

if $p \mid k$.

Acknowledgements

The authors were partially funded by Science Foundation Ireland 08/RFP/MTH1081. The second author would like to thank the UCD School of Mathematical Sciences for their hospitality during the preparation of this paper.

References

[1] G. Almkvist, D. van Straten and W. Zudilin, Generalizations of Clausen's formula and algebraic transformations of Calabi-Yau differential equations, Proc. Edinb. Math. Soc. (2) 54 (2011), no. 2, 273-295.
[2] D. Bailey, J. Borwein, D. Broadhurst and M. Glasser, Elliptic integral evaluations of Bessel moments and applications, J. Phys. A 41 (2008) 20520346 pp.
[3] F. Beukers, Some congruences for the Apéry numbers, J. Number Theory 21 (1985), no. 2, 141-155.
[4] J. Borwein, D. Nuyens, A. Straub and J. Wan, Some arithmetic properties of short random walk integrals, preprint.
[5] H. Chan, S. Chan and Z. Liu, Domb's numbers and Ramanujan-Sato type series for $1 / \pi$, Adv. Math. 186 (2004), no. 2, 396-410.
[6] H. Chan, S. Cooper and F. Sica, Congruences satisfied by Apéry-like numbers, Int. J. Number Theory 6 (2010), no. 1, 89-97.
[7] H. Chan, A. Kontogeorgis, C. Krattenthaler and R. Osburn, Supercongruences satisfied by coefficients of ${ }_{2} F_{1}$ hypergeometric series, Ann. Sci. Math. Québec 34 (2010), no. 1, 25-36.
[8] M. Coster, Supercongruences, Ph.D. thesis, Universiteit Leiden, 1988.
[9] C. Domb, On the theory of cooperative phenomena in crystals, Adv. Phys. 9 (1960), 149-361.
[10] I. Gessel, Some congruences for Apéry numbers, J. Number Theory 14 (1982), no. 3, 362-368.
[11] F. Jarvis, H. Verrill, Supercongruences for the Catalan-Larcombe-French numbers, Ramanujan J. 22 (2010), no. 2, 171-186.
[12] L. Long, Hypergeometric evaluation identities and supercongruences, Pacific J. Math. 249 (2011), no. 2, 405-418.
[13] D. McCarthy, Extending Gaussian hypergeometric series to the p-adic setting, preprint.
[14] R. Osburn, B. Sahu, Congruences via modular forms, Proc. Amer. Math. Soc. 139 (2011), no. 7, 2375-2381.
[15] R. Osburn, B. Sahu, Supercongruences for Apéry-like numbers, Adv. in Appl. Math. 47 (2011), no. 3, 631-638.
[16] C. Peters, J. Stienstra, A pencil of K3-surfaces related to Apéry's recurrence for $\zeta(3)$ and Fermi surfaces for potential zero. Arithmetic of complex manifolds (Erlangen, 1988), 110-127, Lecture Notes in Math., 1399, Springer, Berlin, 1989.
[17] L. Richmond, J. Shallit, Counting abelian squares, Electron. J. Combin. 16 (2009), no. 1, Research Paper 72, 9pp.
[18] N. Sloane, The On-Line Encyclopedia of Integer Sequences, available at http://oeis.org
[19] H. Verrill, Congruences related to modular forms, Int. J. Number Theory 6 (2010), no. 6, 1367-1390.
[20] D. Zagier, Integral solutions of Apéry-like recurrence equations, Group and Symmetries, 349-366, CRM Proc. Lecture Notes, 47. Amer. Math. Soc., Providence, RI, 2009.
[21] W. Zudilin, Ramanujan-type supercongruences, J. Number Theory 129 (2009), no. 8, 1848-1857.
School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
School of Mathematical Sciences, National Institute of Science Education and Research, Bhubaneswar 751005 , InDIA

E-mail address: robert.osburn@ucd.ie
E-mail address: brundaban.sahu@niser.ac.in

[^0]: Date: January 30, 2012.
 2000 Mathematics Subject Classification. Primary: 11A07; Secondary: 11F11.
 Key words and phrases. Domb numbers, supercongruences.

