Redesigning Strassen’s Algorithm

Undergraduate Summer Research Project 2021

Padraig Ryan
August 23, 2021

Supervisor: Dr. John Sheekey

Abstract

We study the notions of Bilinear Complexity and tensor rank to understand Strassen’s
Algorithm for 2 x 2 matrix multiplication. We then study Grochow & Moore’s
Designing Strassen’s Algorithm where a generalisation of Strassen’s algorithm for
n X n matrices over R is derived. Based on this paper, we suggest a method to
search for tensor decompositions of the n x n matrix multiplication tensor, M M,,.
We proceed to use the Magma Computational Algebra System to search for such
tensor decompositions for certain fields Fy and Z", with n and ¢ small.

University College Dublin



Contents

10

Introduction
Notation and Assumptions
Bilinear Maps

Tensors

4.1 Correspondence between Bilinear Maps and Tensors
42 TensorRank . . . ... ... ... ... .. ... .. . ...

Strassen’s Algorithm
Grochow and Moore’s Algorithm

Search for Finite Field Vectors

7.1 MagmaSearch . .. ... ... ... ... ... ... .. .. ...
7.2 Reducing size of Search Space . . . . . .. ... ... ...

Results
Conclusion
Further Study

Appendix: Tensor Decomposition Vectors

Al n=2 . .. e

Appendix: Magma Code

B.1 Code for IF;L ..............................
B.2 CodeforZ™ . . . . . . . . e

11

11

12

13
13
13



1 Introduction

Tensors are important mathematical objects that have applications across various fields in mathematics and
the sciences. The tensor rank, and the equivalent notion of bilinear complexity, are useful tools when facing
problems involving tensors.

In this paper, we begin by defining bilinear maps, and consider results on them building up to bilinear
complexity. We then switch tracks, introducing tensors and the tensor rank. Using the result that tensor rank
and bilinear rank are equivalent, we examine Strassen’s algorithm, and matrix multiplication in general, from
the perspective of tensors.

We next consider Grochow and Moore’s Designing Strassen’s Algorithm, and consider methods to gen-
eralise their construction for the tensor decomposition of the matrix multiplication tensor, M M,,. We apply
actions of the General Linear Group to sets of vectors to search for tensor decompositions of M M,,. We derive
constraints on the elements of the General Linear group we can use. We then consider the Symmetric Group,
and take its representation in the General Linear Group. We implement an algorithm in the Magma Computer
Algebra System to search for the tensor decompositions of M M,, under the actions of elements of the Sym-
metric Group, over finite field vector spaces and over integer vector spaces. The main result of this paper is that
our code returned valid tensor decompositions, validating our approach.

2 Notation and Assumptions
For the purposes of this report:
* Vectors, v € V, in are written as column vectors.

* Dual Space covectors, v € V* are written as row vectors.

Finite fields are denoted by [F or IF,,.

* n-dimensional F-vector spaces are denoted as F".

¢« FM)®" =F"RF'®...Q "

m times

We take for granted that:

o (F™)* is isomorphic to F™ when F is finite dimensional.

3 Bilinear Maps

We first look at the concept of Bilinear maps between vector space. From the concept of a bilinear map, we
will introduce the concept of rank. Later, we will see that a bilinear map is equivalent to a tensor, and the ranks
are equivalent.

Remark 3.1. This introduction to Bilinear Maps, Tensors and Ranks is based on Chapter 14 of Algebraic
Complexity Theory'.

Definition 3.2 (Bilinear Map). Let U, V and W be k-vector spaces. Amap ¢ : U x V — W is a bilinear map
if for all u,uw; € U,v,v; € V and X € I the following hold:

¢ (u1 + uz,v) = ¢ (u1,v) + ¢ (uz,v)

& (u,v1 4+ v2) = ¢ (u,v1) + ¢ (u, va)
Qb ()\U,U) = )‘¢ (uvv) = ¢ (uv )‘U)

"Peter Biirgisser, Michael Clausen, and Amin Shokrollahi. Algebraic Complexity Theory. Vol. 315. Jan. 1997. ISBN: 978-3-642-
08228-3. DOI: 10.1007/978-3-662-03338~-8, Chapter 14.




Remark 3.3. In words: a bilinear map, when fixing any one of its inputs, acts as a linear map on the other
input.

Example 3.4 (Matrix Multiplication forms a bilinear map.). Let A, € F"™*", B, 8 € F"*P be matrices. Let
¢ : XN o FXP sy F™XP denote matrix multiplication. Let \ € F. Then:

d (M, B) =Xp(A,B) = ¢ (A, A\B)

n n

¢ (A+a, B)z’j = Z(Ail + ail)Blj = Z(AilBlj + O‘ilBlj) = ¢ (4, B)ij ¢ (a, B)ij
=1 =1

and likewise for ¢ (A, B + (). Hence matrix multiplication is a bilinear map.
Remark 3.5. The space of all bilinear maps from U x V to W is denoted Bil(U,V; W)

Definition 3.6 (Bilinear Computation). Let ¢ : U x V +— W be a bilinear map. Fori € r let f; € U*, g; € V¥,
w; € W be such that:

¢ (u,0) = > filuw)gi(v)w;
=1

forallu € U, v € V, Then (f1,91,w1; .. .; fr, gr, w,) is called a bilinear computation of length r for ¢.

Definition 3.7 (Bilinear Complexity/Rank). The length of the shortest bilinear computation for ¢ is called the
bilinear complexity or bilinear rank of ¢, and it is denoted R(¢p/F) or just R(¢).

Definition 3.8 (Isomorphisms of Bilinear Maps). ¢ € Bil(U,V; W) is isomorphic to ¢' € Bil({U',V'; W') if
there exist isomorphisms o : U — U', 3 : V = V' v : W — W' such that:

70 ¢ (u,v) = ¢ (alu), B(v)
If (o, B,7) € (GL(U),GL(V),GL(W)), then ¢ ~ ¢ and:

¢ (u,0) = yo ¢ (a™(u), 71 (v))

4 Tensors

Definition 4.1 (Tensor Product). Let U,V be F-vector spaces. The tensor product is the F-vector space U @V,
with the map T € Bil(U,V; U ® V') which satisfy the universal property:

For every F-vector space W and every ¢ € Bil(U,V; W), there exists a unique F-vector space
homomorphism ¢’ : U @ V. — W such that ¢' o 7 = ¢.

Definition 4.2 (Tensor Product of vectors). Letu € U,v € V. Thenu @ v = 7(u,v) € U @ V.

Remark 4.3. Suppose V, W are F-Vector Spaces with bases {e1,...,en} and {f1,..., fm} respectively. Then
V @ W, is an nm-dimensional Vector Space with basis {e; ® f; : i <n,j < m}.

Example 4.4. Consider the Vector Spaces F? and (F3)* with the standard basis vectors. The tensor product
W :=F?® (F3)* isa 2 - 3 = 6 dimensional vector space with basis vectors:

. [1oo . 010 . oo 1
a®fi=1g 0 0 ®L=|g 0 o ®H =g 0 0

. fooo . o0 o0 . oo o0
@®ﬁ:L0(J@®5:k1(J@®ﬁ:k01]



4.1 Correspondence between Bilinear Maps and Tensors
Proposition 4.5 (Unique Isomorphism Between a Bilinear Map and Tensor). Let U, V, W be F-Vector Spaces.
There exists a unique isomorphism U*@V*@W — Bil(U,V; W) that sends f @ g@w to (u,v) — f(u)g(v)w.

Definition 4.6 (Structural Tensor). The Structural Tensor of ¢ is the unique tensort € U* Q@ V* QW associated
to the Bilinear Map ¢ € Bil(U,V; W)

Remark 4.7. At this stage we have defined bilinear maps and tensors, and have shown that we can treat tensors
as bilinear maps and visa versa. Hence, anything we have proved for bilinear maps hold for tensors.

Definition 4.8 (Coordinate Tensor). If we define bases (u;);<,, , (V) j<p, » (Wi);<q on F", F™ 4, and consider
¢ € Bil(F",F™;F9), then there exists t;j; € F such that: a

q
¢ (uiyv) = Y tijier
=1

We call (tiﬂ)z’jl € F"*"*4 the coordinate tensor of .

Remark 4.9. The coordinate tensor can be considered as a 3-dimensional "cuboid" array of elements of F.

Definition 4.10 (Tensor Slice). Let ¢t := (tiﬂ)zjl be a coordinate tensor. Then (<tijl)jl 1<i< n) is the
sequence of 1-slices of t. Similarly, ((tiﬂ)“ [1<j< m) and <(tijl)ij 1<iI< q) are the sequences of 2-
slices and 3-slices respectively.

Example 4.11. The 3-slices of M M are:

1 0 00 0100 0000 0 00O
0010 0 001 0 00O 0 00O
000 O’f0OOOO”L 0O0O0O’|01 00
0000 0000 0010 0 001

4.2 Tensor Rank

Definition 4.12. The Rank, denoted rk(t), of a tensor t € (F™)*" is the minimum number, r, of tuples of n
vectors (u}, ..., u") such that;

.
dufe.. . oul =t
=1

Remark 4.13. The bilinear complexity, R(¢), of a bilinear map, ¢, is equivalent to the rank, rk(t) of its
corresponding tensor, t.

Example 4.14.

o O O
o O O O
O O = O
o O O O

has tensor rank rk(t) = 2, as;

®[1 0 0 0]+
0 0
Example 4.15 (Matrix Multiplication Tensor). The 3-slices of M Ma are:

0
1
ol ®[0 0 1 0]

1 000 0100 0 00O 0 00O
0010 0 001 0 00O 0 00O
000 O’f0OO0O"IL 00O07|01 00
0000 0000 0010 0 001

It can be checked that the rank of the Matrix multiplication tensor is no more than 8 (we will see shortly its
actually no more than 7).



5 Strassen’s Algorithm

Volker Strassen® showed in 1969 that multiplying two 2 x 2 matrices could be done in 7 multiplications.

Example 5.1 (Strassen’s Algorithm). Let A and B be 2 x 2 matrices.

A11 A12:| |:B11 Bl?:|
A= , B =
|:A21 A22 B21 BQZ

Then if we define the following 7 products:

I = (A1 + Ag) (B11 + Baa)
IT = (A2 + Ag) Bn1
I11 = Ayy (Bi2 — Bay)
IV = Ay (—Bi1 + Bo1)
V = (A11 + A12) Baa
VI = (—A1 + A21) (Bi1 + Bi2)
VII = (A3 — Ag) (Bai + Bag)

The product C := AB is given by:

I14+1V -V 4+VII 111 +V

AB:[ II+1V I+IIT—IT+VI

We can consider Strassen’s Algorithm as a Bilinear Computation of the form:
T
C:=¢(A,B) =>_ fi(A)gi(B)w;
i=1

Where f;,g; € (F™*™)* and w; € F™"*™.
Before we define the dual vectors f; and g;, we want to define the dot product of matrices, A - B : F"*™ x
F*™ s I as follows:

n,n
A - B = Z AijBij
i=1,j=1

Hence, we can use this dot product to define f;, g;:
fi(A) == F;- Aand g;(B) := G; - B
From here we notice that Strassen’s products, I through V 11, are of the form f;(A)g;(B). For example:
I = (A + Az2) (B11 + Ba2)
“(o 3B 2D (o 3 Lo 520)
0 1] [Aa Ax 0 1| |Ba1 B

= f1(A)g1(B)

nelb 8 SR AE B IL O 2

2Volker Strassen. “Gaussian elimination is not optimal”. In: Numerische Mathematik 13.4 (Aug. 1969), pp. 354-356. ISSN:
0945-3245. DOI: 10.1007/BF02165411. URL: https://doi.org/10.1007/BF02165411.

Hence,




e[l B B NG OB E R

And by contemplating

AB:[I+IV—V+VII 111 +v ]

IT+1V I+IIT—IT+VI|’
c[[r o] o 0] o 1] [uo] [~ 1] fo 0] 10
i 0o 1|71 —=1|/’fo 1|’|1 o|’lo o|’flo 1]’[0o O

r=T7
Ci= (A, B) = 3 il A)gs( By
i=1

and the bilinear complexity is no more than 7.
From here, we can consider the correspondence between bilinear maps and tensors (Proposition 4.5),
giving us:

we see:

And so:

7
MM, =) F;,®G;®w

S R ) R R o el A (e R O S
g 8 o G 0 R e R (R R ol R )
(o Ao el o)

Which clearly has tensor rank, rk(MM,,) < 7.
We can calculate the first 3-slice by conszdermg each matrix w; where (w;)11 # 0

o=y ol e o2 el ol e Aol 4

1000 [00 0 0] [0 0 0 0 00 0 0
loto0o| oo o of Jo-10 -1 {00 1 1
“loo1o/Tloo-10o/Tlo oo olTloo o o
0001 loo 1 0 Jo o 0o o0 00 -1 —1

1000

oo 1o

=lo 0 0 o0

000 0

which is exactly the first 3-slice of M Mo which we saw in Example 4.15. The remaining 3-slices can be
calculated similarly.

6 Grochow and Moore’s Algorithm

Designing Strassen’s Algorithm® (Grochow & Moore) describes a way in which Strassen’s Algorithm can be
generalised to vectors of length n. They started of by defining a Unitary 2-design:

Definition 6.1 (Unitary 2-design). A set, S, of n-dimensional vectors is a unitary 2-design if;

1
Z Oand|S|Zv®v _ﬁl

veS veSs

3Joshua A. Grochow and Cristopher Moore. “Designing Strassen’s algorithm”. In: CoRR abs/1708.09398 (2017). arXiv: 1708 .
09398. URL: http://arxiv.org/abs/1708.09398.




The following theorem was then proven:

Theorem 6.2. Let S = {w1,...,ws} C C" be a unitary 2-design, and let s = |S|. Then the tensor rank of
M M, is at most s(s — 1)(s — 2) + 1, and the rank 1 decomposition is given by:

3
n N X
MM, =193 + = > (wid(wy — wi)*) ® (w; ® (wy, — w;)*)

1,7,k distinct

X (wk X (U)i — wk)*)
Example 6.3. The set, S, of vertices of an equilateral triangle (centred at the origin) form a 2-design.

e { - [ (4]

2-design Condition 1:

- 4316

vES -

[V ] = o] -0

2-design Condition 2:

]‘ *
EZU@U

veS
=55 A+ L YLt 300)
1[3/2 0 1
~3 { 0 3/2] =3

Hence, by Theorem 6.2, the rank of MMy = s(s —1)(s —2)+1=7

7 Search for Finite Field Vectors

Grochow & Moore’s construction for M My will only work in fields where % and /3 exist.
Can we find a construction over finite fields, or over the Integers, similar to Grochow & Moore’s construction?
Hence lets consider:

MM, =193 = XY "[g1(w1)@(ga(w2))*] @ [g3(w3) @ (94(w4))*] @ [g5(ws) @ (g6(ws))"]
geG

c (ann)®3
with subgroup G < GL(n,F)S.

Remark 7.1. As any element of the general linear group is an isomorphism of vector spaces, the rank of the
output tensor does not change.

We would rather work in (F™)®6 than (F™*")®3, where it is straightforward to iterate through the vectors
in the vector space.

Proposition 7.2. We show that 7 : (F"*")®3 — (F7)®0;
7 (e, @ €},)® (eis @ €7,) ® (ei5 D €fy)) = i, @ eiy D ejy D ey, @ €45 @ €4

where e;; are basis vectors of F", defines an isomorphism.

7



Proof. First note that F"*"™ ~ F" @ (F™)* Hence:
(Fan)®3 ~ (Fn ® (Fn)*)®3
As we are working in finite fields: (F")* ~ F". One such isomorphism is & : e} — e;. Therefore:

((Fn ® (Fn)*)®3 ~ (Fn ® Fn)®3
((Fn)®2)®3
~ (Fn)®6

1

This shows (F"*7)®3 ~ (F7)®S, O
Remark 7.3 (Isomorphism applied to g € GL(n,F)%). Let g = (g1, 92, 93, 94, 95, g6) € GL(n,F)®

T (g1(eiy) ®(g2(€i))" @ gs(eis) @ (ga(eis))” @ gs(eis) @ (g6(eis))”)
= g1(€i,) ® g2(€ir) @ gs(eiy) ® galei,) ® gs(eis) @ go(€ig)

We want to pick a subgroup G' < GL(n,F)S that fixes M M,, and 13,

Theorem 7.4. Choosing g, T = gy g3 T = g, and g5 T = gg fixes 77(1®3) under the action of g. (Where
HT:= (H )"

Proof.
n n n
1) =r(10lel) =7 (Z (e, ®ef) @ Z (ei, ®€f,) @ Z (ei ® e;;))
i1=1 ip=1 iz=1
n,n,n
=7 Z e, e Ve, Qep, e D ey,
i1=1,ig=1,i3=1
n,n,n
82 Y e ®e Qe Ve Ve Ve,
11=1,12=1,13=1
n n n
= (Z e¢1®e¢1> (%4 (Z 61'2@6@'2) X <Z ei3®ei3> (M
i1=1 ip=1 iz=1
Similarly by 6.3:
n n n
gor(1¥?) =...= <Z gi(ei) ® 92(%)) ® (Z g3(€iy) ® 94(%)) (® Z gs(€iz) ® gG(%))
i1=1 io=1 i3=1
As each g; € GL(n,F) is a linear map;
n
g](elk) = Z (g])sjzk esj
SjZI

Hence:

go7‘r(1®3) = 2 (Z (91 s1i1 51) (Z 92 s211 52) ® (Z (93)531'2 653) ® (Z (94)542'2 €s4

i1=1lyia=1,i3=1 \s1=1 s3=1 sa=1
n n
§ : 95 8513 €ss | @ E (96)S6i3 €sg
s5=1 se=1



= (Z Z Z (gl>s1i1 (92)5211 (es; ® 652)) ® (Z Z Z (93)331'2 (94)54@'2 (es3 ® 684)>

s1=1s9=1141=1 s3=1s4=11i2=1

N (Z Z Z (g5)55i3 (96)561'3 (e ® 686)>

s5=1s¢=11i3=1

n n
(O] (Z e“®e“) (Z em®em> ® (Z ei3®ei3>
i1=1 i0=1 i3=1

Hence:
s1=1so=14i1= 1 i1=1
n
(z 3 3 ) 09 >) (e )
sz3=1s4=11i2=1 io=1
n
(Z 503 8y 00, e >) i (Z )
s5=1sg=11i3=1 iz=1
Ao A3 =1
Where )\; € F.
By fixing A\ = 1, and matching basis vectors,
n n
T T
Z (gk)ski (gl>sli = Z (gk)ski (gl )isl =grk-g =1
i=1 i=1

Where (k,1) € {(1,2),(3,4),(5,6)}.
And so, since g € GL(n,F) implies gy, is invertible:

-T -T -T
g1 —=92,93 = 94,95 = 96

O
Theorem 7.5. Choosing gG_T = g1, gQ_T = g3 and g4_T = g5 fixes m(M M,,) under the action of g.
Proof. Proof proceeds as in theorem 7.4, with:
n,n,n
MMTL = Z €y ® 6?2 ® Ciy ® e’?g ® €i3 ® 6:1
i1=1,ia=1,i3=1
in place of 193, O

Proposition 7.6. Combining Theorems 7.4 and 7.5, (equivalently; choosing g to fix both 1¥% and M M,,) gets
us g = (917 g;Tv g1, g;Tv g1, g;T>

Proof.
n=g5"
) =95
Eg "
B3 T =gs
&) g5 "
Eg) "=



Theorem 7.7. To find tensor decomposition of MM, — 13, it suffices to find gy € GL(n,TF), vectors
w1, Wo, W3, Wy, Ws, wg € F" and scalar A € F such that:

T(MMy —1%%) = XY~ gi(wi) @ g7 " (w2) ® g1(ws) @ g7 " (wa) ® g1(ws) @ g " (we)
geG

Proof. Applying our isomorphism from Proposition 7.2 and the results of Proposition 7.6, our equation:

T(MM, —1%%) = 7 | X" [g1(w1)@(g5 " (w2))*] @ [g3(ws) @ (g5 " (w4))*]
geG

® [g5(ws) ® (g5 " (wg))*]

becomes:

T(MMy —1%%) = XY~ gi(w1) ® g7 " (w2) ® g1(ws) @ g7 " (wa) © gi(ws) @ g7 " (we)
geG

c (Fn)®6

7.1 Magma Search

We used Magma* to search for solutions to the equation from Theorem 7.7;

T (MM, =1%%) = XY " gi(w) @ g7 " (w2) ® gi(ws) @ g7 " (wa) ® g1(ws) @ g7 (ws)
geG

The subgroup, GG, was chosen to be the representation of S,,41 in GL(n,F). S,,41 is the symmetric group on a
set of n + 1 elements, and |S,, 41| = (n + 1)

Example 7.8 (Representation of S3 in GL(2,F)). The subgroup Ss is generated® by

%))

Example 7.9 (Representation of Sy in GL(3,F)). The subgroup Sy is generated by

10 0 1 0 0] [-1 1 0] [0 0 —1
01 0,1t =1 1/,l0 1 o0fl,|-1 1 -1
01 -1 [0 o 1] |0 o 1] [-1 0 o0

We wrote two programs in Magma. The first searched for solutions over a finite field ;. The second
program searched for solutions over vectors of the form v € {—1,0,1}" C Z".
7.2 Reducing size of Search Space

Because in the first program, we are iterating through all 6-tuples of vectors in [F}', any possible reduction in
the number of vectors we need to check will greatly reduce the runtime of the code.

“Wieb Bosma, John Cannon, and Catherine Playoust. “The Magma algebra system. I. The user language”. In: J. Symbolic Comput.
24.3-4 (1997). Computational algebra and number theory (London, 1993), pp. 235-265. 1SSN: 0747-7171. bo1: 10.1006/ jsco.
1996.0125. URL: http://dx.doi.org/10.1006/jsc0.1996.0125.

George Mackiw. Finite Groups of 2 x 2 Integer Matrices. Dec. 1996. URL: https://www.maa.org/sites/default/
files/George_Mackiw20823.pdf.

10



We can reduce the number of potential solutions we need to check by doing the following:
First note that the tensor product, and elements of GL(n, F) are linear. Hence, for example, if w; = ~yv:

T(MMy = 1%%) = XY~ gi(wi) ® g7 " (w2) ® g1(ws) @ g7 " (wa) © gi(ws) @ g " (we)
geG

=AY 91(y0) @ g7 (w2) @ gi(ws) @ g7 (wa) @ g1 (ws) © g7 " (w)
geG

=MD g1(0) @ g7 (w2) @ g1 (ws) @ g7 (wa) @ g1 (ws) @ g7 (w)
geG

Letting any w; = A;v;, the scalar \; can be extracted from the sum as above.

Letv € Fy,v # 0 and consider the set {Ww: e Fys A # 0} C Fy. As Iy is a field, every Av is unique,
and hence the subset has ¢ — 1 distinct elements. Hence, by only checking one element in each such subset, we
reduce the number of checks we need to do in each vector space from ¢" — 1 to %. As this reduction applies

to each vector space, the total search space is reduced from (¢" — 1)6 to <qqn%1

6
T ) elements.

For example, in 3, the number of 6-tuples to check is reduced from (33 — 1)6 = 265 ~ 3.1(10%) to

3_
(33711) — 136 ~ 4.8(10°).

A similar reduction can be achieved in the second program, for {—1,0, 1}", by normalising the vectors
checked such that the first non-zero component of each vector is 1.

8 Results

Note for Z, we checked only vectors of the form v € {—1,0, 1}"

Table 1: Tuples of 6 vectors satisfying Theorem 7.7

n " F7 F7 F7 F? FZ Fg
2 6 6 6 6 12 12 6
3 24 24 48

However, after inspecting the vectors that the magma code produced, it was seen that if (vy, ...
list of vectors in the output, and G was a group representation of |S,, 1|, forallg € G, (9,97, 9,971, 9,9~

, V) Was a
T)O

(v1,...,vg) is also a vector in the output. Identifying each of these as an equivalence class, we get the results:
Table 2: Equivalence classes of tuples of 6 vectors satisfying Theorem 7.7
n Y/ F3 Fy Fy Fy F? Fg
2 1 1 1 1 2 2 1
3 1 1 2

See Appendix A where an element from each equivalence class is listed.

9 Conclusion

We successfully derived a method for searching for tensor decompositions of the matrix multiplication tensor
M M, over fields Fy and Z". This method was implemented in code in the Magma Computer Algebra System,
and that code was used to find tensor decompositions of M M,, in the fields Z2, 3, F3, F3, F2, F2, F2, Z3, F3
and JF% using the symmetric group Sy+1.

Our method, and its implementation in code, can be used on other groups, and on different values of ¢ and
n to search for tensor decompositions of the matrix multiplication tensor, over different finite fields.

11



10 Further Study

 All finite fields where n = 2, 3 have tensor decompositions of M M,, corresponding to the decomposition
in the integers, restricted to the finite field. Some finite fields, however, have multiple sets of tensor
decompositions of M M,,. Is there any reason for this?

* The Symmetric Group Sy, 1 has order (n+1)!. Hence it only gives the minimum tensor rank when n = 2.
For n = 3, it gives an upper bound of 25 for the tensor rank. This is better than the naive approach, 27,
but falls short of the current best upper bound of 23. For higher values of n, it gets significantly worse.
Can picking different subgroups of GL (n,F) get a better bound?

* Is there any way to generate the vectors without searching the tensor product space?

12



A Appendix: Tensor Decomposition Vectors

Al n=2

Remark A.1. The following sets of vectors generate ™ (M M, —1 ®3) when acted on by the matrix represen-
tation of S3 given in Example 7.8.

(BB E)
(B0
(B0
(B
(-1 )
(-1
(B

Remark A.2. The following sets of vectors generate ™ (M M, —1 ®3) when acted on by the matrix represen-
tation of Sy given in Example 7.9.

{-1,0,1}® c Z3:

(iRERIRRHAE)

13



[a)
=
“.—\
“O
“r—l
Jr—l

F3:
o (0o 11| 111 1] 10 1 1 (0ol (1| (1| [O
ol lo|,|t], o], ], 11| ], |2], 1], ]1], o], 2], |1
1 (1 (1| (Oof ([of (2 21 121 (2] |11 0] |1

B Appendix: Magma Code

The Magma code is listed below, and can also be found online at:
https://github.com/Padraig-Ryan/Redesigning-Strassens-Algorithm

B.1 Code for IF‘Z

Below is the code we used to find tensor decompositions of M My, in Fy when ¢ = 2,n = 2:

1 //defining the vector space to work over F_g”n

2 q = 2;

3 n = 2;

4 Q :=Rationals ();

5

6 F := GF(q); // we want to work over F_q”n

7

8 //setting up vector spaces and matrix spaces

9 V := KMatrixSpace(F,n,1);

10 Vec :=VectorSpace(F,n);

11 M := KMatrixSpace(F,n,n);

12

13 //define general linear group

14 G := GL(n,F);

15

16 //S_3 for when n=2

17 if n eq 2 then;

18 genl := G![0,1,-1,-1];

19 gen2 := G![1,1,0,-1];

20 Gtest := sub<Glgenl,gen2>;

21 end if;

22

23 // S_4 for when n=3

24 if n eq 3 then;

25 genl := G![1,0,0,0,1,0,0,1,-1];

26 gen2 := G![1,0,0,1,-1,1,0,0,17;

27 gen3 := G![-1,1,0,0,1,0,0,0,1];

28 gen4 := G![0,0,-1,-1,1,-1,-1,0,0];

29 Gtest := sub<Glgenl,gen2,gen3,gend>;

30 end if;

31

32 //SG allows us to test multiple group actions subsequently
33 SG:=[ Gtest];

34

35 /- vectors to search when working over F_q"n ——————————
36 //we generate all possible subspaces of the vector space of dimension 1
37 VRI1 := {sub<Vlv>: v in V | v ne V!0};

38 VRI1 := {Basis(s)[1]: s in VRl}; //select one element from each subspace
39

40 //Matrix Multiplication Tensor

41 MM := function ()
E := Basis(V);

N
[\S]

14



43 templ := TensorProduct(V!0,V!0);

44 MM := TensorProduct(TensorProduct(templ ,templ) , templ);
45 i =1

46 j :=1;

47 k :=1;

48 1 :=1;

49 s :=1;

50 t =1

51

52 while 1 le n do;
53 while j le n do;

54 while k le n do;

55 temp2 :=TensorProduct(E[k],E[i]):

56 temp3 :=TensorProduct(E[i],E[j]);

57 temp4 :=TensorProduct(E[j],E[k]);

58 MM := MM + TensorProduct(TensorProduct(temp2,temp3) ,temp4);
59 k := k+1;

60

61 end while;

62 j o= j+1;

63 k := 1;

64 end while;
65 i = i+1;

66 ji=1;

67 end while;

68 return MM;

69 end function;

70

71

72 //id “~{tensor product 3)

73 calcld := function ()

74 E := Basis(V);

75 i :=1;

76 IdIter := [[1,1,1],[1,1,2],[1,2,1],[1,2,2],[2,1,1],[2,1,2],[(2,2,1],[2,2,2]];
77 listl := {};

78 i:=1;

79 while 1 le n do;

80 ji=1;

81 while j le n do;

82 k:=1;

83 while k le n do;

84 A:=TensorProduct(E[i], E[i]);
85 B:=TensorProduct(E[j], E[j]);
86 C:=TensorProduct(E[k], E[k]);
87 AB:=TensorProduct (A,B);

88 listl := listl join {TensorProduct(AB,C)};
89 k := k +1;

90 end while;

91 ji=j+1;

92 end while;

93 i:= i+1;

94 end while;
95 return &+[a: a in listl |;
96 end function;

97
98 //Function to calculate the tensor product of 6 vectors
99 SixTensor := function(a,b,c,d,e,f)

100 sl:=TensorProduct(a,b);
101 s2:=TensorProduct(c,d);
102 s3:=TensorProduct(e,f);
103 return TensorProduct(TensorProduct(sl,s2),s3);

104

105 end function;

106

107 // applies GL"6 before tensor product

108 functO := function(vl,v2,v3,v4,v5,v6,g1,g2,g3,g4,25,g6)

15



109 return SixTensor(gl=svl,g2xv2,g3xv3, gdxvd, g5xv5,g6+v0);
110 end function;

111

112 //applies (g_l,g_17-t,... in GLA6 to vectors then takes the 6 tensor product
113 funct3 := function(vl,v2,v3,v4,v5,v6,A)

114 B := Transpose(A*-1);

115 return functO(vl,v2,v3,v4,v5,v6,A,B,A,B,A,B);

116 end function;

117

118 Id := calcld ();

119 MMa := MM() ;

120 T := Parent(MMa);

121

122 //check if we got a set of tensors that match MMa-id
123 CheckVectorsGrow :=function(vl,v2,v3,v4,v5,v6,H)

124 Sum := &+[funct3(vl,v2,v3,v4,v5,v6,A): A in H];

125 return Sum in sub<TIMMa-Id> and Sum ne T!O0;

126 //we check the subspace above because of the lambda multiple term in the equation
127 end function;

128

129

130 //The main code that iterates through

131 //the representatives of the subspaces of vectors
132 GeneralTest := function (SG);

133 for H in SG do;

134 print "this group:";

135 H; //print the group

136 count :=0;

137 for v in CartesianPower (VRIl, 6) do;

138 if (CheckVectorsGrow (v[1],v[2],v[3],v[4],v[5],v[6],H)) then;
139 print "answer";

140 v; //print the solution vectors

141 count := count +1; //number of solutions

142 print "end answer";

143 print "";

144 end if;

145 end for;

146 print "count: " , count;

147 end for;

148 return 1;

149 end function;

150

151 // start the search
152 GeneralTest(SG) ;
153

154 print "eof";

Output
1 this group: 16
2 MatrixGroup (2, GF(2)) 17 [1]
3 Generators: 18 [0],
4 [0 1] 19
5 [1 1] 20 [1]
6 21 [17,
7 [1 1] 22
8 [0 1] 23 [0]
9 answer 24 [17,
10 < 25
11 [1] 26 [0]
12 [17], 27 [1]
13 28 >
14 [1] 29 end answer
15 [0], 30

16



31 answer 88

32 < 89 [0]
33 [1] 90 [17,
34 [17, 91

35 92 [1]
36 [0] 93 [1]
37 [17, 94 >

38 95 end answer
39 [0] 96

40 [1], 97 answer
41 98 <

42 [1] 99 [0]
43 [17, 100 [17,
44 101

45 [1] 102 [1]
46 [0], 103 [17,
47 104

48 [1] 105 [1]
49 [0] 106 [0],
50 > 107

51 end answer 108 [1]
52 109 [07],
53 answer 110

54 < 111 [1]
55 [1] 112 [17,
56 [0], 113

57 114 [0]
58 [1] 115 [1]
59 [17, 116 >

60 117 end answer
61 [0] 118

62 [117, 119 answer
63 120 <

64 [0] 121 [0]
65 [17, 122 [17,
66 123

67 [1] 124 [0]
68 [17, 125 [17,
69 126

70 [1] 127 [1]
71 [0] 128 [17,
72 > 129

73 end answer 130 [1]
74 131 [0],
75 answer 132

76 < 133 [1]
77 [1] 134 [0],
78 [0], 135

79 136 [1]
80 [1] 137 [1]
81 [0], 138 >

82 139 end answer
83 [1] 140

84 [1], 141 count: 6
85 142 1

86 [0] 143  eof

87 [1],

B.2 Code for Z"

Below is the code we used to find tensor decompositions of M M, in Z"™ when n = 2:

// defining the vector space to work over F_g”n
n = 2;
Q :=Rationals () ;

LSRN (S R

17



5 F :=Rationals(); // if we want to work over Q or Z
6

7 //setting up vector spaces and matrix spaces

8 V := KMatrixSpace(F,n,1);

9 Vec :=VectorSpace(F,n);

10 M := KMatrixSpace(F,n,n);

11

12 // define general linear group
13 G := GL(n,F);

14

15 //S_3 for when n=2

16 if n eq 2 then;

17 genl := G![0,1,-1,-1];

18 gen2 := G![1,1,0,-1];

19 Gtest := sub<Glgenl,gen2>;
20 end if;

21

22 // S_4 for when n=3
23 if n eq 3 then;

24 genl := G![1,0,0,0,1,0,0,1,-17;
25 gen2 := G![1,0,0,1,-1,1,0,0,1];
26 gen3 := G![-1,1,0,0,1,0,0,0,1];

27 gen4 := G![0,0,-1,-1,1,-1,-1,0,0];
28 Gtest := sub<Glgenl,gen2,gen3,gend>;
29 end if;

30

31 //SG allows us to test multiple group actions subsequently
32 SG:=[ Gtest];

33

34 /) vectors to search when working over Z —————————

35 //this has similar end results to above, but we have to do it manually,
36 //because we only want vectors in {-1,0,1}"n

37 VRI := [[-1],[0],[1]];
38 for i in [1..n-1] do;

39 VR2 := [];

40 for j in [1..#VR1] do;
41 for k in [-1..1] do;

42 VR2 := Append(VR2, Append(VRI[j].k));
43 end for;

44 end for;

45 VRI1 := VR2;

46 end for;

47 VR3 := [];

48 //Convert sequences of sequences into sequences of vectors
49 for i in VRI do;

50 VR3 := Append(VR3,V!i);

51 end for;

52 VRI1 := VR3;

53 VRI1 := {v: v in VRl | v ne V!0};

54 //select a set of vectors that generate unique subspaces
55 VRI1 := [v:v in VRl | v[i][l] eq 1 where i is Min({j:j in [1..n] | v[j][1] ne O}) 1;
56

57 // Matrix Multiplication Tensor

58 MM := function ()

59 E := Basis(V);

60 templ := TensorProduct(V!0,V!0);

61 MM := TensorProduct(TensorProduct(templ ,templ) ,templ);
62 i =1

63 j =1

64 k :=1;

65 1 :=1;

66 s :=1;

67 t :=1;

68

69 while i le n do;
70 while j le n do;

18



71 while k le n do;

72 temp2 :=TensorProduct(E[k],E[i]):
73 temp3 :=TensorProduct(E[i],E[]j]);
74 temp4 :=TensorProduct(E[j],E[k]):
75 MM := MM + TensorProduct(TensorProduct(temp2,temp3) ,temp4);
76 k = k+1;

77

78 end while;

79 j o= j+1;

80 k := 1;

81 end while;

82 i = i+1;

83 ji=1;

84 end while;
85 return MM;
86 end function;

87

88

89 //id ~{tensor product 3)

90 calcld := function ()

91 E := Basis(V);

92 i =1

93 IdIter := [[1,1,1],[1,1,2],[1,2,1],[1,2,2],[2,1,1],[2,1,2],[2,2,1],[2,2,2]];
94 listl = {};

95 i:=1;

96 while i le n do;

97 ji=1;

98 while j le n do;

99 k:=1;

100 while k le n do;

101 A:=TensorProduct(E[i], E[i]);
102 B:=TensorProduct(E[j], E[j]);
103 C:=TensorProduct(E[k], E[k]);
104 AB:=TensorProduct (A,B) ;

105 listl := listl join {TensorProduct(AB,C) };
106 k := k +1;

107 end while;

108 ji=j+1

109 end while;

110 i:= i+1;

111 end while;
112 return &+[a: a in listl ];
113 end function;

114
115 //Function to calculate the tensor product of 6 vectors
116 SixTensor := function(a,b,c,d,e,f)

117 sl:=TensorProduct(a,b);

118 s2:=TensorProduct(c,d);

119 s3:=TensorProduct(e,f);

120 return TensorProduct(TensorProduct(sl,s2),s3);

121

122 end function;

123

124 // applies GL"6 before tensor product

125 functO := function(vl,v2,v3,v4,v5,v6,g1,g2,23,g4,25,¢6)
126 return SixTensor(glxvl,g2+v2,g3%xv3,gd=xvd, g5%v5,g6%v6);
127 end function;

128
129 // applies (g_1,g 1”7-t,... in GL"6 to vectors then takes the 6 tensor product
130 funct3 := function(vl,v2,v3,v4,v5,v6,A)

131 B := Transpose(A"-1);

132 return functO(vl,v2,v3,v4,v5,v6,A,B,A,B,A,B);
133 end function;

134

135 Id := calcld ();

136 MMa := MM() ;

19



137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

T := Parent(MMa) ;

// check if we got a

set of tensors that match MMa-id
CheckVectorsGrow :=function(vl,v2,v3,v4,v5,v6,H)
Sum := &+[funct3(vl,v2,v3,v4,v5,v6,A): A in H];

return Sum in sub<TIMMa-Id> and Sum ne T!O0;

//we check the

end function;

// The main code that

//the representatives

iterates through

GeneralTest := function (SG);

for H in SG do;
print "this group:

",
s

H; //print the group

count :=0;

for v in CartesianPower (VRIl, 6) do;

if (CheckVectorsGrow (v[1],v[2],v[3],v[4],v[5],v[6],H)) then;

print "answer";

v; //print the solution vectors
count := count +1; //number of solutions
print "end answer";

print "";
end if;
end for;
print "count: " ,
end for;
return 1;
end function;

// start the search
GeneralTest (SG) ;

print "eof";

count;

subspace above because of the lambda multiple term in the

of the subspaces of vectors

20

equation



