Redesigning Strassen's Algorithm

Pádraig Ryan

UCD

July 2021

Outline

(1) Notation
(2) Tensors

- Tensor Rank
(3) Strassen's Algorithm

4 Grochow-Moore
(5) Search for Finite Field Vectors
(6) Results
(7) Further Questions

Notation

For the purposes of this presentation:

- Vectors, $v \in V$, in are written as column vectors.
- Dual Space covectors, $\nu \in V^{*}$ are written as row vectors.
- For the most part, we are working over finite fields, where vector spaces are isomorphic to their dual space.
- Finite fields are denoted by \mathbb{F}, and their n-dimensional vector space as \mathbb{F}^{n}.
- $\left(\mathbb{F}^{n}\right)^{\otimes m}=\underbrace{\mathbb{F}^{n} \otimes \mathbb{F}^{n} \otimes \ldots \otimes \mathbb{F}^{n}}_{m \text { times }}$

Tensor Product

Definition (Tensor Product (of Vector Spaces))

Let V be a \mathbb{F}-Vector Space with basis $\left\{e_{1}, \ldots, e_{n}\right\}$ and W be a \mathbb{F}-Vector Space with basis $\left\{f_{1}, \ldots, f_{m}\right\}$. The tensor product of Vector Spaces V and W, denoted $V \otimes W$, is an $n m$-dimensional Vector Space with basis $\left\{e_{i} \otimes f_{j}: i \leq n, j \leq m\right\}$.

Example

Consider the Vector Spaces \mathbb{F}^{2} and $\left(\mathbb{F}^{3}\right)^{*}$ with the standard basis vectors. $U:=\mathbb{F}^{2} \otimes\left(\mathbb{F}^{3}\right)^{*}$ is a $2 \cdot 3=6$ dimensional vector space with basis vectors:

$$
\begin{aligned}
& e_{1} \otimes f_{1}^{*}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], e_{1} \otimes f_{2}^{*}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], e_{1} \otimes f_{3}^{*}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
& e_{2} \otimes f_{1}^{*}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], e_{2} \otimes f_{2}^{*}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], e_{2} \otimes f_{3}^{*}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Tensors

A tensor describes a multilinear map between vector spaces.

Example (Matrix Multiplication Tensor)

The 3-slices of $M M_{2}$ are:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Tensor Rank

Definition

The Rank $r k(t)$ of a tensor $t \in\left(\mathbb{F}^{n}\right)^{\otimes n}$ is the minimum number, r, of tuples of n vectors $\left(u_{i}^{1}, \ldots, u_{i}^{\eta}\right)$ such that;

$$
\sum_{i=1}^{r} u_{i}^{1} \otimes \ldots \otimes u_{i}^{n}=t
$$

Note: The bilinear complexity of a bilinear map is equivalent to the minimum Rank of a tensor.

Example

$$
t=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

has tensor rank $r k(t)=2$, as;

$$
t=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \otimes\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \otimes\left[\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right]
$$

Matrix Multiplication and Strassen's Algorithm

Example (Matrix Multiplication Tensor)

The 3-slices of $M M_{2}$ are:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

It can be checked that the rank of the Matrix multiplication tensor is no more than 8.

Volker Strassen Showed in 1968 that multiplying two 2×2 matrices could be done in 7 multiplications.

Strassen's Algorithm

Example (Strassen's Algorithm)

$$
\begin{gathered}
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] \\
I=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) \\
I I=\left(A_{21}+A_{22}\right) B_{11} \\
I I I=A_{11}\left(B_{12}-B_{22}\right) \\
I V=A_{22}\left(-B_{11}+B_{21}\right) \\
V=\left(A_{11}+A_{12}\right) B_{22} \\
V I=\left(-A_{11}+A_{21}\right)\left(B_{11}+B_{12}\right) \\
V I I=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right)
\end{gathered}
$$

Example (Strassen's Algorithm)

$$
\begin{gathered}
I=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) \\
I I=\left(A_{21}+A_{22}\right) B_{11} \\
I I I=A_{11}\left(B_{12}-B_{22}\right) \\
I V=A_{22}\left(-B_{11}+B_{21}\right) \\
V=\left(A_{11}+A_{12}\right) B_{22} \\
V I=\left(-A_{11}+A_{21}\right)\left(B_{11}+B_{12}\right) \\
V I I=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right) \\
A B=\left[\begin{array}{cc}
I+I V-V+V I I & I I I+V \\
I I+I V & I+I I I-I I+V I
\end{array}\right]
\end{gathered}
$$

Strassen's Algorithm as a Tensor

We can see that Strassen's Algorithm gives the $M M_{2}$ tensor as follows; Consider C_{11}.

$$
\begin{aligned}
& C_{11}=I+I V-V+V I I \\
&\left(M_{i j 1}\right)_{i, j}= {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right] \otimes\left[\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right]+(-1)\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \otimes\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] } \\
&+\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right] \otimes\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right] \\
&= {\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]+\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
-1 \\
0 & 0 & 0 \\
0
\end{array}\right] } \\
&+\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & -1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Grochow-Moore

Designing Strassen's Algorithm (Grochow-Moore) describes a way in which Strassen's Algorithm can be generalised to vectors of length n.

Definition (Unitary 2-design)

A set, S, of n-dimensional vectors is a unitary 2-design if;

$$
\sum_{v \in S} v=0 \text { and } \frac{1}{|S|} \sum_{v \in S} v \otimes v^{*}=\frac{1}{n} 1
$$

Theorem

Let $S=\left\{w_{1}, \ldots, w_{s}\right\} \subset \mathbb{C}^{n}$ be a unitary 2-design, and let $s=|S|$. Then the tensor rank of $M M_{n}$ is at most $s(s-1)(s-2)+1$, and the rank 1 decomposition is given by:

$$
\begin{gathered}
M M_{n}=\boldsymbol{1}^{\otimes 3}+\frac{n^{3}}{s^{3}} \sum_{i, j, k, \text { distinct }}\left(w_{i} \otimes\left(w_{j}-w_{i}\right)^{*}\right) \otimes\left(w_{j} \otimes\left(w_{k}-w_{j}\right)^{*}\right) \\
\otimes\left(w_{k} \otimes\left(w_{i}-w_{k}\right)^{*}\right)
\end{gathered}
$$

Example

The vertices of an equilateral triangle (centered at the origin) form a 2-design.

$$
\begin{gathered}
S:=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 / 2 \\
\sqrt{3} / 2
\end{array}\right],\left[\begin{array}{c}
-1 / 2 \\
-\sqrt{3} / 2
\end{array}\right]\right\} \\
\sum_{v \in S} v=\left[\begin{array}{l}
1-1 / 2-1 / 2 \\
\sqrt{3} / 2-\sqrt{3} / 2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=0 \\
\frac{1}{|S|} \sum_{v \in S} v \otimes v^{*} \\
=\frac{1}{3} \cdot\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
1 / 4 & -\sqrt{3} / 4 \\
-\sqrt{3} / 4 & 3 / 4
\end{array}\right]+\left[\begin{array}{cc}
1 / 4 & \sqrt{3} / 4 \\
\sqrt{3} / 4 & 3 / 4
\end{array}\right]\right)=\frac{1}{2} 1
\end{gathered}
$$

Hence, the rank of $M M_{2}=s(s-1)(s-2)+1=7$

Search for Finite Field Vectors

The above construction for $M M_{2}$ will only work in fields where $\frac{1}{2}$ and $\sqrt{3}$ exist.
Can we find vectors that satisfy some version of Grochow-Moore's construction over finite fields or over the Integers? Hence lets consider:

$$
\begin{aligned}
M M_{n}-\mathbf{1}^{\otimes 3}=\lambda \sum_{g \in G}\left[g_{1}\left(w_{1}\right) \otimes\right. & \left.\left(g_{2}\left(w_{2}\right)\right)^{*}\right] \otimes\left[g_{3}\left(w_{3}\right) \otimes\left(g_{4}\left(w_{4}\right)\right)^{*}\right] \\
& \otimes\left[g_{5}\left(w_{5}\right) \otimes\left(g_{6}\left(w_{6}\right)\right)^{*}\right] \\
& \in\left(\mathbb{F}^{n \times n}\right)^{\otimes 3}
\end{aligned}
$$

with subgroup $G \leq G L(n, \mathbb{F})^{6}$.
Note: the tensor rank is invariant under the action of elements of the General Linear group.

We would like to work in $\left(\mathbb{F}^{n}\right)^{\otimes 6}$ rather than $\left(\mathbb{F}^{n \times n}\right)^{\otimes 3}$.

Definition

We define an isomorphism $\pi:\left(\mathbb{F}^{n \times n}\right)^{\otimes 3} \mapsto\left(\mathbb{F}^{n}\right)^{\otimes 6}$

$$
\begin{aligned}
& \pi\left(e_{i_{1}} \otimes e_{i_{2}}^{*} \otimes e_{i_{3}} \otimes e_{i_{4}}^{*} \otimes e_{i_{5}} \otimes e_{i_{6}}^{*}\right)= \\
& e_{i_{1}} \otimes e_{i_{2}} \otimes e_{i_{3}} \otimes e_{i_{4}} \otimes e_{i_{5}} \otimes e_{i_{6}}
\end{aligned}
$$

Let $g=\left(g_{1}, g_{2}, g_{3}, g_{4}, g_{5}, g_{6}\right) \in G L(n, \mathbb{F})^{6}$

$$
\begin{gathered}
\pi\left(g_{1}\left(e_{i_{1}}\right) \otimes\left(g_{2}\left(e_{i_{2}}\right)\right)^{*} \otimes g_{3}\left(e_{i_{3}}\right) \otimes\left(g_{4}\left(e_{i_{4}}\right)\right)^{*} \otimes g_{5}\left(e_{i_{5}}\right) \otimes\left(g_{6}\left(e_{i_{6}}\right)\right)^{*}\right)= \\
g_{1}\left(e_{i_{1}}\right) \otimes g_{2}\left(e_{i_{2}}\right) \otimes g_{3}\left(e_{i_{3}}\right) \otimes g_{4}\left(e_{i_{4}}\right) \otimes g_{5}\left(e_{i_{5}}\right) \otimes g_{6}\left(e_{i_{6}}\right)
\end{gathered}
$$

We want to pick a subgroup $G \leq G L(n, \mathbb{F})^{6}$ that fixes $M M_{n}$ and $\mathbf{1}^{\otimes 3}$ Choosing g to fix $\mathbf{1}^{\otimes_{3}}$ and $M M_{n}$ gets us $g=\left(g_{1}, g_{1}^{-1}, g_{1}, g_{1}^{-1}, g_{1}, g_{1}^{-1}\right)$

$$
\begin{gathered}
\pi\left(\left[M M_{n}-\mathbf{1}^{\otimes 3}\right)=\pi\left[\lambda \sum_{g \in G}\left[g_{1}\left(w_{1}\right) \otimes\left(g_{2}\left(w_{2}\right)\right)^{*}\right] \otimes\left[g_{3}\left(w_{3}\right) \otimes\left(g_{4}\left(w_{4}\right)\right)^{*}\right]\right.\right. \\
\\
\left.\otimes\left[g_{5}\left(w_{5}\right) \otimes\left(g_{6}\left(w_{6}\right)\right)^{*}\right]\right] \\
=\lambda \sum_{g \in G} g_{1}\left(w_{1}\right) \otimes g_{1}^{-T}\left(w_{2}\right) \otimes g_{1}\left(w_{3}\right) \otimes g_{1}^{-T}\left(w_{4}\right) \otimes g_{1}\left(w_{5}\right) \otimes g_{1}^{-T}\left(w_{6}\right) \\
\\
\in\left(\mathbb{F}^{n}\right)^{\otimes 6}
\end{gathered}
$$

I choose the subgroup of $G L(n, \mathbb{F})$ to be S_{n+1}, the symmetric group on a set of $n+1$ elements.

Example (Representation of S_{3} in $G L(2, \mathbb{F})$)

The subgroup S_{3} is generated by

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right],\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]
$$

Results of Magma Calculation

Note for \mathbb{Z}, we checked only vectors of the form $v \in\{-1,0,1\}^{n}$

n	\mathbb{Z}	\mathbb{F}_{2}^{n}	\mathbb{F}_{3}^{n}	\mathbb{F}_{4}^{n}	\mathbb{F}_{5}^{n}	\mathbb{F}_{7}^{n}	\mathbb{F}_{8}^{n}
2	6	6	6	6	12	12	6
3	24	24	48				

Further Questions

- Some finite fields have multiple sets of vectors which generate $M M_{n}$?
- The Symmetric group S_{n+1} has order $(n+1)$!. Hence it only gives the minimum tensor rank when $n=2$. For $n=3$, it gives an upper bound of 25 for the tensor rank. This is better than the naive approach, 27, but falls short of the current best upper bound of 23. Can picking different subgroups and group orbits get a better bound?
- Is there any way to generate the vectors without searching the tensor product space?

