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Notation

For the purposes of this presentation:
Vectors, v ∈ V , in are written as column vectors.
Dual Space covectors, ν ∈ V ∗ are written as row vectors.
For the most part, we are working over finite fields, where vector
spaces are isomorphic to their dual space.
Finite fields are denoted by F, and their n-dimensional vector
space as Fn.
(Fn)⊗m = Fn ⊗ Fn ⊗ . . .⊗ Fn︸ ︷︷ ︸

m times
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Tensor Product

Definition (Tensor Product (of Vector Spaces))
Let V be a F-Vector Space with basis {e1, . . . , en} and W be a
F-Vector Space with basis {f1, . . . , fm}. The tensor product of Vector
Spaces V and W , denoted V ⊗ W , is an nm-dimensional Vector
Space with basis {ei ⊗ fj : i ≤ n, j ≤ m}.
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Example

Consider the Vector Spaces F2 and (F3)∗ with the standard basis
vectors. U := F2 ⊗ (F3)∗ is a 2 · 3 = 6 dimensional vector space with
basis vectors:

e1 ⊗ f ∗1 =

[
1 0 0
0 0 0

]
, e1 ⊗ f ∗2 =

[
0 1 0
0 0 0

]
, e1 ⊗ f ∗3 =

[
0 0 1
0 0 0

]

e2 ⊗ f ∗1 =

[
0 0 0
1 0 0

]
, e2 ⊗ f ∗2 =

[
0 0 0
0 1 0

]
, e2 ⊗ f ∗3 =

[
0 0 0
0 0 1

]
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Tensors

A tensor describes a multilinear map between vector spaces.

Example (Matrix Multiplication Tensor)
The 3-slices of MM2 are:

1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,


0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0

 ,


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1
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Tensor Rank

Definition
The Rank rk(t) of a tensor t ∈ (Fn)⊗n is the minimum number, r , of
tuples of n vectors (u1

i , . . . , u
n
i ) such that;

r∑
i=1

u1
i ⊗ . . .⊗ un

i = t

Note: The bilinear complexity of a bilinear map is equivalent to the
minimum Rank of a tensor.
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Example

t =


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


has tensor rank rk(t) = 2, as;

t =


1
0
0
0

⊗
[
1 0 0 0

]
+


0
1
0
0

⊗
[
0 0 1 0

]
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Matrix Multiplication and Strassen’s Algorithm

Example (Matrix Multiplication Tensor)
The 3-slices of MM2 are:

1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,


0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0

 ,


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1


It can be checked that the rank of the Matrix multiplication tensor is no
more than 8.

Volker Strassen Showed in 1968 that multiplying two 2 × 2 matrices
could be done in 7 multiplications.
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Strassen’s Algorithm

Example (Strassen’s Algorithm)

A =

[
A11 A12
A21 A22

]
, B =

[
B11 B12
B21 B22

]

I = (A11 + A22) (B11 + B22)

II = (A21 + A22)B11

III = A11 (B12 − B22)

IV = A22 (−B11 + B21)

V = (A11 + A12)B22

VI = (−A11 + A21) (B11 + B12)

VII = (A12 − A22) (B21 + B22)
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Example (Strassen’s Algorithm)

I = (A11 + A22) (B11 + B22)

II = (A21 + A22)B11

III = A11 (B12 − B22)

IV = A22 (−B11 + B21)

V = (A11 + A12)B22

VI = (−A11 + A21) (B11 + B12)

VII = (A12 − A22) (B21 + B22)

AB =

[
I + IV − V + VII III + V

II + IV I + III − II + VI

]
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Strassen’s Algorithm as a Tensor

We can see that Strassen’s Algorithm gives the MM2 tensor as follows;
Consider C11.

C11 = I + IV − V + VII

(Mij1)i,j =

[
1 0
0 1

]
⊗

[
1 0
0 1

]
+

[
0 0
0 1

]
⊗
[
−1 0
1 0

]
+ (−1)

[
1 1
0 0

]
⊗
[
0 0
0 1

]
+

[
0 1
0 −1

]
⊗
[
0 0
1 1

]

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 1 0

+


0 0 0 0
0 −1 0 −1
0 0 0 0
0 0 0 0



+


0 0 0 0
0 0 1 1
0 0 0 0
0 0 −1 −1

 =


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
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Grochow-Moore

Designing Strassen’s Algorithm (Grochow-Moore) describes a way in
which Strassen’s Algorithm can be generalised to vectors of length n.

Definition (Unitary 2-design)
A set, S, of n-dimensional vectors is a unitary 2-design if;∑

v∈S

v = 0 and
1
|S|

∑
v∈S

v ⊗ v∗ =
1
n

1
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Theorem
Let S = {w1, . . . ,ws} ⊂ Cn be a unitary 2-design, and let s = |S|. Then
the tensor rank of MMn is at most s(s − 1)(s − 2) + 1, and the rank 1
decomposition is given by:

MMn = 1⊗3 +
n3

s3

∑
i,j,k ,distinct

(wi⊗(wj − wi)
∗)⊗ (wj ⊗ (wk − wj)

∗)

⊗ (wk ⊗ (wi − wk )
∗)
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Example
The vertices of an equilateral triangle (centered at the origin) form a
2-design.

S :=

{[
1
0

]
,

[
−1/2√

3/2

]
,

[
−1/2
−
√

3/2

]}
∑
v∈S

v =

[
1 − 1/2 − 1/2√

3/2 −
√

3/2

]
=

[
0
0

]
= 0

1
|S|

∑
v∈S

v ⊗ v∗

=
1
3
·
([

1 0
0 0

]
+

[
1/4 −

√
3/4

−
√

3/4 3/4

]
+

[
1/4

√
3/4√

3/4 3/4

])
=

1
2

1

Hence, the rank of MM2 = s(s − 1)(s − 2) + 1 = 7
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Search for Finite Field Vectors

The above construction for MM2 will only work in fields where 1
2 and√

3 exist.
Can we find vectors that satisfy some version of Grochow-Moore’s
construction over finite fields or over the Integers?
Hence lets consider:

MMn − 1⊗3 = λ
∑
g∈G

[g1(w1)⊗(g2(w2))
∗]⊗ [g3(w3)⊗ (g4(w4))

∗]

⊗ [g5(w5)⊗ (g6(w6))
∗]

∈ (Fn×n)⊗3

with subgroup G ≤ GL(n,F)6.
Note: the tensor rank is invariant under the action of elements of the
General Linear group.
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We would like to work in (Fn)⊗6 rather than (Fn×n)⊗3.

Definition
We define an isomorphism π : (Fn×n)⊗3 7→ (Fn)⊗6

π
(
ei1 ⊗ e∗

i2⊗ ei3 ⊗ e∗
i4 ⊗ ei5 ⊗ e∗

i6

)
=

ei1 ⊗ ei2 ⊗ ei3 ⊗ ei4 ⊗ ei5 ⊗ ei6

Let g = (g1, g2, g3, g4, g5, g6) ∈ GL(n,F)6

π
(
g1(ei1) ⊗(g2(ei2))

∗ ⊗ g3(ei3)⊗ (g4(ei4))
∗ ⊗ g5(ei5)⊗ (g6(ei6))

∗) =
g1(ei1)⊗ g2(ei2)⊗ g3(ei3)⊗ g4(ei4)⊗ g5(ei5)⊗ g6(ei6)

We want to pick a subgroup G ≤ GL(n,F)6 that fixes MMn and 1⊗3

Choosing g to fix 1⊗3 and MMn gets us g =
(

g1, g−1
1 , g1, g−1

1 , g1, g−1
1

)
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π([MMn − 1⊗3) = π

[
λ
∑
g∈G

[g1(w1)⊗(g2(w2))
∗]⊗ [g3(w3)⊗ (g4(w4))

∗]

⊗ [g5(w5)⊗ (g6(w6))
∗]

]

= λ
∑
g∈G

g1(w1)⊗ g−T
1 (w2)⊗ g1(w3)⊗ g−T

1 (w4)⊗ g1(w5)⊗ g−T
1 (w6)

∈ (Fn)⊗6
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I choose the subgroup of GL(n,F) to be Sn+1, the symmetric group on
a set of n + 1 elements.

Example (Representation of S3 in GL(2,F))
The subgroup S3 is generated by[

0 1
−1 −1

]
,

[
1 1
0 −1

]
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Results of Magma Calculation

Note for Z, we checked only vectors of the form v ∈ {−1, 0, 1}n

n Z Fn
2 Fn

3 Fn
4 Fn

5 Fn
7 Fn

8
2 6 6 6 6 12 12 6
3 24 24 48
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Further Questions

Some finite fields have multiple sets of vectors which generate
MMn?
The Symmetric group Sn+1 has order (n + 1)!. Hence it only gives
the minimum tensor rank when n = 2. For n = 3, it gives an upper
bound of 25 for the tensor rank. This is better than the naive
approach, 27, but falls short of the current best upper bound of 23.
Can picking different subgroups and group orbits get a better
bound?
Is there any way to generate the vectors without searching the
tensor product space?
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