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Abstract. We explicitly prove the quantum modularity of partial theta series with even or
odd periodic coefficients. As an application, we show that the Kontsevich-Zagier series Ft(q)
which matches (at a root of unity) the colored Jones polynomial for the family of torus knots
T (3, 2t), t ≥ 2, is a weight 3/2 quantum modular form. This generalizes Zagier’s result on the
quantum modularity for the “strange” series F (q).

1. Introduction

In [30], Zagier introduced the notion of a quantum modular form of weight k ∈ 1
2Z as a

function g : Q→ C for which the function rγ : Q \ {γ−1(i∞)} → C given by

g(α)− (cα+ d)−kg
(aα+ b

cα+ d

)
=: rγ(α)

extends to a real-analytic function on P1(R)\Sγ , where Sγ is a finite set, for each γ =

(
a b
c d

)
∈

SL2(Z). Suitable modifications can be made to restrict the domain of rγ to appropriate subsets
of Q and allow both multiplier systems and transformations on subgroups of SL2(Z). Since
their inception, there has been substantial interest in studying these modular objects which
emerge in diverse contexts: Maass forms [9], supersymmetric quantum field theory [12], topo-
logical invariants for plumbed 3-manifolds [5], [10], [11], combinatorics [13], [20], unified Witten-
Reshetikhin-Turaev invariants [19] and L-functions [24], [26]. For more examples, see Chapter
21 in [4].

One of the most influential of the original five examples from [30] is the Kontsevich-Zagier
“strange” series [29]

F (q) :=
∑
n≥0

(q)n (1.1)

where

(a1, a2, . . . , aj)n = (a1, a2, . . . , aj ; q)n :=

n∏
k=1

(1− a1q
k−1)(1− a2q

k−1) · · · (1− ajqk−1)

is the standard q-hypergeometric notation, valid for n ∈ N0 ∪ {∞}. F (q) is “strange” in the
sense that it does not converge on any open subset of C, but is well-defined when q is a root
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of unity (where it is finite). Zagier proves that for α ∈ Q, φ(α) := e
πiα
12 F (e2πiα) is a quantum

modular form of weight 3/2 on Q with respect to SL2(Z). The key to proving this result is the
“strange identity”

F (q)“ = ”− 1

2

∑
n≥1

n
(12

n

)
q
n2−1
24 (1.2)

where “ = ” means that the two sides agree to all orders at every root of unity (for further details,
see Sections 2 and 5 in [29]) and

(
12
∗
)

is the quadratic character of conductor 12. The idea is to
prove quantum modular properties for the right-hand side of (1.2) which are then inherited by
F (q). The purpose of this paper is to place the right-hand side of (1.2) and other examples in
the literature into the general context of quantum modularity of partial theta series with even
or odd periodic coefficients. Before stating our main result, we introduce some notation.

Let f : Z → C be an even or odd function with period M ≥ 2. For any fixed 1 ≤ k0 < 2M ,
consider the set

S(k0) :=

{
1 ≤ k ≤ M

2
: k2 ≡ k0 (mod 2M)

}
.

Let Mf (k0) ⊆ S(k0) be non-empty and such that f(j) = 0 whenever j 6∈ Mf (k0) ∪ {M − k :
k ∈Mf (k0)}. Clearly, Sf (k0) :=Mf (k0)∪{M −k : k ∈Mf (k0)} is the support of f . Consider
the following partial theta series

θf (z) :=
∑
n≥0

f(n) q
n2

2M , Θf (z) :=
∑
n≥0

nf(n) q
n2

2M (1.3)

where q = e2πiz, z ∈ H. For N ∈ N, let

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N), a ≡ d ≡ 1 (mod N)

}
and let ΓM be defined as Γ1(2M) if M is even and{(

a b
c d

)
∈ Γ1(2M) : b ≡ 0 (mod 2)

}
(1.4)

if M is odd. Consider the set

BM := {α ∈ Q : α is ΓM -equivalent to i∞} (1.5)

and let AM = AM,f be defined by (1.5) if
∑′

k∈Mf (k0)
f(k) 6= 0 and by

{α ∈ Q : α is ΓM -equivalent to 0 or i∞}

otherwise. Here and throughout,
∑′

means that whenever M
2 ∈ Mf (k0), we replace f

(
M
2

)
in

the sum by 1
2f
(
M
2

)
. We also employ the convention that f(n) = 0 if n 6∈ Z. For k ∈ 1

2Z and

γ =

(
a b
c d

)
∈ ΓM , we define the Petersson slash operator |k,χ by

(g|k,χγ)(τ) := χ(γ)(cτ + d)−kg

(
aτ + b

cτ + d

)
where τ ∈ C and χ is a multiplier. Finally, we write

( ·
·
)

for the extended Jacobi symbol and let
εd = 1 or i according as d ≡ 1 or 3 (mod 4). Our main result is now as follows.
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Theorem 1.1. Let f be a function with period M ≥ 2 and support Sf (k0). Let α ∈ Q. If f
is even, then Θf (α) is a quantum modular form of weight 3/2 on AM with respect to ΓM . If f
is odd, then θf (α) is a “strong” quantum modular form of weight 1/2 on Q with respect to ΓM
and is a quantum modular form of weight 1/2 on BM with respect to ΓM .

Remark 1.2. (i) The main novelty of Theorem 1.1 is that one does not require Θf (z) or θf (z)
to be a cusp form. For example, consider θψ(z) where ψ is given in Section 4.2 (cf. [20]).
Otherwise, one can invoke (2.4), (2.9) and Theorem 1.1 in [8].

(ii) In Theorem 1.1, Θf (z) satisfies

Θf (α)− (Θf | 3
2
,χγ)(α) = rγ,f (α)

for all γ =

(
a b
c d

)
∈ ΓM and α ∈ AM , where

rγ,f (z) = −
√
M · e

πi
4

2π

∫ i∞

γ−1(i∞)
θf (τ)(τ − z̄)−

3
2 dτ.

Here, rγ,f : R→ C is a C∞ function which is real-analytic in R\{γ−1(i∞)} and χ is a multiplier
given by

χ(γ) = e
πiabk0
M

(
2cM

d

)
ε−1
d . (1.6)

(iii) For τ ∈ H− := {τ ∈ C : Im(τ) < 0}, let Θ̂f (τ) denote the non-holomorphic Eichler
integral

Θ̂f (τ) :=
1√
iM

∫ i∞

τ̄
Θf (w)(w − τ)−

1
2 dw. (1.7)

In Theorem 1.1, θf (α) is a “strong” quantum modular form in the following sense (see [22] or
[30]):

(1) θf and Θ̂f “agree to infinite order” at all rational numbers (see Lemma 2.6),
(2) for τ ∈ H− and γ ∈ ΓM , we have

Θ̂f (τ)− (Θ̂f | 1
2
,χγ)(τ) = rγ,f (τ)

where

rγ,f (τ) =
1√
iM

∫ i∞

γ−1(i∞)
Θf (w)(w − τ)−

1
2 dw.

Here, rγ,f (τ) is a holomorphic function in H−, extends as a C∞ function to R and is real-analytic
in R \ {γ−1(i∞)}. Also, χ is the multiplier as in (1.6). A close inspection of the techniques in

[22] reveals that one needs convergence of Θ̂f (τ) for τ ∈ H− (and not necessarily at rational
points) to deduce the strong quantum modularity property for θf (z). To ensure this condition,
Θf (z) does not have to be a cusp form. For a similar approach, see [3] and [17].

(iv) If f is a function with period M ≥ 2 and support Sf (k0), then θf (z) is a sum of a modular
form and a (strong) quantum modular form both of weight 1/2 and Θf (z) is a sum of a modular
form and a quantum modular form both of weight 3/2. To see this, write f as

f(n) = fe(n) + fo(n)
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where

fe(n) :=
f(n) + f(−n)

2
, fo(n) :=

f(n)− f(−n)

2
.

Clearly, fe(n) (respectively, fo(n)) is an even (respectively, odd) function of period M with
support contained in Sf (k0). Indeed, if Sf,e(k0) denotes (respectively, Sf,o(k0)) the support of
fe(n) (respectively, fo(n)), then Sf,e(k0) = Mf,e(k0) ∪ {M − k : k ∈ Mf,e(k0)} (respectively,
Sf,o(k0) =Mf,o(k0) ∪ {M − k : k ∈ Mf,o(k0)}) for some Mf,e(k0),Mf,o(k0) ⊆Mf (k0). Thus,
we have

θf (z) =
∑
n≥0

fe(n) q
n2

2M +
∑
n≥0

fo(n) q
n2

2M =: θ
(e)
f (z) + θ

(o)
f (z),

Θf (z) =
∑
n≥0

n fe(n) q
n2

2M +
∑
n≥0

n fo(n) q
n2

2M =: Θ
(e)
f (z) + Θ

(o)
f (z).

Now, apply Lemma 2.1 to θ
(e)
f (z) and Theorem 1.1 to θ

(o)
f (z). Similarly, apply Theorem 1.1 to

Θ
(e)
f (z) and Lemma 2.2 to Θ

(o)
f (z).

(v) As pointed out by the referee, there is a “duality” in the proof of Theorem 1.1. If f is
even, then the quantum modularity of Θf (z) is driven by the modularity of θf (z) and if f is
odd, then the (strong) quantum modularity of θf (z) is driven by the modularity of Θf (z). See
Lemmas 2.1 and 2.2.

The paper is organized as follows. In Section 2, we carefully study some important trans-
formation and limiting properties of θf (z) and Θf (z). In Section 3, we prove Theorem 1.1. In
Section 4, we give some examples, including the quantum modularity of the Kontsevich-Zagier
series Ft(q) associated to the family of torus knots T (3, 2t), t ≥ 2. This latter result generalizes
the quantum modularity of F (q).

2. Preliminaries

We begin with transformation properties of the partial theta series θf (z) and Θf (z) in (1.3).

Lemma 2.1. Let f be an even function with period M ≥ 2 and support Sf (k0). For all γ =(
a b
c d

)
∈ ΓM , we have

θf (γz) = e
πiabk0
M

(
2cM

d

)
ε−1
d (cz + d)

1
2 θf (z). (2.1)

Proof. From (1.3), we have

θf (z) =
∑

1≤k<M

∞∑
n=0

f(Mn+ k) q
(Mn+k)2

2M

=
∑

1≤k<M
f(k)

∑
n≥0

q
(Mn+k)2

2M

=
∑

1≤k<M
2

f(k)

∑
n≥0

q
(Mn+k)2

2M +
∑
n≥0

q
(Mn+M−k)2

2M

+ f
(M

2

) ∑
n≥0

q

(
Mn+M2

)2
2M (2.2)
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=
∑

1≤k<M
2

f(k)
∞∑

n=−∞
q

(Mn+k)2

2M + δf

(M
2

) ∞∑
n=−∞

q

(
Mn+M2

)2
2M (2.3)

where

δf

(M
2

)
:=

{
1
2f
(
M
2

)
if M is even and M

2 ∈Mf (k0),

0 otherwise.

Note that (2.3) follows by changing n→ −n− 1 in the second sum in (2.2). Since support of f
is Sf (k0), (2.3) yields

θf (z) =
∑′

k∈Mf (k0)

f(k) θ(z; k,M) (2.4)

where θ(z; k,M) is the theta series

θ(z; k,M) :=

∞∑
n=−∞

q
(Mn+k)2

2M .

By Proposition 2.1 in [28], we see that θ(z; k,M) satisfies

θ(γz; k,M) = e
πiabk2

M

(
2cM

d

)
ε−1
d (cz + d)

1
2 θ(z; ak,M) (2.5)

for all γ =

(
a b
c d

)
∈ ΓM . Also, since γ ∈ ΓM , we have for some integer j that

θ(z; ak,M) =

∞∑
n=−∞

q
(Mn+ak)2

2M =

∞∑
n=−∞

q
(Mn+(1+2jM)k)2

2M = θ(z; k,M) (2.6)

where n has been replaced by n− 2jk in the second sum in (2.6). Noting that

e
πiabk2

M = e
πiabk0
M , (2.7)

(2.1) now follows from (2.4) and (2.5)–(2.7). �

Lemma 2.2. Let f be an odd function with period M ≥ 2 and support Sf (k0). For all γ =(
a b
c d

)
∈ ΓM , we have

Θf (γz) = e
πiabk0
M

(
2cM

d

)
ε−1
d (cz + d)

3
2 Θf (z). (2.8)

Proof. If M is even, then f
(
M
2

)
= 0 for odd f . So, we have

Θf (z) =
∑

0≤k<M

∑
n≥0

(Mn+ k) f(Mn+ k) q
(Mn+k)2

2M

=
∑

0≤k≤M
2

f(k)

∑
n≥0

(Mn+ k) q
(Mn+k)2

2M −
∑
n≥0

(Mn+ (M − k)) q
(Mn+M−k)2

2M


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=
∑

0≤k≤M
2

f(k)

∞∑
n=−∞

(Mn+ k) q
(Mn+k)2

2M

=
∑

k∈Mf (k0)

f(k) Θ̃(z; k,M) (2.9)

where

Θ̃(z; k,M) =

∞∑
n=−∞

(Mn+ k) q
(Mn+k)2

2M .

Using [28, Proposition 2.1] (with A = [M ], ν = 1 and P (m) = m), we have

Θ̃(γz; k,M) = e
πiabk2

M

(
2cM

d

)
ε−1
d (cz + d)

3
2 Θ̃(z; ak,M) (2.10)

for all γ =

(
a b
c d

)
∈ ΓM . Also, since γ ∈ ΓM , we have for some integer j that

Θ̃(z; ak,M) =

∞∑
n=−∞

(Mn+ ak) q
(Mn+ak)2

2M

=

∞∑
n=−∞

(Mn+ (1 + 2jM)k) q
(Mn+(1+2jM)k)2

2M = Θ̃(z; k,M) (2.11)

where n has been replaced by n− 2jk in the sum in (2.11). Thus, combining (2.9)–(2.11) yields
(2.8). �

Lemma 2.3. Let f be an even function with period M ≥ 2 and support Sf (k0). Then

θf (z) = q
k0
2M (qM ; qM )∞

∑′

k∈Mf (k0)

qk
′
f(k) (−q

M
2
−k; qM )∞(−q

M
2

+k; qM )∞ (2.12)

where for k ∈Mf (k0), k′ =
k2 − k0

2M
∈ Z≥0.

Proof. We have

θ(z; k,M) = q
k2

2M

∞∑
n=−∞

q
M2n2+2kMn

2M = q
k2

2M

∞∑
n=−∞

(qk)n
(
q
M
2

)n2

= q
k2

2M (qM ; qM )∞(−q
M
2
−k; qM )∞(−q

M
2

+k; qM )∞ (2.13)

where (2.13) follows from Jacobi’s triple product identity
∞∑

n=−∞
(−1)nznqn

2
= (q2; q2)∞(zq; q2)∞(z−1q; q2)∞ (2.14)

with z → −qk and q → q
M
2 in (2.14). As in the proof of Lemma 2.1, we have

θf (z) =
∑′

k∈Mf (k0)

f(k) θ(z; k,M). (2.15)



QUANTUM MODULARITY OF PARTIAL THETA SERIES WITH PERIODIC COEFFICIENTS 7

Thus, (2.13) and (2.15) imply (2.12) where for k ∈ Mf (k0), k′ =
k2 − k0

2M
. Since k′ ∈ Z implies

k2 ≥ k0, we conclude that k′ ∈ Z≥0. �

Lemma 2.4. Let f be an even function with period M ≥ 2 and support Sf (k0). Assume∑′

k∈Mf (k0)
f(k) = 0. Let α ∈ Q be such that α 6= γ(i∞) for any γ ∈ ΓM . Then we have

θf (α+ iy) =
1√

M(y − iα)

∑′

k∈Mf (k0)

f(k)
∞∑

n=−∞
n6=0

e
− πn2

M(y−iα)+ 2πink
M . (2.16)

Proof. For any 1 ≤ k < M , we obtain the following upon using [27, Chapter 5, pp. 76] with
u = (y − iα)M and x = k

M :

θ(α+ iy; k,M) =
e
πi(α+iy)k2+π(y−iα)k2

M√
M(y − iα)

∞∑
n=−∞

e
− πn2

M(y−iα)+ 2πink
M

=
1√

M(y − iα)

1 +
∞∑

n=−∞
n6=0

e
− πn2

M(y−iα)+ 2πink
M

 . (2.17)

As in the proof of Lemma 2.1, we have

θf (z) =
∑′

k∈Mf (k0)

f(k) θ(z; k,M) (2.18)

and so (2.16) follows from (2.17), (2.18) and
∑′

k∈Mf (k0)
f(k) = 0. �

Corollary 2.5. Let f be an even function with period M ≥ 2 and support Sf (k0). Assume∑′

k∈M(k0)
f(k) = 0. Then we have

θf (iy) =
e
− π
My

√
My

(cf (M,k0) + o(1))

where o(1)→ 0 as y → 0+ and

cf (M,k0) := 2
∑′

k∈Mf (k0)

f(k) cos

(
2πk

M

)
.

Proof. First, we note that γ(i∞) 6= 0 for all γ ∈ ΓM . Thus, we choose α = 0 in Lemma 2.4 to
get

θf (iy) =
1√
My

∑′

k∈Mf (k0)

f(k)
∞∑

n=−∞
n6=0

e
−πn

2

My
+ 2πink

M

=
1√
My

∑′

k∈Mf (k0)

f(k)
∞∑
n=1

(rM (k, n) + rM (k,−n)) qn
2

1 (2.19)
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where q1 = e
− π
My and rM (k, n) = e

2πink
M . Interchanging the sums in (2.19), we find

θf (iy) =
1√
My

∞∑
n=1

gM (k0, n) qn
2

1

where

gM (k0, n) :=
∑′

k∈Mf (k0)

f(k)(rM (k, n) + rM (k,−n)).

At this point, note that gM (k0, n) = O(1) and q1 → 0 as y → 0+. This yields the result. �

Let C : Z→ C be a periodic function with mean value zero and consider the L-series

L(s, C) :=

∞∑
n=1

C(n)

ns
, <(s) > 0,

which has an analytic continuation to C [22, Proposition, page 98].

Lemma 2.6. Let f be an odd function with period M ≥ 2 and support Sf (k0). Then as t→ 0+,
we have for (p, q) = 1 that

θf

(
p

q
+

it

2π

)
∼

∞∑
r=0

L(−2r, Cf,k0)

(
− t

2M

)r
r!

, (2.20)

Θ̂f

(
p

q
− it

2π

)
∼

∞∑
r=0

L(−2r, Cf,k0)

(
t

2M

)r
r!

(2.21)

where Cf,k0(n) :=
∑

k∈Mf (k0) f(k) Cf (n, k) and

Cf (n, k) :=


e
πipn2

Mq if n ≡ k (mod M),

−e
πipn2

Mq if n ≡ −k (mod M),

0 otherwise.

Thus, in the sense of Lawrence and Zagier [22, page 103], (2.20) and (2.21) imply that θf and

Θ̂f “agree to infinite order” at all rational numbers.

Proof. For t > 0, we have

θf

(
p

q
+

it

2π

)
=

∑
n≥0

f(n) e
πipn2

Mq
− tn

2

2M

=
∑

k∈Mf (k0)

f(k)

 ∑
n>0

n≡k (mod M)

e
πipn2

Mq
− tn

2

2M −
∑
n>0

n≡−k (mod M)

e
πipn2

Mq
− tn

2

2M


=

∑
n≥1

Cf,k0(n) e−
tn2

2M . (2.22)

For each k ∈Mf (k0), Cf (n, k) is an odd function with period Mq or 2Mq according as 2 divides
p or does not divide p. Also, Cf (n, k) has mean value zero. This implies that Cf,k0(n) is an odd
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function with period Mq or 2Mq according as 2 divides p or does not divide p and with mean
value zero. Thus, by [22, Proposition, page 98] and (2.22), we obtain

θf

(
p

q
+

it

2π

)
∼
∞∑
r=0

L(−2r, Cf,k0)

(
− t

2M

)r
r!

.

Next, we turn to Θ̂f (τ) where τ = x+ iy with y < 0. First, we have for w ∈ H

Θf (w) =
∑

k∈Mf (k0)

f(k)

 ∑
n>0

n≡k (mod M)

n e
πin2w
M −

∑
n>0

n≡−k (mod M)

n e
πin2w
M

 .

Thus, by the change of variable w → w + τ and contour integration, it follows that

Θ̂f (τ) =
1√
iM

∑
k∈Mf (k0)

f(k)

 ∑
n>0

n≡k (mod M)

−
∑
n>0

n≡−k (mod M)

ne
πin2τ
M

∫ i∞

−2iy
e
πin2w
M w−

1
2dw. (2.23)

To evaluate the integral on the right-hand side of (2.23), we let w → iMw
πn2 . This yields∫ i∞

−2iy
e
πin2w
M w−

1
2dw =

√
iM

πn2

∫ ∞
− 2πyn2

M

e−ww−
1
2dw =

√
iM

πn2
Γ

(
1

2
,−2πyn2

M

)
(2.24)

where Γ(a, x) is the upper incomplete gamma function defined by

Γ(a, x) :=

∫ ∞
x

wa−1e−wdw.

Thus, (2.23) and (2.24) yield

Θ̂f (τ) =
1√
π

∑
k∈Mf (k0)

f(k)

 ∑
n>0

n≡k (mod M)

−
∑
n>0

n≡−k (mod M)

 e
πin2τ
M Γ

(
1

2
,−2πyn2

M

)
(2.25)

and so (2.25) implies

Θ̂f

(
p

q
− it

2π

)
=

1√
π

∑
n≥1

Cf,k0(n) e
tn2

2M Γ

(
1

2
,
tn2

M

)
. (2.26)

Since Cf,k0(n) is an odd periodic function, it now follows from [6, Lemma 4.3] and (2.26) that

Θ̂f

(
p

q
− it

2π

)
∼
∞∑
r=0

L(−2r, Cf,k0)

(
t

2M

)r
r!

.

�
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3. Proof of Theorem 1.1

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Let f be an even function with period M ≥ 2 and support Sf (k0). Define
the Eichler integral of θf (z) as follows:

θ̃f (z) :=

∫ i∞

z
θf (τ)(τ − z̄)−

3
2 dτ.

In view of Lemma 2.3 and Corollary 2.5, we see that θ̃f (z) is well-defined on H∪AM . Thus, for
z = x+ iy ∈ H ∪AM , it follows using contour integration that

θ̃f (z) =

√
π

M
e−

iπ
4

∑
n≥0

n f(n) Γ

(
−1

2
,
2πn2y

M

)
e
πin2

M
z̄. (3.1)

For α ∈ AM , we see from (3.1) and the fact that Γ(−1
2) = −2

√
π

θ̃f (α) = − 2π√
M
e−

iπ
4 Θf (α). (3.2)

For γ =

(
a b
c d

)
∈ ΓM , it follows from Lemma 2.1, (3.2) and

d(γτ) =
dτ

(cτ + d)2
, γτ − γz̄ =

τ − z̄
(cτ + d)(cz̄ + d)

that

Θf (α)− (Θf | 3
2
,χγ)(α) =: rγ,f (α)

where

rγ,f (z) = −
√
M · e

iπ
4

2π

∫ i∞

γ−1(i∞)
θf (τ)(τ − z̄)−

3
2 dτ.

It only remains to observe that rγ,f (z) is C∞ and real-analytic in R \ {γ−1(i∞)}.
Let f be an odd function with period M ≥ 2 and support Sf (k0). For τ ∈ H− and γ ∈ ΓM ,

it follows from (1.7) and Lemma 2.2 that

Θ̂f (τ)− (Θ̂f | 1
2
,χγ)(τ) = rγ,f (τ) (3.3)

where

rγ,f (τ) =
1√
iM

∫ i∞

γ−1(i∞)
Θf (w)(w − τ)−

1
2 dw.

Since by Lemma 2.6, θf and Θ̂f “agree to infinite order” at all rational numbers and Θ̂f (τ)
satisfies the transformation property in (3.3) for all τ ∈ H−, it follows in the sense of Lawrence
and Zagier [22, Page 103] that θf (z) is a strong quantum modular form of weight 1/2 on Q with
respect to ΓM . It is also clear that rγ,f (τ) is a holomorphic function in H−, extends as a C∞
function to R and is real-analytic in R \ {γ−1(i∞)}. Here, χ is the multiplier given by (1.6).
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Finally, we note that as Θf (z) vanishes at z = i∞ (and thus at all α ∈ BM ), Θ̂f is well-defined

on BM . Thus, for τ ∈ H− ∪BM , Θ̂f (τ) satisfies (3.3). Now, one can check that

θf (z) =
∑

k∈Mf (k0)

f(k)

 ∑
n≥0

n≡k (mod M)

−
∑
n≥0

n≡−k (mod M)

 q
n2

2M . (3.4)

For τ = α ∈ BM , it follows from (2.25), (3.4) and Γ(1
2) =

√
π that θf (α) = Θ̂f (α). Thus, θf (α)

is a quantum modular form of weight 1/2 on BM with respect to ΓM .
�

4. Examples

In this section, we illustrate Theorem 1.1 with four examples.

4.1. Kontsevich-Zagier series Ft(q) for torus knots T (3, 2t). Let K be a knot and JN (K; q)
be the usual colored Jones polynomial, normalized to be 1 for the unknot. For the importance of
this quantum knot invariant, see, for example, [1], [14], [25] or [30]. If T (3, 2) is the right-handed
torus knot, then [15, 23]

JN (T (3, 2); q) = q1−N
∑
n≥0

q−nN (q1−N )n. (4.1)

Upon comparing (1.1) and (4.1), we immediately observe that F (q) matches the colored Jones

polynomial for T (3, 2) at a root of unity q = ζN := e
2πi
N , that is,

ζNF (ζN ) = JN (T (3, 2); ζN ).

Consider the family of torus knots T (3, 2t) for an integer t ≥ 2. In this case, a q-hypergeometric
expression for the colored Jones polynomial has been computed, namely (see page 41, Théorème
3.2 in [21], cf. [18])

JN (T (3, 2t); q) = (−1)h
′′(t)q2t−1−h′(t)−N

∑
n≥0

(q1−N )nq
−Nnm(t)

×
∑

3
∑m(t)−1
`=1 j``≡ 1 (mod m(t))

(−q−N )
∑m(t)−1
`=1 j`q

−a(t)+
∑m(t)−1
`=1

j``

m(t)
+
∑m(t)−1
`=1 (j`2 )

×
m(t)−1∑
k=0

q−kN
m(t)−1∏
`=1

[
n+ I(` ≤ k)

j`

]
(4.2)

where

h′′(t) =

{
2t−1

3 if t is even,
2t−2

3 if t is odd,
h′(t) =

{
2t−4

3 if t is even,
2t−5

3 if t is odd,
a(t) =

{
2t−1+1

3 if t is even,
2t+1

3 if t is odd,

m(t) = 2t−1, I(∗) is the characteristic function and[
n
k

]
=

[
n
k

]
q

:=
(q)n

(q)n−k(q)k
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is the q-binomial coefficient. We now define the Kontsevich-Zagier series for torus knots T (3, 2t)
as1

Ft(q) = (−1)h
′′(t)q−h

′(t)
∑
n≥0

(q)n
∑

3
∑m(t)−1
`=1 j``≡ 1 (mod m(t))

q
−a(t)+

∑m(t)−1
`=1

j``

m(t)
+
∑m(t)−1
`=1 (j`2 )

×
m(t)−1∑
k=0

m(t)−1∏
`=1

[
n+ I(` ≤ k)

j`

]
. (4.3)

The expression Ft(q) converges in a similar manner as F (q) and, by (4.2) and (4.3), satisfies

ζ2t−1
N Ft(ζN ) = JN (T (3, 2t); ζN ).

An application of Theorem 1.1 is the following. For an integer t ≥ 2, set st := (2t+1−3)2

3·2t+2 .

Corollary 4.1. For an integer t ≥ 2 and α ∈ Q, φt(α) := e2πistαFt(e
2πiα) is a quantum modular

form of weight 3/2 on A3·2t+1 = {α ∈ Q : α is Γ1(3 · 2t+2)-equivalent to 0 or i∞} with respect to
Γ1(3 · 2t+2).

Proof. The Kontsevich-Zagier series Ft(q) satisfies the “strange” identity (see Proposition 2.4 in
[2])2

Ft(q)“ = ”− 1

2
Θχt(z) (4.4)

where

χt(n) :=


1 if n ≡ 2t+1 − 3, 3 + 2t+2 (mod 3 · 2t+1),

−1 if n ≡ 2t+1 + 3, 2t+2 − 3 (mod 3 · 2t+1),

0 otherwise.

(4.5)

Note that χt is an even function with period M = 3 · 2t+1. For k0 = (2t+1 − 3)2 (mod 3 · 2t+2),
consider the set Mχt(k0) = {2t+1 − 3, 2t+1 + 3}. Thus, Sχt(k0) = {±(2t+1 − 3),±(2t+1 + 3)}.
By Theorem 1.1 and (4.4), the result follows. �

4.2. Generating function for odd balanced unimodal sequences. Let v(n) denote the
number of odd-balanced unimodal sequences of weight 2n + 2 and v(m,n) the number of such
sequences having rank m. In [20], the authors study the bivariate generating function

V(x, q) :=
∑
n≥0

(−xq,−x/q)nqn

(q, q2)n+1
=
∑
n≥0
m∈Z

v(m,n)xmqn

and prove that for α ∈ Q, q−7V(−1, q−8)
∣∣
z→α is a quantum modular form of weight 3/2 on

A = {α ∈ Q : α is Γ0(16)-equivalent to i∞} with respect to Γ0(16). A slight variant of this
result is as follows. If we let q → q2 in the identity (see [20, page 3693])

V(−1, q−1) = −q
2

∑
n≥0

(2n+ 1) qn(n+1)/2,

1For t = 1, one may define the sum over the j` to be 1 in (4.2) and (4.3) to recover (4.1) and (1.1).
2Taking t = 1 in (4.4) and (4.5) recovers (1.2).
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then

q−
7
4V(−1, q−2) = −1

2

∑
n≥0

n ψ(n) q
n2

4

where ψ(n) is the (non-primitive) Dirichlet character modulo 2 which is 0 or 1 according as n is
even or odd. Note that ψ(n) is even with period 2 and Sψ(k0) =Mψ(k0) = {1} where k0 = 1.

For α ∈ Q, it follows from Theorem 1.1 that Θψ(α) := e−
7πiα

2 V(−1, e−4πiα) is a quantum
modular form of weight 3/2 on A2 = {α ∈ Q : α is Γ1(4)-equivalent to i∞} with respect to
Γ1(4). Precisely, Θψ(α) satisfies

Θψ(α)− (Θψ| 3
2
,χγ)(α) = rγ,ψ(α)

for all γ =

(
a b
c d

)
∈ Γ1(4) and α ∈ A2, and where

rγ,ψ(z) =
e
πi
4

2
√

2π

∫ i∞

γ−1(i∞)
θψ(τ)(τ − z̄)−

3
2 dτ.

Here, rγ,ψ : R→ C is a C∞ function which is real analytic in R\{γ−1(i∞)}, and χ is a multiplier
given by

χ(γ) = e
πiab
2

(
4c

d

)
ε−1
d .

4.3. Kontsevich-Zagier series for torus knots T (2, 2m+1). Let m ∈ N. For 0 ≤ ` ≤ m−1,
define the Kontsevich-Zagier series for the torus knot T (2, 2m+ 1) as follows:

X(`)
m (q) :=

∞∑
k1,k2,··· ,km=0

(q)kmq
k21+···+k2m−1+k`+1+···+km−1

m−1∏
i=1

[
ki+1 + δi,`

ki

]
where δi,` is the characteristic function. Hikami [16] established the strange identity

X(`)
m (q)“ = ”− 1

2

∞∑
n=0

n χ
(`)
8m+4(n) q

n2−(2m−2`−1)2

8(2m+1) (4.6)

where

χ
(`)
8m+4(n) :=


1 if n ≡ 2m− 2`− 1, 6m+ 2`+ 5 (mod 8m+ 4),

−1 if n ≡ 2m+ 2`+ 3, 6m− 2`+ 1 (mod 8m+ 4),

0 otherwise.

Note that f(n) := χ
(`)
8m+4(n) is an even function with period 8m + 4. For k0 = (2m − 2` − 1)2

(mod 16m + 8), consider the set Mf (k0) = {2m − 2` − 1, 2m + 2` + 3}. Thus, Sf (k0) =
{±(2m−2`−1),±(2m+2`+3)}. Observe that

∑
k∈Mf (k0) f(k) = 0. Thus, for α ∈ Q, Theorem

1.1 and (4.6) imply that e
πiα(2m−2`−1)2

8m+4 X
(`)
m (e2πiα) = −1

2
Θf (α) =: Θ̃m,`(α) is a quantum modular

form of weight 3/2 on A8m+4 = {α ∈ Q : α is Γ1(16m + 8)-equivalent to 0 or i∞} with respect
to Γ1(16m+ 8). Precisely, we have

Θ̃m,`(α)−
(

Θ̃m,`| 3
2
,χγ
)

(α) = rγ,f (α)
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for all γ =

(
a b
c d

)
∈ Γ1(16m+ 8) and α ∈ A8m+4, where

rγ,f (z) =

√
8m+ 4 · e

πi
4

4π

∫ i∞

γ−1(i∞)
θf (τ)(τ − z̄)−

3
2 dτ.

Here, rγ,f : R→ C is a C∞ function which is real analytic in R\{γ−1(i∞)}, and χ is a multiplier
given by

χ(γ) = e
πiab(2m−2`−1)2

(8m+4)

(
2c(8m+ 4)

d

)
ε−1
d .

We remark that Hikami proved Θ̃m,`(z) is a vector-valued quantum modular form of weight 3/2
on SL2(Z) (see [16, page 195] for details).

4.4. Rogers’ false theta function. For M ∈ N and 1 ≤ j < M with j 6= M
2 , consider the

false theta function of Rogers:

Fj,M (z) :=
∑

n≡j (mod M)

sgn(n) q
n2

2M =

 ∑
n>0

n≡j (mod M)

−
∑
n>0

n≡−j (mod M)

 q
n2

2M =
∑
n>0

f(n) q
n2

2M

where f(n) is the function defined by 1 or −1 according as n ≡ j or −j (mod M) and 0
otherwise. Note that FM

2
,M (z) = 0. Here, f is an odd function with period M . In this case,

M(k0) = {j} (respectively, M(k0) = {M − j}) for 1 ≤ j < M
2 (respectively, M

2 < j < M)

with k0 = j2 (mod 2M) (respectively, k0 = (M − j)2 (mod 2M)). So, Sf (k0) = {j,M − j}.
Thus, for α ∈ Q, Theorem 1.1 implies that Fj,M (α) is a strong quantum modular form of weight
1/2 on Q with respect to ΓM (given by (1.4)). This result (with z replaced by z

M and M
even) was discussed in [6, Theorem 4.1] (see [7] for a vector-valued version). More generally, for
1 ≤ k0 < 2M , if

FM (z) :=
∑
n>0

h(n) q
n2

2M =
∑

j∈Mh(k0)

h(j) Fj,M (z)

where h(n) is an odd function with period M and support Sh(k0), then Theorem 1.1 shows
that FM (z) is a strong quantum modular form of weight 1/2 on Q with respect to ΓM . Finally,
Fj,M (α) and, more generally, FM (α) are quantum modular forms of weight 1/2 on BM with
respect to ΓM .
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