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1 Introduction

1.1 Background and overview.

Given a simple graph G with vertex set V (G) = {1, . . . , n} and edge set E(G), consider the set of
matrices

S̃(G) =
{
A = (aij) ∈ Rn×n : for i 6= j, aij 6= 0 ⇐⇒ {i, j} ∈ E(G)

}
.

Define also the set of symmetric matrices S(G) ⊆ S̃(G), where S(G) = {A : A = AT , A ∈ S̃(G)}.
Given a square matrix A, let q(A) be the number of distinct eigenvalues of A. Define

q(G) = min{q(A) : A ∈ S(G)}.

It has been shown that for a graph G, q(G) = 2 if and only if there exists an orthogonal matrix X
in S(G) [1, Section 4]. The value of q(G) has been widely studied as part of the Inverse Eigenvalue
Problem for Graphs (IEP-G).

In this report, we focus on graphs of the form G∨H, the join of G and H, and ask more generally
whether an orthogonal matrix exists in S̃(G ∨H). We say a graph G is realisable by an orthogonal

matrix if we can find an orthogonal matrix X ∈ S̃(G).
In Section 2, we introduce the concept of compatible singular value multiplicity matrices, inspired

by the compatible multiplicity matrices introduced in [2, Section 2]. We show that two graphs G and
H having compatible singular value multiplicity matrices is a necessary condition for G ∨ H being
realisable by an orthogonal matrix. Under certain conditions, we will show that this requirement is
also sufficient.

Section 3 focuses on applications of the theory developed in Section 2. We show a necessary
and sufficient condition for the join of G and H to be realisable by an orthogonal matrix when the
connected components of G and H are complete graphs. The result is as follows:

Theorem 1.1. Let k, l ∈ N, with k ≤ l. Let G and H be two graphs with k and l connected
components respectively, where the connected components of both G and H are complete graphs. Then
G ∨H is realisable by an orthogonal matrix if and only if l ≤ |G|.

The remainder of Section 3 focuses on paths and some examples. We finish with some possible
future directions and questions.

1.2 Notation.

Let N = {1, 2, . . .} be the set of positive integers, N0 = {0, 1, . . .} the set of non-negative integers, and
[n] = {1, . . . n} for n ∈ N.

We will consider matrices over R, and denote by Rm×n the set of m×n matrices with real entries,
for m, n ∈ N. Given a matrix X, we write X ≥ a for a ∈ R if all entries of X are greater than or
equal to a.

Let In denote the n× n identity matrix, and let 0m×n denote the m× n matrix with all entries 0.
Given a matrix X ∈ Rm×n, let X> ∈ Rn×m be its transpose. Let ei denote the i-th standard basis
vector in Rn for i = 1, . . . , n. Let 0n be the column-vector of length n with all zero entries, and let 1n

be the column-vector of length n with all one entries. Let
⊕

i∈[k]Ai denote the direct sum of square

matrices Ai for i ∈ [k], allowing for the possibility of Ai being empty.
Let diag{a1, . . . , an} denote the n × n diagonal matrix with diagonal entries a1, . . . an. We de-

note the diagonal matrix with entries Λ = (σ1, . . . , σr) ∈ Rr occurring with multiplicities v =
(v1, . . . , vr)> ∈ Nr

0 by DΛ,v :=
⊕

i∈[r] σi Ivi for r ∈ N. We call v a multiplicity list.

Given a matrix X ∈ Rm×n, and A ⊆ [m], B ⊆ [n], let X[A,B] be the submatrix of X with rows A

and columns B. Given a graph G and X ∈ S̃(G), let X[H] denote the principal submatrix of X with
the rows and columns of X that correspond to the vertices of a subgraph H ⊆ G.
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Let O(n) denote the set of n×n orthogonal matrices with real entries. That is, the set of matrices
in Rn×n with A>A = AA> = In. Let SO(n) ⊆ O(n) be the subset of special orthogonal matrices,
which are matrices with the additional property of having determinant 1.

Let the number of vertices of the graph G, or the size of G, be denoted as |G|. Given two graphs
G, H let the join G ∨H be the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ F ,
where F denotes all possible edges between vertices in G and vertices in H. Let G ∪ H denote the
disjoint union of graphs.

Let mult(σ,A) for σ ∈ R≥0 and A ∈ Rm×n with m, n ∈ N denote the multiplicity of the singular
value σ in the matrix A. By singular value list we will always mean a list of strictly increasing non-
negative real numbers, and by eigenvalue list we will always mean a list of strictly increasing real
numbers.

2 Orthogonal Matrices and Compatibility of Singular Values

2.1 Singular value decomposition and blocks of orthogonal matrices.

Firstly, we establish some preparatory results about the singular values of blocks of orthogonal ma-
trices. The first result is proven in [3].

Lemma 2.1. [3, Theorem 2.1] Let U be an n × n unitary matrix, and let A be its p × q submatrix.
Then A has all singular values less than or equal to one, and the number of singular values less than
one (counting also zero singular values) does not exceed n−max(p, q).

Proposition 2.2. Let p, q, n ∈ N be such that p+q = n. Consider X =
(

A B
C> −D

)
∈ Rn×n orthogonal

with A ∈ Rp×p, D ∈ Rq×q, and B, C ∈ Rp×q. Then the singular values not equal to one of A and
D are equal, including the multiplicities of these singular values, and likewise the singular values not
equal to one of B and C are equal.

Proof. By computing XX> and X>X, we yield the four following identities:

1. AA> +BB> = Ip,
2. C>C +DD> = Iq,
3. A>A+ CC> = Ip,
4. B>B +D>D = Iq .

For a matrix Y , Y Y > and Y >Y have the same non-zero eigenvalues, including the same multiplicities
of these eigenvalues, and the non-zero singular values of a matrix Y are precisely the square roots
of the non-zero eigenvalues of Y >Y or Y Y >. By 1. and 4., A and D have the same singular values
distinct from 1. By 1. and 3., B and C have the same singular values distinct from 1. By Lemma 2.1,
these singular values distinct from 1 are less than 1.

Proposition 2.3. Let X =
(

D B
C> −D

)
be a 2n × 2n orthogonal matrix, with D an n × n diagonal

matrix with m ∈ N distinct non-negative entries A := (α1, . . . , αm), written as D = DA,s for s =
(s1, . . . , sm) ∈ Nm

0 a multiplicity list. Suppose that αi < 1 for all i ∈ [m]. Then B =
⊕

i∈[m](1 −
α2
i )

1
2Ui, C =

⊕
i∈[m](1−α2

i )
1
2Vi, with Ui, Vi both si× si orthogonal matrices. Further, if αi 6= 0, then

Ui = Vi for each i ∈ [m].

Proof. We have

BB> = B>B = CC> = C>C = In−D2 =
⊕
i∈[m]

(1− α2
i ) Isi .

Let B = UBΣBV
>
B be the singular value decomposition (SVD) of B. It follows that ΣB =

⊕
i∈[m](1−

α2
i )

1
2 Isi . Then BB> = UB(In−D2)U>B = In−D2. Thus, UB(In−D2) = (In−D2)UB . Then UB

commutes with D2, and so has a block structure coinciding with that of D2. Indeed, (UBD
2)ij =
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UBijD
2
jj = D2

iiUBij = (D2UB)ij . Therefore if Dii 6= Djj then D2
ii 6= D2

jj as D is non-negative,

and so UBij = 0. By looking at B>B we conclude that VB has this same block structure. Since,
B = UBΣBV

>
B , B is a block-diagonal matrix. The block structure of C follows similarly.

Thus we can write B =
⊕

i∈[m]Bi and C =
⊕

i∈[m] Ci where each Bi, Ci is a si×si matrix. Then,

BB> =
⊕

i∈[m]BiB
>
i =

⊕
i∈[m](1− αi)

2 Isi , so that BiB
>
i = (1− α2

i ) Isi for all i ∈ [m], and likewise

CiC
>
i = C>i Ci = B>i Bi = (1 − α2

i ) Isi for all i ∈ [m]. Therefore (1 − α2
i )−

1
2Bi is orthogonal for all

i ∈ [m], or Bi = (1 − α2
i )

1
2Ui for Ui an orthogonal matrix, and similarly Ci = (1 − α2

i )
1
2Vi for Vi an

orthogonal si × si matrix.
The orthogonality of X yields DB−CD = 0, that is,

⊕
i∈[m] αi(1−α2

i )
1
2Ui =

⊕
i∈[m] αi(1−α2

i )
1
2Vi.

Since αi < 1, 1 − α2
i 6= 0, so that if αi 6= 0, Ui = Vi. If αi = 0, then Ui, Vi can be distinct si × si

orthogonal matrices.

2.2 Compatibility of Singular Values.

This sub-section is heavily influenced by [2, Section 2]. The following definitions and Theorem 2.8,
2.15 are stated and proven in [2] for the case of finding graphs G, H such that G ∨ H is realisable
by a symmetric orthogonal matrix. In the context of symmetric matrices, the results in [2] discuss
compatibility of eigenvalues. However, the proofs presented here for the non-symmetric case and
consideration of singular values are very similar.

Definition 2.4. Let G be a connected graph on n vertices, and let r ∈ N. We call a multiplicity
list v = (v1 v2 · · · vr)> ∈ Nr

0 a singular value (SV) multiplicity vector if
∑

i∈[r] vi = n, and there

is a singular value list Σ = (σ1, . . . , σr) ∈ Rr with 0 ≤ σ1 < · · · < σr and orthogonal matrices U ,

V ∈ O(n) such that UDΣ,vV
> ∈ S̃(G).

Definition 2.5. Let G = G1 ∪ · · · ∪ Gk be a graph with k connected components, and let r ∈ N.
We call a matrix V ∈ Nr×k

0 a singular value (SV) multiplicity matrix if the i-th column of V is a SV
multiplicity vector for the connected component Gi for all i ∈ [k].

Definition 2.6. Let G, H be graphs with k and l connected components respectively for k, l ∈ N.
G and H are said to have compatible singular value (SV) multiplicity matrices if there exists SV
multiplicity matrices V ∈ Nr×k

0 and W ∈ Nr×l
0 for G, H respectively with r ∈ N, r ≥ 2 such that

Ṽ 1k = W̃1l and Ṽ >W̃ > 0, where Ṽ , W̃ denote the submatrices of V,W obtained by deleting the last
row. We call the matrices V , W SV compatible.

Remark 2.7. Definitions 2.4, 2.5, 2.6, are non-symmetric versions of [2, Definition 2.1], [2, Definition
2.2], [2, Definition 2.3] respectively. In particular, we will reference the definitions of [2] by adding
the prefix EV for eigenvalue. For instance, v an EV multiplicity vector for G means there exists an
eigenvalue list Λ so that UDΛ,vU

> ∈ S(G) for U orthogonal.

The following theorem shows that compatible SV multiplicity matrices for two graphs G, H are a
necessary condition for G ∨H to be realisable by an orthogonal matrix.

Theorem 2.8. Let G and H be two graphs. If there exists an orthogonal matrix in S̃(G ∨H), then
G and H have compatible SV multiplicity matrices.

Proof. Let G = ∪i∈[k]Gi and H = ∪j∈[l]Hj be the decomposition of G and H into their connected

components. Suppose that X ∈ S̃(G ∨H) is an orthogonal matrix. Write

X :=

(
A B
C> −D

)
.

Then A =
⊕

i∈[k]Ai for Ai ∈ S̃(Gi) and D =
⊕

j∈[l]Dj for Dj ∈ S̃(Hj). B, C are nowhere-zero

matrices of size |G| × |H|.
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Being submatrices of the orthogonal matrix X, each Ai, Dj will have singular values less than or
equal to one by Lemma 2.1. We note that the singular values of each Ai, Dj are not all one. Indeed,
if some Ai has singular values all equal to one, then Ai is orthogonal, so that each row of Ai has norm
1. But then the corresponding rows of X (which have norm 1) must have all other entries equal to
zero, contradicting the nowhere-zero-ness of B. The argument for each Dj is similar.

Write the distinct non-one singular values of A and D as 0 ≤ σ1 < · · · < σr−1 < 1 for r ∈ N,
r > 1, and let σr = 1 . We define SV multiplicity matrices for G and H. Let V = (vij) ∈ Nr×k

0 have
entries vij = mult(σi, Aj), that is the multiplicity of the singular value σi in the SVD of Aj . Define
the singular value multiplicity matrix W = (wij) ∈ Nr×l

0 for H as wij = mult(σi, Dj). We show that
V and W are compatible SV multiplicity matrices.

Each Ai has a SVD Ai = UAi
ΣAi

V >Ai
, and likewise each Dj has a SVD Dj = UDj

ΣDj
V >Dj

. Let

UA =
⊕

i∈[k] UAi
, UD =

⊕
j∈[l] UDj

, VA =
⊕

i∈[k] VAi
, and VD =

⊕
j∈[l] VDj

. Let X ′ = (UA ⊕
UD)>X(VA ⊕ VD). Then,

X ′ =

⊕i∈[k] ΣAi
U>ABVD

U>DC
>VA −

⊕
j∈[l] ΣDj

 .

X ′ is orthogonal as the product of orthogonal matrices. Any row of X ′ with a ±1 on the diagonal
will have all other entries in the corresponding row and column equal to zero. Let X ′′ be the submatrix
of X ′ obtained after removing these rows and columns. Then X ′′ is orthogonal. Write X ′′ :=(

Σ1 F
G> −Σ2

)
. By Proposition 2.2, the singular values distinct from 1 of A and D are equal, so that

Σ1 and Σ2 have equal diagonal entries. Since Σ1 and Σ2 have the same entries (up to re-ordering) it

follows that Ṽ 1k = W̃1l, that is, the multiplicities of each singular value distinct from 1 in A and D
are equal.

We show also that Ṽ >W̃ > 0. This corresponds to every pair of matrices Ai, Dj containing at least
one common singular value distinct from 1 for all i ∈ [k], j ∈ [l]. Let Q = U>ABVD. Since UAQV

>
D is

nowhere-zero, it follows that Q is non-zero. More specifically, since UA =
⊕

i∈[k] UAi
, VD =

⊕
j∈[l] VDj

are-block diagonal matrices, the block partition of Q = (Qij)i∈[k],j∈[l] corresponding to each pair

UAi
, V >Dj

must have each Qij non-zero. Likewise, R = (U>DC
>VA)> has each block partition non-zero

for R = (Rij), where each Rij is the block corresponding to V >Ai
, UDj . These blocks Rij , Qij will

contain zero rows and vectors corresponding to the singular value 1, so that the non-zero entries of
Qij , Rij will correspond to a singular value less than one.

The orthogonality of X ′ means that (
⊕

i∈[k] ΣAi
)R = Q(

⊕
j∈[l] ΣDj

), or that ΣAi
Rij = QijΣDj

for all i ∈ [k], j ∈ [l]. We also yield (
⊕

i∈[k] ΣAi
)Q = R(

⊕
j∈[l] ΣDj

), that is ΣAi
Qij = RijΣDj

for all i ∈ [k], j ∈ [l]. But then ΣAi
RijΣDj

= QijΣ
2
Dj

= Σ2
Ai
Qij . Since Qij contains a non-zero

entry, it follows that some squared diagonal entry of ΣAi
equals some squared diagonal entry of

ΣDj , and so ΣAi and ΣDj contain a common diagonal entry, as their entries are all non-negative.

Therefore each pair of matrices Ai, Dj share a singular value that is not 1, meaning that (Ṽ >W̃ )ij =∑
s∈[r−1] mult(σs, Ai) mult(σs, Dj) > 0 for all i ∈ [k], j ∈ [l], as required.

In establishing a converse for Theorem 2.8, the most difficult step will be to ensure that we can
satisfy the nowhere-zero pattern of the off-diagonal blocks of a matrix in S̃(G ∨H). To do this, we
introduce some stricter conditions on our graphs G, H.

Definition 2.9. Let v ∈ Nr
0 be a singular value multiplicity vector for a connected graph G on n

vertices, with n, r ∈ N. We say that v is SV sane if for any singular value list Σ = (σ1, . . . , σr) ∈ Rr

with 0 ≤ σ1 < · · · < σr and DΣ,v 6= 0, there are nowhere-zero orthogonal matrices U , V ∈ O(n)

such that UDΣ,vV
> ∈ S̃(G). Further, we call v SV generically realisable if v is SV sane with the

additional property that for any finite set Y ⊆ Rn \ {0}, and any appropriate singular value list Σ,
the orthogonal matrices U, V can be chosen so that Uy, V y are nowhere-zero for all y ∈ Y.
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Definition 2.10. Let V be a singular value multiplicity matrix for a graph G. If every column of
V is SV sane/SV generically realisable for the corresponding connected component of G, then we say
that V is SV sane/ SV generically realisable for G.

Definition 2.11. If every singular value multiplicity matrix V for a graph G is SV sane/SV generically
realisable, then we call G SV sane/ SV generically realisable.

Remark 2.12. Once more, the reader can compare Definitions 2.9, 2.10, 2.11 with their corresponding
definitions [2, Definition 2.8], [2, Definition 2.9], [2, Definition 2.10] in the symmetric case, which again
we will reference by using the prefix EV. We will relate these EV/SV compatibilities in Section 3.1.

In Section 3, we show that the complete graph Kn and path Pn on n vertices are SV generically
realisable. Next, we adapt the proof of [2, Theorem 2.14] to prove Theorem 2.15.

We remark preliminarily that for q ∈ N, SO(q) is an irreducible algebraic variety (see [4]). Let
p = (p1, . . . , pr) ∈ Nr, and write SO(p) := SO(p1) × · · · × SO(pr). Then SO(p) is an irreducible
algebraic variety as the product of irreducible varieties. We will use the following two technical lemmas
from [2] in our proof of Theorem 2.15.

Lemma 2.13. [2, Lemma 2.12] Let r ∈ N, p = (p1, . . . , pr)> ∈ Nr and for s ∈ [r], let As ∈ Rps×ps

with rankAs = 1. If
∑

s∈[r] tr(AsXs) = 0 for all (X1, . . . Xr) ∈ SO(p), then r ≥ 2 and ps = 1 for

each s ∈ [r].

Lemma 2.14. [2, Lemma 2.13] Let k,m, n ∈ N. For s ∈ [k], let ps ∈ N and ∅ 6= Rs, Cs ⊆ [ps] where
m′ :=

∑
s∈[k] |Rs| ≤ m and n′ :=

∑
s∈[k] |Cs| ≤ n. Let F : ×k

s=1Rps×ps → Rn×m be given by

F (X1, . . . , Xk) :=

(⊕
s∈[k]Xs[Rs, CS ] 0m′×(n−n′)

0(m−m′)×n′ 0(m−m′)×(n−n′)

)
.

Fix a ∈ [m], b ∈ [n] and invertible nowhere-zero matrices S ∈ Rn×n and T ∈ Rm×m. Then there exist
matrices As ∈ Rps×ps with rankAs = 1 for s ∈ [k] so that (S>F (X1, . . . , Xk)T )ab =

∑
s∈[k] tr(AsXs)

for any X1 ∈ Rp1×p1 , . . . , Xk ∈ Rpk×pk .

Theorem 2.15. Let G and H be two graphs on k and l vertices respectively. Suppose that G and H
have SV sane compatible multiplicity matrices V = (vsi) ∈ Nr×k

0 and W = (wsj) ∈ Nr×l
0 . Then G∨H

is realisable by an orthogonal matrix if either V is a generically realisable SV multiplicity matrix for
G, or W is a generically realisable SV multiplicity matrix for H.

Proof. Let G = G1 ∪ · · · ∪Gk, H = H1 ∪ · · · ∪Hl be the decomposition of G, H into their connected
components. Let us denote the i-th column of V by vi, and the i-th column of W by wi. Let
Σ = (σ1, . . . σr−1, 1) be a singular value list with 0 ≤ σ1 < · · · < σr−1 < 1, and let Σ′ = (σ1, . . . , σr−1).

Let p = (p1, . . . , pr−1)> = Ṽ 1k = W̃1l. Let D = DΣ′,p 6= 0. Then D =
⊕

s∈[r−1] σs Ips
.

Consider the orthogonal matrix

X :=

(
D

⊕
s∈[r−1](1− σ2

s)
1
2Us⊕

s∈[r−1](1− σ2
s)

1
2V >s −D

)
,

where by Proposition 2.3, Us, Vs are orthogonal matrices for all s ∈ [r − 1]. Since σ2, . . . , σr−1 6= 0,
we have Us = Vs for s = 2, . . . , r− 1. We choose to take U1 = V1 also, regardless of whether σ1 is zero
or not. We additionally take Us, Vs to be special orthogonal for all s ∈ [r].

Let n1 := e>r V 1k and n2 := e>r W1l be the sum of the entries in the last row of V and W .
Let X ′ := X ⊕ In1

⊕ − In2
. Let DG =

⊕
t∈[k]DGt

, DH =
⊕

t∈[l]DHt
, where DGt

:= DΣ,vt
, and

DHt := DΣ,wt . We can permute the rows and columns of X ′ to obtain the matrix X ′′, where

X ′′ :=

(
DG B(U)

B(U)> −DH

)
,
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with B(U) a |G| × |H| matrix that depends on our choice of U = (U1, . . . , Ur−1) ∈ SO(p).
We partition B(U) as a k × l block matrix B(U) = (Bij(U))i∈[k],j∈[l] corresponding to the direct

sum decompositions of DG, DH . Then, each Bij(U) is a |Gi| × |Hj | matrix for all i ∈ [k], j ∈ [l].

Each pair DGi , DHi share a common singular value in Σ′ since Ṽ >W̃ > 0. Let Q(i, j) = {s : s ∈
[r − 1], vsiwsj 6= 0}. Then Q(i, j) 6= ∅ for all i, j, and s ∈ Q(i, j) implies σs is a singular value of
DGi

, DHj
. By their construction, the rows and columns of Bij(U) can be permuted to obtain

B′ij(U) :=

(⊕
s∈Q(i,j)(1− σ2

s)
1
2Us[Rsi, Csj ] 0

0 0

)
(1)

where each Us[Rsi, Csj ] is the appropriate submatrix of Us with |Rsi| = mult(σs, DGi
), |Csj | =

mult(σs, DHj ).
Since V , W are SV sane multiplicity matrices for G, H, there exists nowhere-zero orthogonal

matrices Si, Ti, Mj , Nj for i ∈ [k], j ∈ [l] so that SiDGi
T>i ∈ S̃(Gi) and MjDHj

N>j ∈ S̃(Hj). Let
S =

⊕
i∈[k] Si, T =

⊕
i∈[k] Ti , M =

⊕
j∈[l]Mj , and N =

⊕
j∈[l]Nj . We note that S, T,M,N can be

chosen in several ways.
Let Y = (S ⊕M)X ′′(T ⊕N)>. Then,

Y =

(
AG SB(U)N>

MB(U)>T> AH

)
where AG ∈ S̃(G), AH ∈ S̃(H). Y is orthogonal, and we have Y ∈ S̃(G ∨ H) if we can ensure
that C(U) := SB(U)N> and F (U) := (MB(U)>T>)> are nowhere-zero. We note that C(U), F (U)
inherit the k× l block-partition of B(U), and write C(U) = (Cij(U)) with Cij(U) = SiBij(U)N>j and

F (U) = (Fij(U)) with Fij(U) = TiBij(U)M>j .
To ensure that C(U), F (U) are nowhere-zero, we look at the choices we have in our construction.

Assume that V is a SV generically realisable multiplicity matrix for G. Fix an appropriate M , N .
We argue that there exists U ∈ SO(p) so that Bij(U)N>j and Bij(U)M>j have no zero-columns for
all pairs i, j.

To do this, fix any invertible nowhere-zero |Gi| × |Gi| matrices S̃i, T̃i for i ∈ [k]. For a ∈ [|Gi|],
b ∈ [|Hj |], i ∈ [k] and j ∈ [l], consider the linear functionals L̃ab(i, j) : SO(p) → R, L̃ab(i, j)(U) :=

(S̃iBij(U)N>j )ab and M̃ab(i, j) : SO(p) → R, M̃ab(i, j)(U) := (T̃iBij(U)M>j )ab. Suppose that for all

U ∈ SO(p), there exists i, j, b such that the bth column of either Bij(U)N>j or Bij(U)M>j is zero.

Then SO(p) ⊆
(
∪i,j,b ∩a L̃ab(i, j)

−1(0)
)
∪
(
∪i,j,b ∩a M̃ab(i, j)

−1(0)
)

. Since SO(p) is irreducible,

WLOG we assume SO(p) ⊆ ∪i,j,b ∩a L̃ab(i, j)
−1(0). But then by the irreducibility of SO(p) there are

fixed i0, j0, b0 such that SO(p) ⊆ ∩aL̃ab0(i0, j0)−1(0). Therefore, for all U ∈ SO(p) the b0th column

of S̃i0Bi0j0(U)N>j0 is zero. By invertibility of S̃i0 it follows that the b0th column of Bi0j0(U)N>j0 is

zero. By taking a = 1, we have that L̃1b0(i0, j0)(U) = 0 for all U ∈ SO(p). Recalling that Bij(U)
can be permuted to obtain (1), and using Lemma 2.14, we can write L1b0(i0, j0) as L1b0(i0, j0) =∑

s∈Q(i0,j0) tr(AsUs) for As ∈ Rps×ps with rankAs = 1 for all s ∈ Q(i0, j0) (which is always non-

empty by above). But then by Lemma 2.13, we have ps = 1 for all s ∈ Q(i0, j0). Then B′i0j0(U)

in (1) is of the form B′i0j0(U) =

(
D′ 0
0 0

)
with D′ := diag((1 − σ2

s)
1
2 : s ∈ Q(i0, j0)). Since σs 6= 1

for all s ∈ Q(i0, j0), D′ is an invertible diagonal matrix. It follows that the kernel of B′i0j0(U) does

not contain a nowhere-zero vector, and the same will be true of Bi0j0(U). But N>j0 is a nowhere-zero

matrix, and so the b0th column of Bi0j0(U)N>j0 is non-zero, a contradiction.

Therefore, it is possible to choose U ∈ SO(p) so that the matrices Bij(U)N>j and Bij(U)M>j
contain no zero columns for all i ∈ [k], j ∈ [l]. By the SV generic realisability of each Gi, we can
therefore choose nowhere-zero orthogonal matrices Si, Ti for all i ∈ [k] so that SiBij(U)N>j and

TiBij(U)M>j are nowhere-zero for all (i, j) ∈ [k] × [l]. But then C(U) and F (U) are nowhere-zero,
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and so Y ∈ S̃(G∨H), as required. The argument for W being the SV generically realisable multiplicity
matrix is symmetric.

Thus, in using Theorem 2.8 and Theorem 2.15, we arrive at the following:

Corollary 2.16. If G is SV generically realisable and H is SV sane, then G ∨H is realisable by an
orthogonal matrix if and only if G and H have a pair of compatible SV multiplicity matrices.

3 Applications

In this section, we discuss applications of Corollary 2.16. Clearly, an important question to ask is
whether a graph is SV generically realisable. In Section 3.1 we describe relations between SV generic
realisability and EV generic realisability as discussed in [2]. Using these, we determine that complete
graphs and paths are SV generically realisable, and discuss consequences in each case.

3.1 Singular value and eigenvalue multiplicity matrices.

Consider the diagonal matrix DΛ,v ∈ Rn×n with diagonal entries Λ = (λ1, . . . , λr) occurring with
multiplicities v = (v1, . . . , vr)> ∈ Nr

0, and
∑

i∈[r] vi = n. Let |Λ| denote the strictly increasing

list of absolute values of entries in Λ. Then there is a corresponding multiplicity list w for |Λ| so
that D|Λ|,w = Π>(DΛ,vF )Π for F a diagonal orthogonal matrix with diagonal entries ±1, and Π a
permutation matrix.

We can use this idea to obtain SV multiplicity vectors from EV multiplicity vectors, and further
show that we can yield SV sane/generically realisable multiplicity matrices from EV sane/generically
realisable multiplicity matrices.

Lemma 3.1. Let G be a connected graph on n vertices, and let w be a multiplicity list. Suppose there
exists a singular value list Σ such that DΣ,w = Π>(DΛ,vF )Π for F ∈ Rn×n an orthogonal diagonal
matrix, Π a permutation matrix, and Λ an eigenvalue list with |Λ| = Σ. If v is an EV multiplicity
vector for G that is realisable in S(G) by using the eigenvalue list Λ, then w is an SV multiplicity
vector for G.

Proof. If v is an EV multiplicity vector for G realisable with eigenvalue list Λ, then there exists
U ∈ O(n) such that UDΛ,vU

> ∈ S(G). Since DΛ,v = ΠDΣ,w(FΠ)>, we have UΠDΣ,w(FΠ)>U> =
(UΠ)DΣ,w(UFΠ)> ∈ S(G) with UΠ, UFΠ orthogonal, so that w is realisable by a matrix in S(G) ⊆
S̃(G), and so is a SV multiplicity vector.

Lemma 3.2. Let G be a connected graph on n vertices, and let w be a SV multiplicity vector for G.
Suppose that for any singular value list Σ with DΣ,w 6= 0 there exists F an orthogonal diagonal matrix
and Π a permutation matrix such that DΣ,w = Π>(DΛ,vF )Π with |Λ| = Σ and v a multiplicity list. If
v is EV sane/EV generically realisable, then w is SV sane/SV generically realisable.

Proof. If v is EV sane, then for any eigenvalue list Λ there exists a nowhere-zero orthogonal matrix
U ∈ O(n) such that UDΛ,vU

> ∈ S(G). If for any singular value list Σ such that DΣ,w 6= 0 we have
DΣ,w = Π>(DΛ,vF )Π with |Λ| = Σ, it follows that UΠ, UFΠ are nowhere-zero orthogonal matrices,
and (UΠ)DΣ,w(UFΠ)> ∈ S(G). Therefore w is SV sane.

Now let Y ⊆ Rn \ {0} be a finite set. Let Z := {Πy : y ∈ Y} ∪ {FΠy : y ∈ Y}. Then Z is a finite
subset of Rn that does not contain zero (in particular since Π, FΠ have trivial kernels as orthogonal
matrices). If v is EV generically realisable, then for any eigenvalue list Λ we can find U ∈ O(n)
so that UDΛ,vU

> ∈ S(G), and Uz is nowhere-zero for all z ∈ Z. Therefore UΠy and UFΠy are
nowhere-zero for all y ∈ Y and (UΠ)DΣ,w(UFΠ)> ∈ S(G). Thus w is SV generically realisable.
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3.2 Joins of unions of complete graphs.

We introduce notation for the disjoint unions of complete graphs. For m = (m1, . . . ,mk) ∈ Nk, let
Km :=

⋃
i∈[k]Kmi

, with Kmi
the complete graph on mi vertices. Let |Km| = |m| =

∑
i∈[k]mi be the

size of Km. Let kG be the graph that is the disjoint union of k copies of the graph G.
For this section we consider graphs of the form Km ∨Kn with m ∈ Nk, n ∈ Nl, and k ≤ l for k,

l ∈ N. We first present a necessary condition for Km ∨Kn to be realisable by an orthogonal matrix.
We will prove this more generally for G∨H where G, H have k, l connected components respectively.

Lemma 3.3. Let k, l ∈ N with k ≤ l. Consider the graphs G, H with k, l connected components
respectively. If there exists an orthogonal matrix in S̃(G ∨H), then l ≤ |G|.

Proof. Write G = G1 ∪ · · · ∪Gk, H = H1 ∪ · · · ∪Hl. Suppose there exists an orthogonal matrix X in
S̃(G ∨H), then it is of the form:

X :=

(
A =

⊕
i∈[k]Ai B

C D =
⊕

j∈[l]Dj

)
,

where Ai ∈ S̃(Gi) for all i ∈ [k] and Dj ∈ S̃(Hj) for all j ∈ [l]. B,C are nowhere-zero |G|× |H|, |H|×
|G| matrices respectively.

Given i, j ∈ [l], i 6= j, then for any row u in D[Hi], and any row v in D[Hj ], we have u, v
orthogonal. If, for instance, we take the first row dj of each D[Hj ] for all j ∈ [l], then we have a set
of l pairwise orthogonal rows in D.

Let c1, . . . , cl be the l rows of C contained in the rows of X containing the rows dj of D. These
rows of X are pairwise orthogonal, and so the set of vectors c1, . . . , cl must be pairwise orthogonal
also. We have c1, . . . , cl non-zero, and as they are orthogonal they must form a linearly independent
set. The submatrix corresponding to these c1, . . . cl is a l × |G| matrix, and as the rows are linearly
independent, we have l ≤ |G|.

Note that the argument in the proof of Lemma 3.3 can be repeated using the submatrices A, B
to yield k ≤ |H| also. However, if we assume k ≤ l, then we have k ≤ l ≤ |H|, so this condition is
satisfied automatically.

We will show that the necessary condition of Lemma 3.3 is also sufficient for the realisablility of
orthogonal matrices in Km ∨Kn. In [2, Proposition 4.1], it is proven that the complete graph Kn is
EV generically realisable for all n ∈ N. Any EV multiplicity vector for Kn must contain at least two
positive entries. We will show additionally that any SV multiplicity vector containing at least one
positive entry is SV generically realisable for Kn.

Proposition 3.4. For n ∈ N, Kn is SV generically realisable.

Proof. The result follows trivially for n = 1. Otherwise, assume n ≥ 2. Let w ∈ Nr
0 be a SV

multiplicity vector for Kn. If w contains at least two positive coordinates, then w is EV generically
realisable by [2, Proposition 4.1]. Therefore it is SV generically realisable also, as the set of non-
negative real singular value lists is contained in the set of real eigenvalue lists.

If w contains just one non-negative entry, then for any singular value list Σ, we have DΣ,w = a In
for some a ∈ R≥0. Let F := − I1⊕ In−1. Then if a 6= 0, DΣ,w = DΛ,vF for Λ an eigenvalue list
containing −a, a and v a multiplicity list with two positive entries. Since v is then EV generically
realisable for Kn, it follows that w is SV generically realisable for Kn by Lemma 3.2.

Lemma 3.5. Let m, m′ ∈ Nk, n, n′ ∈ Nl, with m ≤ m′, n ≤ n′. If Km ∨ Kn is realisable by an
orthogonal matrix, then Km′ ∨Kn′ is realisable by an orthogonal matrix also.

Proof. By symmetry, conjugating by permutation matrices, and successively applying the lemma, it
is sufficient to prove the statement for n = n′, and m = (m1, . . . ,mk), m′ = (m′1, . . . ,m

′
k) with

m′1 = m1 + 1, and m′i = mi for i = 2. . . . k. Let X = (xij) ∈ S̃(Km ∨Kn) be an orthogonal matrix.
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Let B′ be the first row of X less the first entry, and C ′ the first column of X less the first entry and
write:

X =


x11 B′

C ′ X ′

 .

Let X ′ = I1⊕X. Let V1 =

(
a b
b −a

)
be a 2 × 2 symmetric orthogonal matrix with a, b 6= 0, and let

V = V1 ⊕ I|m|+|n|−1. Let Y = V X ′V >. Then Y is orthogonal, and we claim Y ∈ S̃(Km′ ∨ Kn′).
Indeed,

Y = V X ′V =


a b 0 · · · 0
b −a 0 · · · 0
0 0
...

... I
0 0




1 0 0 · · · 0
0 x11 B′

0
... C ′ X ′

0




a b 0 · · · 0
b −a 0 · · · 0
0 0
...

... I
0 0



=


a2 + b2x11 ab(1− x11) bB′

ab(1− x11) a2x11 + b2 −aB′

bC ′ −aC ′ X ′

 .

This will be of the required pattern provided that ab(1− x11) is not zero. But a, b 6= 0, and x11 6= 1,
since otherwise all entries of B′, C ′ would be zero (X has orthogonal rows and columns), contradicting
the off-diagonal pattern of X.

Theorem 3.6. Consider the graph Km ∨ lK1 with m ∈ Nk and k ≤ l. If l ≤ |m|, then Km ∨ lK1 is
realisable by an orthogonal matrix.

Proof. We show that Km and lK1 have compatible SV multiplicity matrices for V ∈ N2×k
0 , W ∈ N2×l

0 .
Then by Corollary 2.16, Km ∨ lK1 is realisable by an orthogonal matrix. Let

V :=

(
1>k + a

b

)
, W :=

(
1>l
0>l

)
,

for a, b ∈ N1×k
0 two row-vectors. Then Ṽ >W̃ > 0. We want |a| = l − k ≥ 0 and b = |m| − l ≥ 0, so

that Ṽ 1k = W̃1l, and that the sum of all entries in V equals |m|.
Write m = (m1, . . . ,mk). Let b = (bi)i∈[k] have its coordinates defined successively as bi :=

min(mi−1, |m|− l−
∑

j∈[i−1] bj). We do achieve |b| = |m|− l, since
∑

i∈[k]mi−1 = |m|−k ≥ |m|− l.
Let a = (ai)i∈[k] be defined as ai := mi − 1 − bi. Then the i-th column of V contains at least one
positive entry and sums to mi for all i ∈ [k], and |a| = |m| − k − |b| = l − k.

We are now in a position to establish the converse result of Lemma 3.3 for Km ∨Kn:

Corollary 3.7. Consider the graph Km ∨ Kn with m ∈ Nk, n ∈ Nl and k ≤ l. Then l ≤ |m| is a
necessary and sufficient condition for Km ∨Kn to be realisable by an orthogonal matrix.

Proof. We have necessity by Lemma 3.3. Conversely, by Theorem 3.6, Km ∨ lK1 is realisable by an
orthogonal matrix since l ≤ |m|. Therefore by Lemma 3.5, Km ∨Kn is realisable by an orthogonal
matrix also, as n ≥ 1>l .
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Remark 3.8. In Proposition 3.4, we actually show the stronger condition that every SV multiplicity
vector w for Kn can be realised by a symmetric matrix, since the process in Lemma 3.2 results
in matrices in S(G). Therefore if Km ∨ Kn is realisable by an orthogonal matrix, we can find an

orthogonal matrix X ∈ S̃(Km ∨Kn) with X[Km] and X[Kn] symmetric.

The proof of Theorem 3.6 uses a singular value list of length 2. We can also ask whether we can
use singular value lists of length greater than two. The following two results briefly explore this.

Lemma 3.9. Consider the graph Km ∨ lK1, with m ∈ Nk, and k ≤ l. Let m̃ = min{mi : i ∈ [k]}. If

X ∈ S̃(Km ∨ lK1) is orthogonal, then X[lK1] has at most m̃ distinct singular values.

Proof. Let A = X[Km], D = X[lK1]. Then A =
⊕

i∈[m]Ai for Ai ∈ S̃(Kmi
). Let Aj be the m̃ × m̃

submatrix of A corresponding to the smallest connected component of Km. Then Aj has at most m̃
distinct non-one singular values. By Theorem 2.8, each singular value of D must be a singular value
of Aj , by the compatibility of Km and lK1. Thus up to sign, D has at most m̃ distinct diagonal
entries.

Lemma 3.10. Let k ≤ l and consider the graph kK2 ∨ lK1. If l < 2k, then any X ∈ S̃(kK2 ∨ lK1)
orthogonal has X[kK2], X[lK1] with one singular value distinct from 1.

Proof. By Lemma 3.9, X[kK2], X[lK1] can have at most 2 singular values distinct from one. We show
that there does not exist compatible multiplicity matrices V ∈ N3×k

0 , W ∈ N3×l
0 for l < 2k.

Indeed suppose X ∈ kK2 ∨ lK1 is orthogonal with X[kK2], X[lK1] having two distinct non-one
singular values σ1, σ2 ∈ R≥0. Let V , W be the resulting compatible SV multiplicity matrices. The
singular values of X[lk1] will be all less than one by the non-zero pattern of the off-diagonal blocks
of X. Since |lK1| = l < 2k = |kK2|, X[kK2] will have at least one singular value equal to 1 (as

Ṽ 1k = W̃1l). We have X[kK2] =
⊕

i∈[k]Ai for Ai ∈ S̃(K2) and X[lK1] =
⊕

j∈[l]Dj for each Dj

a 1 × 1 matrix. Let As be the matrix with one as a singular value. Then As has just one singular
value less than one, say σ1. But there exists some some Dj with σ2 as its singular value, so that

(Ṽ >W̃ )sj = 0, a contradiction. Therefore X[lK1] has just one distinct singular value σ1.

We finish this sub-section with a computed example:

Example 3.11. Consider G = 3K2 ∨ 4K1. G is not realisable by an orthogonal symmetric matrix
(see [2, Example 4.23]), but it can be realised by an orthogonal matrix by Theorem 3.6, since l =

4 ≤ |m| = 6. By Lemma 3.10, since l < 2k, any X ∈ S̃(G) orthogonal has X[3K2], X[4K1] with at
most one distinct non-one singular value. Recall the notation used in the proof of Theorem 2.15. Let
D = 1√

2
I4, and let U1 = 1

2
√

2
H4, where H4 is the 4× 4 Hadamard matrix. Let S1 = S2 = S3 = T1 =

T2 =

(
1
2

√
3

2√
3

2 −
1
2

)
, and let T3 =

( √
3

2
1
2

− 1
2

√
3

2

)
. We take M = N = I4. Then,

X =
1√
2



1 0 0 0 1
2

1
2

1
2

1
2

0 1 0 0 1
2

1
2 −

1
2 −

1
2

0 0 1 0 1
2 −

1
2 −

1
2

1
2

0 0 0 1 1
2 −

1
2

1
2 −

1
2

1
2

1
2

1
2

1
2 −1 0 0 0

1
2

1
2 −

1
2 −

1
2 0 −1 0 0

1
2 −

1
2 −

1
2

1
2 0 0 −1 0

1
2 −

1
2

1
2 −

1
2 0 0 0 −1


, X ′′ =

1√
2



√
2 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1
2

1
2

1
2

1
2

0 0
√

2 0 0 0 0 0 0 0
0 0 0 1 0 0 1

2
1
2 −

1
2 −

1
2

0 0 0 0 1 0 1
2 −

1
2 −

1
2

1
2

0 0 0 0 0 1 1
2 −

1
2

1
2 −

1
2

0 1
2 0 1

2
1
2

1
2 −1 0 0 0

0 1
2 0 1

2 −
1
2 −

1
2 0 −1 0 0

0 1
2 0 − 1

2 −
1
2

1
2 0 0 −1 0

0 1
2 0 − 1

2
1
2 −

1
2 0 0 0 −1


,

Y ≈ 1√
2


1.1 0.179 0 0 0 0 0.433 0.433 0.433 0.433

0.179 1.31 0 0 0 0 −0.25 −0.25 −0.25 −0.25
0 0 1.1 0.179 0 0 0.433 0.433 −0.433 −0.433
0 0 0.179 1.31 0 0 −0.25 −0.25 0.25 0.25
0 0 0 0 0.866 0.5 0.683 −0.683 0.183 −0.183
0 0 0 0 0.5 −0.866 0.183 −0.183 −0.683 0.683

0.433 −0.25 0.433 −0.250 0.683 0.183 −1 0 0 0
0.433 −0.25 0.433 −0.250 −0.683 −0.183 0 −1 0 0
0.433 −0.25 −0.433 0.250 −0.183 0.683 0 0 −1 0
0.433 −0.25 −0.433 0.250 0.183 −0.683 0 0 0 −1

 ∈ S̃(G),
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and Y is indeed orthogonal.

3.3 SV generic realisability of paths.

We now turn our focus to paths. Let Pn denote the path on n vertices. The SV multiplicity vectors
for Pn are much more constrained than those for Kn, as Proposition 3.12 shows, but we will yield
that Pn is SV generically realisable also.

Proposition 3.12. Let r, n ∈ N. Let V = (v1, . . . , vr)> ∈ Nr
0 be a SV multiplicity vector for Pn.

Then the coordinates of V are in the set {0, 1, 2}.

Proof. Equivalently, we show that any A ∈ S̃(Pn) has singular values of multiplicity at most 2.
For n = 1, 2, the result follows trivially.
Otherwise, assume n ≥ 3. Let X = (xij) ∈ S̃(Pn). Then the super-diagonal and sub-diagonal of X

are nowhere-zero. Let λ ∈ R≥0 be an eigenvalue of XX> (or equivalently X>X) and take the matrix
C = (cij) := XX> − λ In. The nullity of C corresponds to the multiplicity of λ as an eigenvalue of
XX>. We show that C has rank at least n− 2.

Indeed, for i = 3, . . . , n, we have ci,i−2 6= 0 since ci,i−2 =
∑

k∈[n] xi,kxi−2,k = xi,i−1xi−2,i−1 with

xi,i−1, xi−2,i−1 both non-zero. It is clear that cij = 0 if |i−j| > 2. Therefore, if we take the submatrix
C of C obtained by deleting the first two rows of C and the last two columns, we have C an upper-
triangular matrix with a nowhere-zero diagonal. Therefore this submatrix will have rank n − 2, so
that the rank of C is greater than n− 2.

Thus the eigenvalues λ occur with multiplicity at most two. These are all non-negative, and
the square roots

√
λ are the singular values of X, and so occur with multiplicity at most two also.

Therefore, if V is realisable by a matrix in S̃(Pn), the coordinates of V are all at most 2.

Let G be a connected graph on n vertices. Any {0, 1} EV multiplicity vector v is generically
realisable for G as shown in [5, Theorem 2.5]. We apply this result to show that Pn is SV generically
realisable.

Proposition 3.13. Let G be a connected graph on n vertices such that any matrix X ∈ S̃(G) has
rank at least n− 1. Let w = (w1, . . . , wr) ∈ Nr

0 be a multiplicity list with the entries of w in {0, 1, 2}
and

∑
i∈[r] wi = n. Then w is SV generically realisable for G.

Proof. Since any matrix in S̃(G) has rank at least n − 1, the multiplicity of zero as a singular value

for any matrix in S̃(G) is at most one. Consider DΣ,w 6= 0 for Σ ∈ Rr
≥0 a singular value list such

that mult(0, DΣ,w) < 2. There is an orthogonal diagonal matrix F and permutation matrix Π such
that DΣ,w = Π>(DΛ,vF )Π where |Λ| = Σ and v is a {0, 1} multiplicity list. This corresponds to the
singular values σs in DΣ,w with multiplicities two occurring as −σs, σs with multiplicity one in DΛ,v.
As v is EV generically realisable for G by [5, Theorem 2.5], we have that w is SV generically realisable
by Lemma 3.2.

Corollary 3.14. The path Pn is SV generically realisable for all n ∈ N.

Proof. Any SV multiplicity vector for Pn has entries in {0, 1, 2} by Proposition 3.12. Also, a matrix

in S̃(Pn) has rank at least n−1, as a consequence of the nowhere-zero super and sub-diagonals. Then
any such {0, 1, 2} singular value list is SV generically realisable for Pn by Proposition 3.13. Thus Pn

is SV generically realisable.

By Proposition 3.4 and Corollary 3.14, Kn and Pn are generically realisable. Therefore by Corollary
2.16, we yield the following.

Corollary 3.15. Let G, H be two graphs whose connected components are all complete graphs or
paths. Then G ∨H is realisable by an orthogonal matrix if and only if G and H have compatible SV
multiplicity matrices.
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Determining precisely the criteria for graphs of the above form in Corollary 3.15 to have compatible
SV multiplicity matrices is a more complicated problem than the clean result we were able to derive
in Corollary 3.7 for the joins of unions of complete graphs. We finish with some examples of instances
when orthogonal matrices can be realised.

Example 3.16. The following is an orthogonal matrix in S̃(P3 ∨ 2K3):

X =


0.5 −0.5 0 −0.24 0.126 −0.219 0.0491 0.562 0.246
0.5 0.5 −0.5 −0.0557 0.0292 −0.0508 −0.399 0.103 −0.271
0 0.5 0.5 0.24 −0.126 0.219 −0.0433 0.586 0.183

−0.064 0.0919 0.064 −0.676 −0.725 −0.0306 0 0 0
−0.239 0.343 0.239 −0.398 0.483 −0.614 0 0 0
0.0188 −0.027 −0.0188 0.516 −0.457 −0.724 0 0 0
0.498 −0.0617 0.587 0 0 0 −0.378 −0.503 0.087
−0.436 −0.264 −0.0562 0 0 0 −0.833 0.179 0.107
−0.0175 −0.222 0.302 0 0 0 −0.0103 0.213 −0.902

.

With respect to the singular value list Σ = { 1
2 ,
√

3
2 , 1}, we have the following compatible multiplicity

matrices V , W for P3, 2K3 respectively:

V =

1
2
0

 , W =

0 1
1 1
2 1

 .

Example 3.17. Consider n, k ∈ N such that 2k ≤ n ≤ 2k+2. If m1, m2 ≥ k, then Pn∨(Km1
∪Km2

)
is realisable by an orthogonal matrix. To show this, consider the compatible SV multiplicity matrices
V , W for Pn, Km1 ∪Km2 respectively:

V =

(
2 · 1>k
vk+1

)
∈ Nk+1,1

0 , W =

(
1>k 1>k

wk+1,1 wk+1,2

)
∈ Nk+1,2

0 .

Then vk+1 = n − 2k ≤ 2 and wk+1,1 = m1 − k ≥ 0 and wk+1,2 = m2 − k ≥ 0. Thus V , W are SV
multiplicity matrices for Pn and Km1 ∪Km2 and are compatible. By Corollary 3.15, there exists an

orthogonal matrix in S̃(Pn ∨ (Km1
∪Km2

)).

4 Possible future directions

We finish with a discussion of questions and possible directions that have not been explored in this
report.

Naturally, the theory presented in Section 2 could be extended to other classes of graphs, such as
trees and cycles.

We find that the necessary condition in Lemma 3.3 for G ∨H to be realisable by an orthogonal
matrix is also sufficient if G and H are disjoint unions of complete graphs. One could ask whether
there are any other types of graphs G, H for which the condition of Lemma 3.3 is necessary and
sufficient also.

In this report we have relied on obtaining SV multiplicity vectors from EV multiplicity vectors, as
per the process described in Lemma 3.1. An option would be to explore instances where we have SV
multiplicity vectors that cannot be obtained from EV multiplicity vectors. Or, are there graphs that
are SV generically realisable, but not EV generically realisable?

Additionally, one could consider looking at directed graphs. Given an undirected graph G, the
matrices in S̃(G) satisfy a symmetric zero non-zero pattern. That is, X = (xij) ∈ S̃(G) has for i 6= j
that xij 6= 0 ⇐⇒ xji 6= 0. In the context of the study of q(G) in the symmetric case as part of the
IEP-G, this is a natural choice. With respect to the context of orthogonal matrices and SVD, another
possible option is to instead consider directed graphs, and matrices Y = (yij) satisfying yij 6= 0 if and
only if there is an edge from vertex i to vertex j in G, for i 6= j. A possible direction of interest could
be to consider directed paths, which should have quite constrained SV multiplicity vectors, similar to
their undirected counterparts.
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