Patterns of orthogonal matrices.

Edwina Aylward
Supervised by Prof. Levene and Prof. Šmigoc

July 23, 2021

Introduction

- Patterns in orthogonal matrices have been widely studied. Here we are looking at zero-nonzero patterns on the off-diagonals of matrices.
- The symmetric case of this problem has been studied by Levene, Oblak, and Šmigoc in [LOŠ, 2020], [LOŠ, 2021].
- The symmetric case has applications in the Inverse Eigenvalue Problem for Graphs.

Matrices with patterns determined by a graph G

Definition

Given a simple graph G with labelled vertex set $V=\{1, \ldots, n\}$ and edge set $E \subseteq V \times V$, we define the set of matrices

$$
\widetilde{S}(G)=\left\{B=\left(b_{i j}\right) \in \mathbb{R}^{n \times n}: \text { for } i \neq j, b_{i j} \neq 0 \Longleftrightarrow\{i, j\} \in E\right\} .
$$

$$
B=\left(\begin{array}{cccc}
\circledast & * & 0 & 0 \\
* & \circledast & * & * \\
0 & * & \circledast & * \\
0 & * & * & \circledast
\end{array}\right)
$$

Matrices with patterns determined by a graph G

Definition

Given a simple graph G with labelled vertex set $V=\{1, \ldots, n\}$ and edge set $E \subseteq V \times V$, we define the set of matrices

$$
\widetilde{S}(G)=\left\{B=\left(b_{i j}\right) \in \mathbb{R}^{n \times n}: \text { for } i \neq j, b_{i j} \neq 0 \Longleftrightarrow\{i, j\} \in E\right\} .
$$

$$
B=\left(\begin{array}{cccc}
3 & 1 & 0 & 0 \\
1 & 0 & 0.5 & 7 \\
0 & 0.5 & \sqrt{2} & -1 \\
0 & 7 & -1 & 1
\end{array}\right)
$$

Matrices with patterns determined by a graph G

Definition

Given a simple graph G with labelled vertex set $V=\{1, \ldots, n\}$ and edge set $E \subseteq V \times V$, we define the set of matrices

$$
\widetilde{S}(G)=\left\{B=\left(b_{i j}\right) \in \mathbb{R}^{n \times n}: \text { for } i \neq j, b_{i j} \neq 0 \Longleftrightarrow\{i, j\} \in E\right\}
$$

$$
B=\left(\begin{array}{cccc}
3 & 1 & 0 & 0 \\
1 & 0 & 0.5 & 7 \\
0 & 0.5 & \sqrt{2} & -1 \\
0 & 7 & -1 & 1
\end{array}\right)
$$

The subset $S(G) \subseteq \widetilde{S}(G)$ of symmetric matrices and the eigenvalues of such matrices have been studied in detail (see [BA, 2013], [LOŠ, 2020], etc.).

Minimum number of distinct eigenvalues

Definition

For a matrix $A \in \mathbb{R}^{n \times n}$, let $q(A)$ denote the number of distinct eigenvalues of A. Given a graph G and the corresponding set of symmetric matrices $S(G)$, we let

$$
q(G)=\min \{q(A): A \in S(G)\} .
$$

Example

$q(G)=1$ if and only if the graph G has no edges. [BA, 2013]

Orthogonal Matrices and two distinct eigenvalues

Lemma

Let G be a graph with a non-empty edge set. Then $q(G)=2$ if and only if there exists an orthogonal symmetric matrix in $S(G)$. [BA, 2013]

Example

Let K_{n} be the complete graph on n vertices. Then $q\left(K_{n}\right)=2$. [BA, 2013]

Joins of Unions of Complete Graphs

Definition (Join of Graphs)

Given two graphs G, H, the join $G \vee H$ is the disjoint graph union $G \cup H$ with all possible additional edges joining every vertex of G to every vertex of H.

Example

$$
P_{2} \vee P_{3}=
$$

Joins of Unions of Complete Graphs

Given $\boldsymbol{m}=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}^{k}$, let $K_{\boldsymbol{m}}=K_{m_{1}} \cup \cdots \cup K_{m_{k}}$ be the disjoint union of k complete graphs. We look at matrices in $\widetilde{S}\left(K_{\boldsymbol{m}} \vee K_{\boldsymbol{n}}\right)$ with $\boldsymbol{m} \in \mathbb{N}^{k}, \boldsymbol{n} \in \mathbb{N}^{l}$.

Example

Let $\boldsymbol{m}=(1,2), \boldsymbol{n}=(1,1,2,2)$. Then $K_{\boldsymbol{m}} \vee K_{\boldsymbol{n}}=\left(K_{1} \cup K_{2}\right) \vee\left(2 K_{1} \cup 2 K_{2}\right)$, and matrices in $\widetilde{S}\left(K_{m} \vee K_{n}\right)$ are of the form:

$$
\left(\begin{array}{ccc|cccccc}
\circledast & 0 & 0 & * & * & * & * & * & * \\
0 & \circledast & * & * & * & * & * & * & * \\
0 & * & \circledast & * & * & * & * & * & * \\
\hline * & * & * & \circledast & 0 & 0 & 0 & 0 & 0 \\
* & * & * & 0 & \circledast & 0 & 0 & 0 & 0 \\
* & * & * & 0 & 0 & \circledast & * & 0 & 0 \\
* & * & * & 0 & 0 & * & \circledast & 0 & 0 \\
* & * & * & 0 & 0 & 0 & 0 & \circledast & * \\
* & * & * & 0 & 0 & 0 & 0 & * & \circledast
\end{array}\right)
$$

Orthogonal matrices and joins of graphs

Lemma

Let $k, I \in \mathbb{N}$ with $k \leq I$. Consider the graphs K_{m}, K_{n} with $\boldsymbol{m} \in \mathbb{N}^{k}$, $\boldsymbol{n} \in \mathbb{N}^{\prime}$. If there exists an orthogonal matrix in $\widetilde{S}\left(K_{\boldsymbol{m}} \vee K_{\boldsymbol{n}}\right)$, then $I \leq\left|K_{\boldsymbol{m}}\right|$.

Example

Let $\boldsymbol{m}=(1,2), \boldsymbol{n}=(1,1,2,2)$. Then $K_{\boldsymbol{m}} \vee K_{\boldsymbol{n}}$ is not realisable by an orthogonal matrix.

$$
\widetilde{S}\left(K_{\boldsymbol{m}} \vee K_{\boldsymbol{n}}\right)=\left\{\left(\begin{array}{ccccccccccc}
\circledast & 0 & 0 & * & * & * & * & * & * \\
0 & \circledast & * & * & * & * & * & * & * \\
0 & * & \circledast & * & * & * & * & * & * \\
\hline * & * & * & \circledast & 0 & 0 & 0 & 0 & 0 \\
* & * & * & 0 & \circledast & 0 & 0 & 0 & 0 \\
* & * & * & 0 & 0 & \circledast & * & 0 & 0 \\
* & * & * & 0 & 0 & * & \circledast & 0 & 0 \\
* & * & * & 0 & 0 & 0 & 0 & 0 & * \\
* & * & * & 0 & 0 & 0 & 0 & * & \circledast
\end{array}\right)\right\}
$$

Orthogonal matrices and joins of graphs

Lemma

Let $k, I \in \mathbb{N}$ with $k \leq I$. Consider the graphs K_{m}, K_{n} with $\boldsymbol{m} \in \mathbb{N}^{k}$, $\boldsymbol{n} \in \mathbb{N}^{\prime}$. If there exists an orthogonal matrix in $\widetilde{S}\left(K_{\boldsymbol{m}} \vee K_{\boldsymbol{n}}\right)$, then $I \leq\left|K_{\boldsymbol{m}}\right|$.

Example

Let $\boldsymbol{m}=(1,2), \boldsymbol{n}=(1,1,2,2)$. Then $K_{\boldsymbol{m}} \vee K_{\boldsymbol{n}}$ is not realisable by an orthogonal matrix.

$$
\widetilde{S}\left(K_{\boldsymbol{m}} \vee K_{\boldsymbol{n}}\right)=\left\{\left(\begin{array}{ccc|ccccccc}
\circledast & 0 & 0 & * & * & * & * & * & * \\
0 & \circledast & * & * & * & * & * & * & * \\
0 & * & \circledast & * & * & * & * & * & * \\
\hline * & * & * & \circledast & 0 & 0 & 0 & 0 & 0 \\
* & * & * & 0 & \circledast & 0 & 0 & 0 & 0 \\
* & * & * & 0 & 0 & \circledast & * & 0 & 0 \\
* & * & * & 0 & 0 & * & \circledast & 0 & 0 \\
* & * & * & 0 & 0 & 0 & 0 & 0 & * \\
* & * & * & 0 & 0 & 0 & 0 & * & \circledast
\end{array}\right)\right\}
$$

Orthogonal matrices and joins of graphs

Theorem

Consider the graph $K_{\boldsymbol{m}} \vee K_{\boldsymbol{n}}$ with $\boldsymbol{m} \in \mathbb{N}^{k}, \boldsymbol{n} \in \mathbb{N}^{\prime}$ and $k \leq 1$. Then $I \leq\left|K_{\boldsymbol{m}}\right|$ is a necessary and sufficient condition for $K_{\boldsymbol{m}} \vee K_{\boldsymbol{n}}$ to be realisable by an orthogonal matrix.

Orthogonal matrices and joins of graphs

Example

Consider $G=2 K_{2} \vee 3 K_{1}$. G is not realisable by an orthogonal symmetric matrix (see [LOŠ, 2020, Example 4.23]), but it can be realised by an orthogonal matrix:

$$
Y \approx\left(\begin{array}{cccc|ccc}
0.414 & 0.573 & 0 & 0 & 0.296 & 0.598 & 0.231 \\
0.573 & -0.413 & 0 & 0 & 0.032 & -0.267 & 0.653 \\
0 & 0 & 0.352 & 0.692 & 0.57 & -0.234 & -0.124 \\
0 & 0 & 0.692 & -0.645 & 0.292 & -0.12 & -0.063 \\
\hline 0.199 & 0.221 & 0.570 & 0.292 & -0.707 & 0 & 0 \\
0.133 & 0.642 & -0.234 & -0.12 & 0 & -0.707 & 0 \\
0.665 & -0.195 & -0.124 & -0.063 & 0 & 0 & -0.707
\end{array}\right) \in \widetilde{S}(G)
$$

Compatible Multiplicity Matrices: Example

Example

Consider $G=2 K_{2} \vee 3 K_{1}$. We have $Y \in \widetilde{S}(G)$ orthogonal:

$$
Y \approx\left(\begin{array}{cccc|ccc}
0.414 & 0.573 & 0 & 0 & 0.296 & 0.598 & 0.231 \\
0.573 & -0.413 & 0 & 0 & 0.032 & -0.267 & 0.653 \\
0 & 0 & 0.352 & 0.692 & 0.57 & -0.234 & -0.124 \\
0 & 0 & 0.692 & -0.645 & 0.292 & -0.12 & -0.063 \\
\hline 0.199 & 0.221 & 0.570 & 0.292 & -0.707 & 0 & 0 \\
0.133 & 0.642 & -0.234 & -0.12 & 0 & -0.707 & 0 \\
0.665 & -0.195 & -0.124 & -0.063 & 0 & 0 & -0.707
\end{array}\right)
$$

We can perform a SVD on $Y\left[2 K_{2}\right]$ and write $Y\left[2 K_{2}\right]=U D V^{\top}$ with U, V orthogonal and $D=\left(\begin{array}{cccc}0.707 & 0 & 0 & 0 \\ 0 & 0.707 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0.77 & 0 \\ 0\end{array}\right)$. With respect to the singular value list $\Sigma=\{0.707,1\}$, we define singular value multiplicity matrices V, W for $2 K_{2}, 3 K_{1}$ respectively. These encode the multiplicities of the singular values in the connected components of the graphs. We have

$$
V=\left(\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right), \quad W=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

Compatible Multiplicity Matrices and Singular Value Decomposition

In [LOŠ, 2020], a machinery of compatible eigenvalue multiplicity matrices is developed to give a necessary condition for $G \vee H$ to be realisable by a symmetric orthogonal matrix. Under additional conditions, these compatibility relations become a sufficient condition for the existence of an orthogonal symmetric matrix $X \in S(G \vee H)$ also.

For the non-symmetric case, the notion of compatible eigenvalue multiplicity matrices extends naturally to that of compatible singular value multiplicity matrices. In a similar capacity we are able to obtain a necessary and sufficient condition for the join of two graphs to be realisable by an orthogonal matrix in certain cases.

Key References

B. Ahmadi, F. Alinaghipour, M. S. Cavers, S. Fallat, K. Meagher, and S. Nasserasr.

Minimum number of distinct eigenvalues of graphs, 2013, 1304.1205.
R R. H. Levene, P. Oblak, and H. Šmigoc.
Orthogonal symmetric matrices and joins of graphs, 2020, 2012.12694.
围 R. H. Levene, P. Oblak, and H. Šmigoc.
Paths are generically realisable, 2021, 2103.04587.

