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Introduction

Patterns in orthogonal matrices have been widely studied. Here we
are looking at zero-nonzero patterns on the off-diagonals of matrices.

The symmetric case of this problem has been studied by Levene,
Oblak, and Šmigoc in [LOŠ, 2020], [LOŠ, 2021].

The symmetric case has applications in the Inverse Eigenvalue
Problem for Graphs.
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Matrices with patterns determined by a graph G

Definition

Given a simple graph G with labelled vertex set V = {1, . . . , n} and edge
set E ⊆ V × V , we define the set of matrices

S̃(G ) = {B = (bij) ∈ Rn×n : for i 6= j , bij 6= 0 ⇐⇒ {i , j} ∈ E}.
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B =


~ ∗ 0 0
∗ ~ ∗ ∗
0 ∗ ~ ∗
0 ∗ ∗ ~
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The subset S(G ) ⊆ S̃(G ) of symmetric matrices and the eigenvalues of
such matrices have been studied in detail (see [BA, 2013], [LOŠ, 2020],
etc.).
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Minimum number of distinct eigenvalues

Definition

For a matrix A ∈ Rn×n, let q(A) denote the number of distinct eigenvalues
of A. Given a graph G and the corresponding set of symmetric matrices
S(G ), we let

q(G ) = min{q(A) : A ∈ S(G )}.

Example

q(G ) = 1 if and only if the graph G has no edges. [BA, 2013]
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Orthogonal Matrices and two distinct eigenvalues

Lemma

Let G be a graph with a non-empty edge set. Then q(G ) = 2 if and only
if there exists an orthogonal symmetric matrix in S(G ). [BA, 2013]

Example

Let Kn be the complete graph on n vertices. Then q(Kn) = 2. [BA, 2013]
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Joins of Unions of Complete Graphs

Definition (Join of Graphs)

Given two graphs G , H, the join G ∨ H is the disjoint graph union G ∪ H
with all possible additional edges joining every vertex of G to every vertex
of H.

Example

P2 ∨ P3 =
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Joins of Unions of Complete Graphs

Given mmm = (m1, . . . ,mk) ∈ Nk , let Kmmm = Km1 ∪ · · · ∪ Kmk
be the disjoint

union of k complete graphs. We look at matrices in S̃(Kmmm ∨ Knnn) with
mmm ∈ Nk , nnn ∈ Nl .

Example

Let mmm = (1, 2), nnn = (1, 1, 2, 2). Then Kmmm ∨Knnn = (K1 ∪K2)∨ (2K1 ∪ 2K2),
and matrices in S̃(Kmmm ∨ Knnn) are of the form:



~ 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 ~ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ~ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ~ 0 0 0 0 0
∗ ∗ ∗ 0 ~ 0 0 0 0
∗ ∗ ∗ 0 0 ~ ∗ 0 0
∗ ∗ ∗ 0 0 ∗ ~ 0 0
∗ ∗ ∗ 0 0 0 0 ~ ∗
∗ ∗ ∗ 0 0 0 0 ∗ ~
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Orthogonal matrices and joins of graphs

Lemma

Let k , l ∈ N with k ≤ l . Consider the graphs Kmmm, Knnn with mmm ∈ Nk ,
nnn ∈ Nl . If there exists an orthogonal matrix in S̃(Kmmm ∨Knnn), then l ≤ |Kmmm|.

Example

Let mmm = (1, 2), nnn = (1, 1, 2, 2). Then Kmmm ∨ Knnn is not realisable by an
orthogonal matrix.

S̃(Kmmm ∨ Knnn) =





~ 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 ~ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ~ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ~ 0 0 0 0 0
∗ ∗ ∗ 0 ~ 0 0 0 0
∗ ∗ ∗ 0 0 ~ ∗ 0 0
∗ ∗ ∗ 0 0 ∗ ~ 0 0
∗ ∗ ∗ 0 0 0 0 ~ ∗
∗ ∗ ∗ 0 0 0 0 ∗ ~





Edwina Aylward Patterns of orthogonal matrices July 2021 10 / 16



Orthogonal matrices and joins of graphs

Lemma

Let k , l ∈ N with k ≤ l . Consider the graphs Kmmm, Knnn with mmm ∈ Nk ,
nnn ∈ Nl . If there exists an orthogonal matrix in S̃(Kmmm ∨Knnn), then l ≤ |Kmmm|.

Example

Let mmm = (1, 2), nnn = (1, 1, 2, 2). Then Kmmm ∨ Knnn is not realisable by an
orthogonal matrix.

S̃(Kmmm ∨ Knnn) =





~ 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 ~ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ~ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ~ 0 0 0 0 0
∗ ∗ ∗ 0 ~ 0 0 0 0
∗ ∗ ∗ 0 0 ~ ∗ 0 0
∗ ∗ ∗ 0 0 ∗ ~ 0 0
∗ ∗ ∗ 0 0 0 0 ~ ∗
∗ ∗ ∗ 0 0 0 0 ∗ ~





Edwina Aylward Patterns of orthogonal matrices July 2021 11 / 16



Orthogonal matrices and joins of graphs

Theorem

Consider the graph Kmmm ∨ Knnn with mmm ∈ Nk , nnn ∈ Nl and k ≤ l . Then
l ≤ |Kmmm| is a necessary and sufficient condition for Kmmm ∨ Knnn to be
realisable by an orthogonal matrix.
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Orthogonal matrices and joins of graphs

Example

Consider G = 2K2 ∨ 3K1. G is not realisable by an orthogonal symmetric
matrix (see [LOŠ, 2020, Example 4.23]), but it can be realised by an
orthogonal matrix:

Y ≈



0.414 0.573 0 0 0.296 0.598 0.231
0.573 −0.413 0 0 0.032 −0.267 0.653

0 0 0.352 0.692 0.57 −0.234 −0.124
0 0 0.692 −0.645 0.292 −0.12 −0.063

0.199 0.221 0.570 0.292 −0.707 0 0
0.133 0.642 −0.234 −0.12 0 −0.707 0
0.665 −0.195 −0.124 −0.063 0 0 −0.707


∈ S̃(G ).

Edwina Aylward Patterns of orthogonal matrices July 2021 13 / 16



Compatible Multiplicity Matrices: Example

Example

Consider G = 2K2 ∨ 3K1. We have Y ∈ S̃(G ) orthogonal:

Y ≈



0.414 0.573 0 0 0.296 0.598 0.231
0.573 −0.413 0 0 0.032 −0.267 0.653

0 0 0.352 0.692 0.57 −0.234 −0.124
0 0 0.692 −0.645 0.292 −0.12 −0.063

0.199 0.221 0.570 0.292 −0.707 0 0
0.133 0.642 −0.234 −0.12 0 −0.707 0
0.665 −0.195 −0.124 −0.063 0 0 −0.707


.

We can perform a SVD on Y [2K2] and write Y [2K2] = UDV> with U, V

orthogonal and D =


0.707 0 0 0

0 0.707 0 0

0 0 0.707 0
0 0 0 1

 . With respect to the singular value

list Σ = {0.707, 1}, we define singular value multiplicity matrices V , W
for 2K2, 3K1 respectively. These encode the multiplicities of the singular
values in the connected components of the graphs. We have

V =
(

2 1
0 1

)
, W =

(
1 1 1
0 0 0

)
.
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Compatible Multiplicity Matrices and Singular Value
Decomposition

In [LOŠ, 2020], a machinery of compatible eigenvalue multiplicity matrices
is developed to give a necessary condition for G ∨ H to be realisable by a
symmetric orthogonal matrix. Under additional conditions, these
compatibility relations become a sufficient condition for the existence of an
orthogonal symmetric matrix X ∈ S(G ∨ H) also.

For the non-symmetric case, the notion of compatible eigenvalue
multiplicity matrices extends naturally to that of compatible singular value
multiplicity matrices. In a similar capacity we are able to obtain a
necessary and sufficient condition for the join of two graphs to be
realisable by an orthogonal matrix in certain cases.
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