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1 Abstract

We use the Lightning Laplace Solver, a new solver for Laplace’s equation, to obtain a model for fluid
flow in a T-junction, where fluid enters from the top and splits into two directions. We compare this
model with the stagnation point flow to investigate how well it approximates this flow. We find these
models agree more for T-junctions with rounded corners than for those with sharp corners, where
there is a greater difference between their results.

We calculate small particle paths in the T-junction and find that particles starting closer to the
edge of the junction exit at a higher point and spend less time in the pipe. We find that particles with
lower Stokes numbers follow the fluid flow better and exit at a higher point, and all particles with a
Stokes number greater than 0.1 will collide with the bottom wall before exiting.

We vary the radius of the corners to see how it affects the particle paths and find it has a weak
effect on the final positions and travel times of particles in this flow.

2 Introduction

2.1 Stagnation point flows

We describe a stagnation point flow as a 2-dimensional incompressilbe and irrotational fluid flow
bounded by solid walls in a T-junction geometry, like in Figure 1. We model potential flow. The
position of the stagnation point depends on the flow entry and exit points. In Figure 2 this is at the
point (0,0). The classical representation of stagnation point flow [4] has the complex potential

w=kz? = ka® — ky® + 2ikay, y>0 (1)

and has a stagnation point where no fluid flow takes place at (z,y) = (0,0). This representation is
limited in that it imposes only one of the solid wall boundaries (at y = 0), and does not represent
other boundary conditions. Since this flow is irrotational and incompressible, its potential function

satisfies Laplace’s equation,
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We derive the fluid velocity of the stagnation point flow by differentiating w with respect to x and y
and taking the real part to get the velocities in the - and y-directions respectively.
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) = Real(2kx + 2iky, —2ky + 2ikz) = (2kx, —2ky) (3)

In this investigation, we analyse the claim that this flow is similar to flow entering a pipe and
reaching a T-junction[3]. We assume the flow in the T-junction will be incompressible and irrotational,
so it will be a potential flow that satisfies Laplace’s equation. This allows us to use a solver for
Laplace’s equation to obtain its potential function for the boundary conditions of a T-junction.We



Figure 1: The T Junction

use a new solver for Laplace’s equation that allows us to obtain the complex potential function for
potential fluid flows. We compare this function with Equation 1 and determine the suitability of w as
an approximation of potential flow in a T-junction.

We introduce small particles travelling through the pipe and investigate what effect the drag force
of the fluid on them has on their trajectories. We vary the Stokes number of this particle to show the
effect this has on where it exits the pipe and how long it spends travelling through it. We determine
whether a particle collides with a wall or exits in the main fluid body and the residence time of the
particle in the system. We compare the paths of these particles with the streamlines to see how well
the particles follow these lines. We consider Stokes numbers between 0.001 and 0.1 for this.
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Figure 2: Streamlines of a stagnation point flow

2.2 The Lightning Laplace Solver

To calculate the complex potential of different flows, we use the Lightning Laplace Solver[1]. This
solves Laplace’s equation in polygonal or circular boundaries subject to Dirichlet or homogeneous
Neumann boundary conditions. As potential flow may be described as such, the solver is suitable for
our application. The real part of the solution represents the equipotential function and the imaginary
part the streamlines.

The inputs accepted by the solver are P and g, where P is an ordered list of points used to define
line segments and circular arcs that make up the boundary, and g is the Dirichlet boundary condition
for each side of the boundary. If the value given for this condition is not numeric (or entered as 'NaN’),
the solver imposes the homogeneous Neumann boundary condition there instead, so the boundary is
treated as a solid barrier.



The solver calculates a solution to Laplace’s equation by finding sets of complex coefficients {a;}
and {b;} such that the equation
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satisfies the given boundary conditions. Here, z is the complex coordinate x + iy, and {z;} and z,
fixed points inside and outside the boundary, respectively. {z;} are taken to be singularities of the
equation which are clustered exponentially near each vertex of the boundary. These are the red points
in Figures 3 and 4. The first series allows r(z) to be approximated accurately near the corner vertices
with convergence ||f — ry|| = O(exp(—C+/n)) because of how {z;} are chosen by the solver.[2]. The
second sum uses the fact that polynomials can be used to approximate smooth functions in the plane.

We modify the solver to allow it to display streamlines instead of equipotential lines. Sample
outputs of both functions of the Laplace Solver are shown below. Due to limitations with how contour
maps are calculated in MATLAB, the streamlines are only displayed on one side of the junction in
Figure 4.

Figure 3: Equipotential lines output of Laplace Solver

Figure 4: Streamlines output of Laplace Solver

2.3 The T-Junction

The classical T-junction is a pipe with one inlet and two outlets in opposite direction. These meet
in a junction with a T shape, as depicted in Figure 1. Each wall of this pipe is treated as a solid
boundary, and the outlets are given a positive Dirichlet boundary condition or potential difference
pd. The inlet is given a boundary condition of zero. These are real numbers to indicate a potential
difference across which fluid flows.

We also consider a T-junction with rounded corners at the turn with arc radius r to investigate
whether altering the radius of these corners affects the potential function from the Laplace Solver.



Figure 5: T-Junction with corner radius 1 unit, with comparison region highlighted

The pipes are each 3 units long, and we vary r between 0 and 2 units, where a radius of zero means
there are sharp corners.

3 Methods

3.1 Comparing the T-Junction to the Stagnation Point Flow

We use the Lightning Laplace Solver to solve the fluid problem given by [state the problem: geometric
boundary and potential difference]. We show the equipotential lines and streamlines in Figures 3 and
4 respectively. We obtain the complex potential functions for these flows, given by f(z,y). In order
to compare the stagnation point flow potential, w, with the computed f of the Laplace solver, we
consider the square region at the intersection of the junction with side length 1 unit (Figure 5).

We know that w(0,0) = 0 but the potential flow given by f is unique up to an additive constant.
To minimise the error, f is adjusted such that f(0,0) = 0 by subtracting f(0,0) from f. The value
of k is chosen to minimise the difference between f and w at some point x( in this region. Different
values for x( are considered to minimise the overall error.

We measure |f(x,y) —w(zx,y)| at 5000 evenly distributed points in the region and divide the sum
by the total number of points to obtain the average error. We repeat this for different values of r and
pd to investigate their effect on the error. We find that values of x( closer to the bottom boundary
produce less consistent results for the error as shown in the comparison in Figure 6. Note that xq is
expressed as the complex value = + iy in these figures.

We find that the error scales linearly with pd, which is shown in Figure 7. As r is decreased, the
error goes up and the stagnation point flow becomes a less accurate approximation for the potential
function.

3.2 Calculating Particle Paths in a T-Junction

In the previous section we observed the differences in stagnation point flow by appropriately treating
all boundary conditions. This affects systems that depend on that flow, such as transport of colloidal
particles.

Particles in a steady flow at the position x, = (xp,y,) are transported by hydrodynamic forces
such as drag due to the fluid viscosity[3], with motion governed by

C

St = 7 (10— %) [u— %, (5)

where u = (u,v) is the flow velocity of the fluid. Cp is the drag coefficient between the fluid and
the particle, and St is the Stokes number of the particle. The z- and y-components are given by 2nd
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Figure 6: Error values agree better when some x( are omitted
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Figure 7: Averaged error scaling linearly with pd for several r

order coupled ordinary differential equations.
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(6)

Other forces on the particle may be important, including the drag due to a pressure gradient on
the particle surface, mass force from acceleration of the fluid by the particle, lift caused by particle
or fluid rotation, gravity, and lubrication forces as the particle approaches a wall[3]. We assume that
the drag force is the dominant force for the purpose of this investigation.

We integrate these equations using MATLAB’s ode45 function from a starting point at the entrance
to the T-junction, tracking the particle paths as they were carried by the fluid flow. We use regular
equispaced points along the inlet as starting points, and the initial velocities were assumed to be the



velocity of the fluid at that point.

We consider two different cases for the value of the function u. The first is given by the stagnation
flow, (u,v) = (2kx, —2ky), where k is chosen to match a potential difference of 1 from inlet to outlet.

For the second case, we took a numerical finite difference approximation of the potential function
© = Re(f), where f is given by the Lightning Laplace Solver, with respect to = and y to obtain u and
v respectively.

We plot the particle paths alongside the streamlines, and compare it to the particle paths and
streamlines given by the stagnation point flow. As discussed, the streamlines of the stagnation point
flow do not take into account all walls of the T-junction. The results for some values of r and St are
shown in Figure 8.
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Figure 8: Streamlines (green) and Particle Paths (blue) for different r and St using the Lightning
Laplace Solver



3.3 Investigating particle paths for different Stokes numbers and corner
geometries

We look at the effect changing the geometry of the T-junction and the Stokes number has on the
particle paths, and at what point they exit the pipe. We show the exit point y against the entry point
xq for a given value of Cp, St and pd in Figure 9. We consider only x( values on the right hand side
of the pipe since the flow is symmetric around the y-axis. This is repeated for different r values. We
consider a range from 0 to 0.5 for xy . Figure 9 obtained using the values 1 for Cp, 0.007 for the
Stokes number, and 1 for pd.

In Figure 9 we see a significant difference between the exit and entry points for stagnation point
flow and potential flow via the Lightning Laplace Solver. Greater values in exit point y are obtained
and for a larger range of entry points xyg. However, only a weak dependence on r is evident.

We analyse the maximum point in the T-junction from which particles exit by considering particles
starting close to one side of the inlet. We plot this position, y, against the Stokes number of the particle,
St, for different r values with pd = 1 (Figure 10)

In Figure 10, the dependence on r is weak for small Stokes numbers, but as Stokes numbers increase
a clear dependence emerges.
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Figure 9: Ending position of particles vs entry points zg of the T-junction

3.4 Investigating travel times of particles

We find the travel times of the particles based on where they entered the pipe for various radii r. We
show in Figure 11 the residence time for Stokes number 0.007 and potential difference 1. Particles
closer to the side will exit the pipe sooner because they have a shorter distance to travel. Particles
near the centre of the pipe will spend longer there as they have to travel a further distance and their
paths will come close to the stagnation point, where the flow is the slowest. The value of r is seen to
weakly affect the travel times here.
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Figure 10: Highest ending position of particles vs Stokes number for values of r for the T-junction
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Figure 11: Travel times of particles vs entry point for values of r for the T-junction

3.5 Two entry flows

We alter the potential at the outlets to change the left outlet to an inlet, and to see how it would
affect the particle paths near the junction. We set the boundary at the top and right to have Dirichlet
boundary conditions of 0 and 5 respectively. The particle paths are plotted for several values of the
boundary condition at the left inlet (Figure 12).

When the potential difference between the top and left is zero, the flow at both of these sides will
have similar energies, and the flows will meet at the junction before exiting the pipe together. As
the potential difference increase, the flow becomes less symmetric at the junction, and the particles
entering from the left are pushed down to the bottom wall.



We look at what point in the outlet the two flows meet to determine how the potential difference
between the outlets affects the amount the flow from the left is confined to the bottom by the top
flow. For a pipe with corner radius 2 and top potential equal to zero, we vary the potential at the left
between 0 and 2.5 for potentials at the right between 3 and 5, and plot the point where the flows meet
in Figure 13. We find that a higher potential difference between the left and right exits leads to the
flows meeting at a higher point at the exit, and a lower potential at the right exit point means there
is a lower potential difference between the left and right so that top flow is able to dominate the flow
and confine the flow from the left to the bottom wall more easily. All the particles from the left wall
are confined to the bottom wall for a sufficiently high left potential, which can be seen in Figure 12c.

4 X E 2 4

(c) Potential difference 2,0,5

Figure 12: Particle paths for flows with given potentials at the left,top and right outlets
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Figure 13: Changeover point between two flows for different left and right potentials

4 Conclusion

We used a new solver for Laplace’s equation, the Lightning Laplace Solver to compare the streamlines
of a flow through a T-junction with those of the stagnation point flow, and found that this flow was
not a good approximation of sharp corner junctions. We looked at the effect of the T-junction’s shape
on the paths of small particles in this flow, and saw that their exit points were weakly affected by
the arc radius of the corners. We found that the particles’ Stokes number had a larger impact on
where they ended up after being carried by the flow. We saw that particles which stared closer to one
side of the inlet exited at a higher point and spent less time travelling through the junction. Finally,
we altered the potential at one of the outlets to study the effect it had on particle paths near the
junction, and demonstrated that when two flows merged at the junction, the inlet particles with a
lower potential difference would be confined to a narrower section by the faster flow.

References

inand Gopal an oyd N. Trefethen, New Laplace and Helmholtz solvers, , No.
1] Abinand Gopal and Lloyd N. Trefethen, New Lapl d Helmhol 1 PNAS 116 21
(2019) pp. 10223-10225

[2] Schwab C., p- and hp-finite element methods. Theory and applications in solid and fluid
mechanics. Oxford University Press (1998)

[3] Vigolo, Daniele, et al. ” An experimental and theoretical investigation of particle—wall impacts in
a T-junction.” Journal of fluid mechanics 727 (2013), pp. 236-255

[4] Richard E. Meyer, Introduction to Mathematical Fluid Dynamics (2012) pp. 19-21

10



