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Potential Flows

e Irrotational and incompressible fluid flows which satisfy V x¥ = 0 and
V - 7 = 0 where ¢J is the flow velocity.

e This allows for a potential function ¥ which satisfies ¥ = Vi and V¢ = 0

e We can use a solver for Laplace’s equation to obtain the potential function for
this kind of flow for some given boundary condition.

e We obtain the fluid velocity ' = V¢ from this by taking derivatives of ¢

e We look at 2D flows with complex potential functions w = ¢ + )




Stagnation Point Flow

e T-junction flows are often compared to
stagnation point flows.

e This is the flow a fluid colliding with a
wall will take.
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Stagnation Point Flows

e The streamlines of the stagnation
point flow pass through the walls of

the pipe. i

e Most particles in this flow hit the it I
side of the side of the pipe before = ;' I
reaching the junction. il

e Any particles that make it through ™ AN
end up coming out near the bottom .
of the outlet. |




The Lightning Laplace Solver

e Finds the complex potential o
function for any flow with polygonal
or circular boundary conditions.
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e Uses this to get potential lines and -
streamlines. of
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e Allows us to find the flow velocity |, | K S
for any point in the T-junction.
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e Singularities in the flow will arise
near any sharp corners.
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Comparison with Stagnation Point Flow

e We find the potential function, f, for
various r values

e We adjust this function so f(0,0) = 0
so it matches up with the
stagnation point flow.

e We compare this function to the
stagnation point flow in the dotted
region.




Comparison with Stagnation Point Flow
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e We compare f withw = kz2

e Kkis scaled so it matches f at some point
2=+ 1Y

ed error
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e The erroris found by taking | f(z, y) — w(z, y)|
at 500 points in the dotted region and
getting their average.

e We plot the error vs r and repeat for
different z-values.
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Particle Paths

e The main force on particles in the flow is drag force
by the fluid viscosity

St Xy = %(u — Xp)|u — xp|

e This is equivalent to Newton's 2nd Law, F = ma.

e Stisthe particle’s Stokes number in the fluid, andis —— =~
describes the inertia of the particle which it can St = 0.001 Sto01
use to deviate from the streamlines in a flow that is
changing direction.
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Particle Paths
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Particle Paths

e Particles starting closer to the edge exitata | —
higher point. _ e o
0.8 r=25
e Points near the center collide with the = T“"";}/
- = 0.6
bottom wall before exiting. E yd
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Stoke Numbers

e Lower Stokes numbers let particles
follow the fluid flow easier.

e All particles will hit the bottom wall
first for high Stokes numbers.




Particle Hang Times

e Particles closer to the side will exit
sooner.

e Particles near the center of the pipe take
longer as they are closer to the
stagnation point.
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Conclusion

e Stagnation point flows are a less accurate model for sharp corner flows.

e Particle paths are mainly affected by their Stokes number, and more weakly
by the corner radius of the junction.

e More accurate models for flows in T-junction geometries yield better physics
simulations for particle paths.




