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Abstract

The nonnegative inverse eigenvalue problem (NIEP) is a question in matrix theory which concerns
the characterisation of spectra of entrywise nonnegative matrices. It is quite a high level question, and
gives rise to a panoply of mathematical work regarding lower level details of it. In this report I will first
provide to the reader an introduction to the NIEP, and then provide some existing results for specific
cases of the problem. Finally, I will discuss Johnson’s conjecture, which concerns the derivative of a
characteristic polynomial of an n × n nonnegative matrix (a “realisable” polynomial), wherein I will
provide some original work, which serves as progress towards a proof of this conjecture for the n = 5
case.

1 Introduction: The Spectrum of a Nonnegative Matrix

We denote by Mn(R+) the set of all n×n matrices with nonnegative real entries. The spectrum of a matrix
A ∈ Mn(R+), denoted here as σ(A) = (λ1, λ2, ..., λn) (repetitions included), or simply σ when there is no
ambiguity, is the set of eigenvalues of A. When such an A exists for σ we say that A “realises” σ. The
type of matrix of concern here is entrywise nonnegative, referred to from here on as nonnegative, and we use
A ≥ 0 as its notation. The NIEP asks the following:

Given a list of complex numbers σ, what are the necessary and sufficient conditions for it to be the
spectrum of a nonnegative matrix?

Example 1. Let A =

(
0 1
1 0

)
, then σ = (1,−1). Alternatively, we could start with letting σ = (2, 0), and

subsequently find a realising matrix A =

(
1 1
1 1

)
. (It is this latter order that we are concerned with in the

NIEP.)

1.1 Necessary Conditions

This section addresses the criteria a set of values must satisfy in order for it to be realisable. Note that
the satisfaction of these criteria does not imply realisability. Before listing the necessary conditions, some
preliminary results must be stated.

By our theory of nonnegative matrices, we know that for any nonnegative matrix A, its spectral radius
ρ(A) is an element of its spectrum σ.

Definition 1. A matrix A is irreducible when it is not similar via permutation to a block upper diagonal
matrix. That is to say, when there is no permutation matrix P , and block upper diagonal matrix B, with at
least two blocks of size ≥ 1, such that PTAP = B.

Theorem 1. (Perron-Frobenius Theorem) If A is an irreducible, nonnegative square matrix, then the fol-
lowing properties hold:

• ρ(A) ∈ σ(A), where ρ(A) = max{|λ| : λ ∈ σ(A)},

• alg multA(ρ(A)) = 1,

• There exists an entrywise positive eigenvector v > 0 of A such that Av = ρ(A)v. (v is called the Perron
eigenvector when the sum of its entries equals 1),

• The only nonnegative eigenvectors of A are positive multiples of its Perron eigenvector.
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Definition 2. Let A be a nonnegative n× n matrix, and σ(A) = (λ1, λ2, ..., λn), then the kth moment of σ
is defined to be

sk := λk1 + λk2 + ...+ λkn. (1)

Note that the kth moment of σ(A) is equal to tr(Ak). Thus, one of the necessary conditions follows
naturally, which is that if A is a nonnegative matrix, and sk is its kth moment, then

sk = tr(Ak) ≥ 0 (2)

as all entries of Ak must be nonnegative.
Another necessary condition was obtained by Loewy and London in 1978, and independently by Johnson in
1981, to give what is called the J-LL inequalities, which state that given a nonnegative n× n matrix A, and
for any m, k ∈ N, the following inequality holds:

nm−1skm ≥ smk . (3)

A proof of this is given by Cronin, and goes as follows.
Let A be an n×n nonnegative matrix, and let Ak = D+C where D is a diagonal matrix, C has trace zero,
and both are nonnegative. Then

skm = tr((Ak)m) = tr((D + C)m)

≥ tr(Dm)

≥ 1

nm−1
tr(D)m

=
1

nm−1
smk .

Another necessary condition comes from the fact that the characteristic polynomial of a real-valued matrix
has real coefficients. The upshot of this is that the set of roots of the polynomial is closed under complex
conjugation, thus the spectrum σ of A is closed under conjugation. Now we will go through some simple
examples of the application of these necessary conditions.

Example 2. Let σ = (5, 3 + 2i, 3− 2i,−6). Here σ is not realisable, as the spectral radius is 6, but 6 /∈ σ.

Example 3. Let σ = (3, 3,−2,−2,−2). Here σ is not realisable, as we observe that it does not have
an algebraically simple Perron eigenvalue, thus any nonnegative realisation of it must be reducible (by the
Perron-Frobenius Theorem). Thus, a block diagonal matricial realisation must be possible, meaning either
σ1 = (3,−2,−2, ) or σ2 = (3,−2,−2,−2, ) must be realisable. Neither of those cases are realisable, as the
sum of the values in both cases is negative meaning any ‘realizing’ matrix would have negative trace.

Example 4. Let σ = (
√

2, i,−i), then by using the J-LL inequality (3) for n = 3,m = 2, k = 1 , we get
3s2 ≥ s21, which implies that 0 ≥ 2, meaning that σ cannot be realisable.

As is made clear from the above examples, the necessary conditions pertaining to the NIEP are useful for
determining when a set of numbers is not realisable. There are likely many other necessary conditions that
have not been discovered yet which could prove useful in attaining results that are not reachable given our
current arsenal. One slightly more complicated result that has proven to be quite useful is given by Cronin
and is as follows:

Theorem 2. For any n ∈ N and nonnegative n× n matrix A,

n2s3 − 3ns1s2 + 2s31 +
n− 2√
n− 1

(ns2 − s21)3/2 ≥ 0. (4)

Example 5. Let σ = (17,−9, 7 + 9i, 7− 9i), then by (4), σ is not realisable.

3



1.2 Sufficient Conditions

This section addresses the conditions which if satisfied, guarantee the realisability of a given list of numbers.
In order to convey this topic, I will go through some examples of particular cases.

First we will consider the 2×2 case. Let A =

(
a b
c d

)
be a nonnegative matrix. The characteristic polynomial

of A is
p(x) = det(xI −A) = x2 − (a+ d)x+ (ad− bc) (5)

and to find the spectrum of A we find the roots of p(x), which are of the form

x =
a+ b±

√
(a+ d)2 − 4(ad− bc)

2
=
a+ b±

√
(a− d)2 + 4bc

2
∈ R (6)

thus a necessary condition for a list to be the spectrum of a 2×2 matrix is that it is real. Now, let σ = (α, β)
satisfy all of the necessary conditions seen thus far (α, β ∈ R, α + β ≥ 0), and without loss of generality let

α ≥ |β|. If β ≥ 0, then

(
α 0
0 β

)
is a realising matrix of σ. If β < 0 then

(x− α)(x− β) = x2 − (α+ β)x+ αβ = x2 + p1x+ p2 (7)

is the characteristic polynomial of a realising matrix of σ, and since p1 and p2 are not positive, the companion

matrix

(
0 1
−p2 −p1

)
is a nonnegative realisation of σ. Thus for the 2× 2 case, σ is realisable if and only if

it is real, and has a nonnegative summation.
Now we will observe the 3 × 3 case, letting σ = (λ1, λ2, λ3). First we will look at when σ consists of three
real values. Given σ ∈ R, without loss of generality, let λ1 ≥ λ2 ≥ λ3, and λ1 be equal to the spectral radius.

Case 1: If λ3 ≥ 0, then

λ1 0 0
0 λ2 0
0 0 λ3

 is a nonnegative realisation of σ.

Case 2: If λ2 ≥ 0 > λ3, then

λ2 0 0
0 0 1
0 −λ1λ3 λ1 + λ3

 is a nonnegative realisation of σ.

Case 3: If 0 > λ2 > λ3, then we have that

(x− λ1)(x− λ2)(x− λ3) = x3 − (λ1 + λ2 + λ3)x2 + (λ1λ2 + λ1λ3 + λ2λ3)x− λ1λ2λ3 (8)

is the characteristic polynomial of a realising matrix of σ, and all of the non leading coefficients are clearly
not positive, the companion matrix 0 1 0

0 0 1
λ1λ2λ3 −(λ1λ2 + λ1λ3 + λ2λ3) λ1 + λ2 + λ3


is a nonnegative realisation of σ.
Thus, a 3-set of real numbers is realisable if and only if it has a nonnegative summation.

Now to visit the case where the 3-set values are allowed to be non-real complex numbers, Loewy and
London have provided a complete solution to the NIEP for n = 3.
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Theorem 3. Let σ = (λ1, λ2, λ3) be a list of complex numbers. Then σ is realisable if and only if:

• max{|λi| : λi ∈ σ} ∈ σ

• σ = σ̄

• s1 ≥ 0

• 3s2 ≥ s21
In order to show a constructive solution to the n = 3 case of the NIEP, we will first take a look at a class

of matrix called circulant matrices.

Definition 3. An n× n circulant matrix is one of the form


x1 x2 x3 . . . xn
xn x1 x2 . . . xn−1
...

...
...

. . .
...

x2 x3 x4 . . . x1

.

The normalized eigenvectors of a circulant matrix are of the form vj = 1√
n

(1, ωj , ω2j , ..., ω(n−1)j), with

ω = exp( 2πi
n ), and corresponding eigenvalue λj = x1 + x2ω

j + ... + xnω
(n−1)j , for j = 1, ..., n. By this

property we can proceed with the following:

If a list σ = (λ1, λ2, λ̄2) satisfies the properties of Theorem 3, then we can consider

σ̂ =
σ

|λ2|
= (λ, eiθ, e−iθ),

which has the nonnegative (circulant) realisation

Â =
1

3

 λ+ cos 2θ λ− 2 cos(π3 + θ) λ− 2 cos(π3 − θ)
λ− 2 cos(π3 − θ) λ+ cos 2θ λ− 2 cos(π3 + θ)
λ− 2 cos(π3 + θ) λ− 2 cos(π3 − θ) λ+ cos 2θ

 ,

giving A = |λ2|Â as a nonnegative realisation of σ.

2 Johnson’s Conjecture

In this section focusing on Johnson’s Conjecture we first will look at its existing results, which are pro-
vided by Cronin in his 2012 thesis, however I will provide my own proofs of these results. I will then provide
work towards a proof of Johnson’s Conjecture for the n = 5 case. First we will look at a result which is very
useful for relating the coefficients of a polynomial to its roots.

Theorem 4. (Newton’s Identities) Let (λ1, . . . , λn) be a list of variables, and denote by sk the kth power
sum λk1 + · · ·+ λkn. Letting ek denote the elementary symmetric polynomial such that

e0 = 1

e1 =

n∑
i=1

λi

e2 =
∑

1≤i≤j≤n

λiλj

en = λ1...λn

ek = 0, for k > n,

we have the relation

kek =

k∑
i=1

(−1)i−1ek−isi.
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The statement of Johnson’s Conjecture is as follows.

Conjecture 1. If f(x) = xn + p1x
n−1 + ... + pn is the characteristic polynomial of an n × n nonnegative

matrix, then g(x) := f ′(x)
n is the characteristic polynmial of a nonnegative (n− 1)× (n− 1) matrix.

It is not unanimously believed that Johnson’s Conjecture holds for all n, but of course no one can be
certain yet. The cases of n ≤ 4 have been proven by Cronin, but we will here go through some proofs of my
own of those same results.

First we will consider the simplest case where n = 2. Here we have

f(x) = x2 − (λ1 + λ2)x+ λ1λ2

=⇒ g(x) =
f ′(x)

2
= x− λ1 + λ2

2
,

and by an aforementioned result on the realisability of polynomials of degree 2, we have that λ1+λ2

2 ≥ 0,
meaning g(x) is realisable.

The case for n = 3 is similarly simple to prove. Letting

f(x) = x3 − (λ1 + λ2 + λ3)x2 + (λ1λ2 + λ1λ3 + λ2λ3)x− (λ1λ2λ3)

we have

g(x) =
f ′(x)

3
= x2 − 2(λ1 + λ2 + λ3)

3
x+

λ1λ2 + λ1λ3 + λ2λ3
3

.

Furthermore, 2(λ1+λ2+λ3)
3 ≥ 0, and

(λ1 + λ2 + λ3)2 − λ1λ2 − λ1λ3 − λ2λ3 = λ21 + λ22 + λ23 + λ1λ2 + λ1λ3 + λ2λ3 ≥ 0. (9)

The last inequality follows by considering that λ1λ2+λ1λ3+λ2λ3 ∈ R and if it is negative, the first expression
in (9) is clearly positive, and if it is nonnegative, the second expression in (9) is clearly nonnegative by the
realisability of f(x). We thus have that the roots of g(x) are real and have a nonnegative summation. Thus
g(x) is realisable by an aforementioned result. To prove higher degree results, we will first look at the
following results.

Theorem 5. (Torre-Mayo) Let p(x) = xn + k1x
n−1 + k2x

n−2 + ...+ kn be the characteristic polynomial, of
degree ≥ 3, of a nonnegative matrix A. Then:

• k1 ≤ 0

• k2 ≤ n−1
2n k

2
1

• k3 ≤

{
n−2
n (k1k2 + n−1

3n ((k21 − 2nk2
n−1 )3/2 − k31)), if (n−4)(n−1)

2(n−2)2 k21 < k2

k1k2 − (n−3)(n−1)
3(n−2)2 k31, otherwise.

The following corollary is an original result regarding the derivative of a realisable polynomial, which I
hope to make use of for a proof of the n = 5 case of Johnson’s Conjecture.

Corollary 1. (Fulcher, 2021) Let f(x) = xn+p1x
n−1 +p2x

n−2 + ...+pn be a realisable polynomial of degree

≥ 4. Then g(x) = f ′(x)
n satisfies the criteria listed in theorem 4.

Proof. Let g(x) = xn−1 + k1x
n−2 + ...+ kn−1 where kj =

(n−j)pj
n . Letting sj refer to the jth moment of the

roots of f(x), and using the Newton identities

k1 =
(n− 1)p1

n
= − (n− 1)s1

n
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k2 =
(n− 2)p2

n
=

(n− 2)(s21 − s2)

2n

k3 =
(n− 3)p3

n
= − (n− 3)(s31 − 3s1s2 + 2s3)

6n
,

we will see that the three criteria hold. Clearly, as s1 ≥ 0, k1 ≤ 0. For the second criterion,

n− 2

2(n− 1)
k21 =

(n− 1)(n− 2)s21
2n2

,

then subtracting k2 gives

n− 2

2(n− 1)
k21 − k2 =

(n− 1)(n− 2)s21
2n2

− (n− 2)(s21 − s2)

2n

=
((n− 1)(n− 2)− n(n− 2))s21 + n(n− 2)s2

2n2

=
n− 2

2n2
(ns2 − s21) ≥ 0

by the JLL inequalities (3). Thus the second criterion holds. For the third criterion, we will first look at the

case for (n−5)(n−2)
2(n−3)2 k21 < k2. Considering n as the degree of f(x), and n − 1 as the degree of g(x), we here

convert the supposed upper bound of k3 into terms of the moments of f(x):

n− 3

n− 1

(
k1k2 +

n− 2

3(n− 1)

((
k21 −

2(n− 1)k2
n− 2

)3/2

− k31

))

=
n− 3

n− 1

(
(n− 1)(n− 2)(s1s2 − s31)

2n2
+

n− 2

3(n− 1)

((
(n− 1)2s21

n2
− (n− 1)(s21 − s2)

n

)3/2

+
(n− 1)3s31

n3

))

=
n− 3

n− 1

((
(n− 1)2(n− 2)

3n3
− (n− 1)(n− 2)

2n2

)
s31 +

(n− 1)(n− 2)s1s2
2n2

+
n− 2

3(n− 1)

(
n− 1

n2
(
ns2 − s21

))3/2
)

= (n− 3)

(
(−n− 2)(n− 2)s31

6n3
+

(n− 2)s1s2
2n2

+
n− 2

3n3
√
n− 1

(ns2 − s21)3/2
)
.

Then subtracting k3, we get

(n− 3)

(
(−n− 2)(n− 2)s31

6n3
+

(n− 2)s1s2
2n2

+
n− 2

3n3
√
n− 1

(ns2 − s21)3/2
)

+
(n− 3)(s31 − 3s1s2 + 2s3)

6n

= (n− 3)

(
(n2 − (n+ 2)(n− 2))s31

6n3
+

(3(n− 2)− 3n)s1s2
6n2

+
s3
3n

+
n− 2

3n3
√
n− 1

(ns2 − s21)3/2
)

= (n− 3)

(
2s31
3n3
− s1s2

n2
+
s3
3n

+
n− 2

3n3
√
n− 1

(ns2 − s21)3/2
)

=
n− 3

3n3

(
2s31 − 3ns1s2 + n2s3 +

n− 2√
n− 1

(ns2 − s21)3/2
)
≥ 0

by theorem 2. Now we look at the case for k2 ≤ (n−5)(n−2)
2(n−3)2 k21. First note that this inequality gives

(n− 2)(s21 − s2)

2n
≤ (n− 5)(n− 2)(n− 1)2s21

2n2(n− 3)2

=⇒ (n− 2)s2
2n

≥ − (n− 5)(n− 2)(n− 1)2s21
2n2(n− 3)2

+
(n− 2)s21

2n

=
(n(n− 3)2(n− 2)− (n− 5)(n− 2)(n− 1)2)s21

2n2(n− 3)2

=⇒ s2 ≥
(n(n− 3)2 − (n− 5)(n− 1)2)s21

n(n− 3)2
=
n2 − 2n+ 5

n(n− 3)2
s21.
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Here the supposed upper bound of k3 is

k1k2 −
(n− 4)(n− 2)

3(n− 3)2
k31 =

(n− 1)(n− 2)(s1s2 − s31)

2n2
+

(n− 4)(n− 2)(n− 1)3s31
3(n− 3)2n3

=
(n− 1)(n− 2)s1s2

2n2
+

(−3n(n− 1)(n− 2)(n− 3)2 + 2(n− 1)3(n− 2)(n− 4))s31
6n3(n− 3)2

=
(n− 1)(n− 2)s1s2

2n2
− (n− 1)(n− 2)(n3 − 6n2 + 9n+ 8)s31

6(n− 3)2n3
,

then subtracting k3 gives(
n− 1

6n
− (n− 1)(n− 2)(n3 − 6n2 + 9n+ 8)

6(n− 3)2n3

)
s31 +

(
(n− 1)(n− 2)

2n2
− 3(n− 3)

6n

)
s1s2 +

(n− 3)s3
3

=
(n− 1)(n3 − 6n2 + 5n+ 8)s31

6(n− 3)2n3
+

3s1s2
2

+
(n− 3)s3

3

≥
(

(n− 1)(n3 − 6n2 + 5n+ 8)

6(n− 3)2n3
+

3n2 − 6n+ 15

n(n− 3)2

)
s31

=
(19n4 − 43n3 + 11n2 + 93n− 8)s31

6(n− 3)2n3
≥ 0 ∀n ≥ 4.

Corollary 2. (Torre-Mayo et al.) Let σ = (λ1, λ2, λ3) be a list of complex numbers such that σ = σ̄ and let
p(x) = (x−1)(x−λ2)(x−λ3) = x3 +k1x

2 +k3x+k4. Then the properties listed in Theorem 3 are equivalent
to those listed in Theorem 4 for σ and p(x) respectively.

Considering the above results, the n = 4 case of Johnson’s Conjecture follows easily:

Let f(x) be the characteristic polynomial of a nonnegative 4 × 4 matrix, and g(x) = f ′(x)
4 . Since the

coefficients of f(x) are real, the coefficients of g(x) are real, so its list of roots is closed under complex
conjugation. Applying Corollary 1 and Corollary 2, the result that g(x) is realisable follows immediately.

It is clear that this current strategy for proving Johnson’s Conjecture goes as follows:

Let f(x) = xn+p1x
n−1+...+pn be a realisable polynomial, and g(x) = f ′(x)

n = xn−1+q1x
n−2+...+qn−1.

Using the information inherited from f(x), check if g(x) satisfies the necessary and sufficient conditions for
realisability.

Thus, using this strategy requires the NIEP to be solved for the n − 1 case of the above statement.
Complete solutions to the NIEP only exist up to the n = 4 case, so currently this strategy is only possible up
to the n = 5 case of Johnson’s Conjecture. Using this strategy, I will attempt to make use of the complete
solution of the n = 4 case of the NIEP provided by Torre-Mayo et al in 2007. This solution is given in
terms of various different cases determined by the ranges of values that the coefficients of the polynomial in
question fall in. In order to proceed further, the following definition is needed.

Definition 4. An EBL matrix is a nonnegative matrix of the form

a11 1 0 . . . 0

a21 a22
. . .

. . .
...

...
...

. . .
. . . 0

...
...

. . . 1
an1 an2 . . . . . . ann


.
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Theorem 6. (Torre-Mayo et al.) Every realisable polynomial of degree 4 has an EBL realisation.

EBL is an abreviation of a Spanish phrase that translates to Lineal Basic Structure. The inspiration for
this name comes from the type of weighted digraph of which it is the adjacency matrix, and it is called an
EBL graph.

Figure 1 - The weighted EBL digraph

The above weighted digraph is in the form of an EBL graph with n vertices. Note that the loops have
not been drawn in, but rather have been represented by li for the loop at the ith vertex. The structure of
the EBL graph is such that each cycle from vertex vi consists entirely of edges with weight one, as well as
one edge of weight aji for some j ∈ {1, ..., n}. An upshot of this is manifest in the Coefficient Theorem for
weighted digraphs given below.

Theorem 7. Let G be a weighted digraph, A its adjacency matrix, and let

|xI −A| = xn + k1x
n−1 + ...+ kn.

Then, for each i = 1, ...n,

ki =
∑
L∈Li

(−1)p(L)Π(L)

where Li is the set subgraphs of G with i vertices, comprised of disjoint cycles; p(L) denotes the number of
cycles in L; Π(L) denotes the product of the weights of all arcs belonging to L.

Let r ≥ 1, and ci1i2...ir denote the product of the weights of the cycle vi1vir ...virvi1 in a graph G.
Considering the structure of the EBL graph, its adjacency matrix

a11 1 0 . . . 0

a21 a22
. . .

. . .
...

...
...

. . .
. . . 0

...
...

. . . 1
an1 an2 . . . . . . ann


is the same as 

l1 1 0 . . . . . . 0

c12 l2
. . .

. . .
...

c123 c23
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . 0

...
...

. . .
. . . 1

c1...n c2...n . . . . . . cn−1n ln


.
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Torre-Mayo et al. use the Coefficient Theorem extensively for analysing and adjusting values in the
weighted digraph to identify a variety of useful properties of the coefficients of characteristic polynomials.
We will not be looking explicitly at those uses in this report, but I am hoping to use this kind of technique
to prove an inequality that features later on in this report.
One of the useful properties of EBL matrices that I’m leveraging for my strategy for proving Johnson’s
Conjecture for n = 5 is the following.

Let A =


a11 1 0 0
a21 a22 1 0
a31 a32 a33 1
a41 a42 a43 a44

, then let p(x) = |xI−A|. If we then let B =


a11 1 0 0
a21 a22 1 0
a31 a32 a33 1

a41 + b a42 a43 a44

,

then |xI −B| = p(x)− b.

The following theorem provided by Torre-Mayo et al. is broken into various cases in their 2007 paper. It
provides a complete solution to the NIEP for the n = 4 case, and I am hoping to make use of it for proving
Johnson’s Conjecture for the n = 5 case.

Theorem 8. (Torre-Mayo et al.) Let k1, k2, k3 satisfy the conditions as stated in Theorem 4. There is then
a matricial realisation of the polynomial x4 + k1x

3 + k2x
2 + k3x+ kmax4 .

The value kmax4 refers to the maximum value that the constant coefficient can take, given the other three
coefficients, in order for the polynomial to be realisable. Considering the property of EBL matrices given
prior to Theorem 6, this theorem can be restated as follows:

Let k1, k2, k3 satisfy the conditions as stated in Theorem 4. There then exists a kmax4 such that
x4 + k1x

3 + k2x
2 + k3x+ k4 is realisable for all k4 ≤ kmax4 .

The value kmax4 is computed as a function of k1, k2, k3, and the particular function that defines it de-
pends on the range of values that k1, k2, k3 occur in, so we will denote it as kmax4 (k1, k2, k3). Consid-
ering Corollary 1, proving Johnson’s conjecture for n = 5 is then equivalent to proving, for realisable

f(x) = x5 + p1x
4 + p2x

3 + p3x
2 + p4x + p5 with g(x) = f ′(x)

5 = x4 + k1x
3 + k2x

3 + k3x + k4, that
k4 ≤ kmax4 (k1, k2, k3). In the case that this last inequality holds, g(x) has an EBL realisation with kmax4 −k4
as its (4, 1) entry.

Now we will look at a simplified situation.

Let f(x) = x5 + p1x
4 + p2x

3 + p3x
2 + p4x+ p5 be a realisable polynomial and sk refer to the kth moment

of f(x). If 5s2 = s21, then the polynomial

x4 +
4p1
5
x3 +

3p2
5
x2 +

2p3
5
x+ kmax4

is a realisable polynomial, where kmax4 = k1k3
4 − 3

(
k1
4

)4
. Letting kj =

(5−j)pj
5 , an EBL realisation of this

polynomial is 
l 1 0 0
d l 1 0
t 0 l 1
0 0 d l

 where


l = −k14
d = 6l2−k2

2

t = −4l3 + 4dl − k3.

10



Thus it here suffices to show the nonnegativity of

kmax4 − k4 =
k1k3

4
− 3

(
k1
4

)4

− k4

=
2p1p3

25
− 3

(p1
5

)4
− p4

5

=
s41

5000
+
s21s2
100

− s1s3
25
− s22

40
+
s4
20

=
3s41

2500
− s1s3

25
+
s4
20
,

(10)

which would then give 
l 1 0 0
d l 1 0
t 0 l 1

kmax4 − k4 0 d l


as a nonnegative realisation of f ′(x)

5 .

I have not managed to show the nonnegativity of (10), but have found a way to solve this case by
analysing the 5× 5 nonnegative matrix that realises f , which is given below.

Let f(x) = x5 + p1x
4 + p2x

3 + p3x
2 + p4x + p5 be a realisable polynomial, with sk referring to its kth

moment. With the restriction 5s2 = s21, we get a matricial realisation of f(x) with the form

A =


h m12 m13 m14 m15

m21 h m23 m24 m25

m31 m32 h m34 m35

m41 m42 m43 h m45

m51 m52 m53 m54 h

 .

First note that if A = D + C where D,C ≥ 0, D is a diagonal matrix, and tr(C) = 0, it can be shown
that tr(C2) = 0, meaning that mijmji = 0 for 1 ≤ i < j ≤ 5. Using Newton’s identities, we then get the
following equalities:

p1 = −5h

p2 = 10h2

p3 = −10h3 − τ
p4 = 5h4 + 2hτ − ρ,

where τ is the sum of the 3-cycles (terms of the general form mjkmklmlj), and ρ is the sum of the 4-cycles.

Letting g(x) = f ′(x)
5 = x4 + k1x

3 + k2x
2 + k3x+ k4, we get the equalities:

k1 = −4h

k2 = 6h2

k3 = −4h3 − 2

5
τ

k4 = h4 +
2

5
hτ − 1

5
ρ.

Since g(x) satisfies the Torre-Mayo inequalities, we have that the polynomial h(x) = x4 + k1x
3 + k2x

2 +
k3x+ kmax4 has an EBL realisation where

kmax4 =
k1k3

4
− 3

(
k1
4

)4

= h4 +
2

5
hτ,
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so consider now

kmax4 − k4 =
1

5
ρ ≥ 0,

which means that g(x) has a matricial realisation the same as the EBL realisation for h(x), but with 1
5ρ

added to its (4, 1) entry.

The following result has already been discovered, but I give an original proof of it here.

Remark 1. Theorem 5 implies Theorem 2 for n ≥ 3.

Proof. Let p(x) = xn + k1x
n−1 + k2x

n−2 + ...+ kn be the characteristic polynomial of an n× n nonnegative
matrix, so the coefficients satisfy the criteria of theorem 4. Without assuming theorem 2, we will consider
the 2 cases given in the criteria of theorem 4.
By Newton’s inequalities, we here have

k1 = −s1

k2 =
s21 − s2

2

k3 =
3s1s2 − s31 − 2s3

6
.

Case 1:

k2 >
(n− 4)(n− 1)

2(n− 2)2
k21, and

k3 ≤
n− 2

n

(
k1k2 +

n− 1

3n

((
k21 −

2nk2
n− 1

)3/2

− k31

))
.

0 ≤ n− 2

n

(
k1k2 +

n− 1

3n

((
k21 −

2nk2
n− 1

)3/2

− k31

))
− k3

=
n− 2

n

(
s1s2 − s31

2
+
n− 1

3n

((
s21 −

n(s21 − s2)

n− 1

)3/2

+ s31

))
+
s31 − 3s1s2 + 2s3

6

=
n− 2

n

(
ns3

3(n− 2)
+

(
1

2
− n

2(n− 2)

)
s1s2 +

(
n− 1

3n
+

n

6(n− 2)
− 1

2

)
s31 +

n− 1

3n

((
1− n

n− 1

)
s21 +

n

n− 1
s2

)3/2
)

=
n− 2

n

(
ns3

3(n− 2)
− s1s2
n− 2

+
2s31

3n(n− 2)
+
n− 1

3n

(
ns2
n− 1

− s21
n− 1

)3/2
)

=
1

3n2

(
n2s3 + 2s31 − 3ns1s2 +

n− 2√
n− 1

(ns2 − s21)3/2
)
.

Case 2:

k2 ≤
(n− 4)(n− 1)

2(n− 2)2
k21, and

k3 ≤ k1k2 −
(n− 1)(n− 3)

3(n− 2)2
k31.

We will proceed by subtracting the maximum for k3 in Case 2 from the maximum for k3 in Case 1.

n− 2

n

(
k1k2 +

n− 1

3n

((
k21 −

2nk2
n− 1

)3/2

− k31

))
− k1k2 +

(n− 1)(n− 3)

3(n− 2)2
k31

=

(
n− 2

n
− 1

)
k1k2 +

(
(n− 1)(n− 3)

3(n− 2)2
− (n− 1)(n− 2)

3n2

)
k31 +

(n− 1)(n− 2)

3n2

(
k21 −

2nk2
n− 1

)3/2

=− 2

n
k1k2 +

(
3n3 − 15n2 + 20n− 8

3n2(n− 2)2

)
k31 +

(n− 1)(n− 2)

3n2

(
k21 −

2nk2
n− 1

)3/2

.

(11)
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Considering the above as a function of k1, k2, and n,

Ω(k1, k2, n) :=− 2

n
k1k2 +

(
3n3 − 15n2 + 20n− 8

3n2(n− 2)2

)
k31 +

(n− 1)(n− 2)

3n2

(
k21 −

2nk2
n− 1

)3/2

. (12)

Note that k21 ≥ 2nk2
n−1 , so Ω(k1, k2, n) is always real. Setting Ω(k1, k2, n) equal to zero and solving for k2 in

terms of n and k1 gives the roots

k
(1)
2 :=

k21(n3 − 5n2 + 7n− 3)

2(n− 2)2n
, k

(2)
2 :=

k21(n2 − 5n+ 4)

2(n− 2)2
= kmax2 .

Since

k2 ≤
(n− 4)(n− 1)

2(n− 2)2
k21 =

k21(n2 − 5n+ 4)

2(n− 2)2
= k

(2)
2 < k

(1)
2

for n ≥ 3, we know that (12) has viable roots only when k
(2)
2 = kmax2 . Now we can just check what happens

when k2 < kmax2 , so letting k2 = kmax2 − 1 we get

Ω(k1, k
max
2 −1, n) =

2
√

2(n− 2)(2k21n+ n3 − 2k21 − 4n2 + 4n)
√

2k21n+n
3−2k21−4n2+4n

(n−2)2(n−1) + 6
(
n3 − 4n2 +

(
4k21
3 + 4

)
n− 4k21

3

)
k1

3n2(n− 2)2
,

which has no real roots for n ≥ 3, so we can just input some values from our ranges to see if it is always
positive or negative, since it is continuous everywhere but the singularities. Choosing k1 = −1 and n = 3,
we get Ω(−1, kmax2 − 1, 3) = 0.1126... > 0, meaning that Ω(k1, k2, n), and thus (11), is always nonnegative
given our ranges of values. Therefore,

1

3n2

(
n2s3 + 2s31 − 3ns1s2 +

n− 2√
n− 1

(ns2 − s21)3/2
)

=
n− 2

n

(
k1k2 +

n− 1

3n

((
k21 −

2nk2
n− 1

)3/2

− k31

))
− k3

≥ n− 2

n

(
k1k2 +

n− 1

3n

((
k21 −

2nk2
n− 1

)3/2

− k31

))
− k1k2 +

(n− 1)(n− 3)

3(n− 2)2
k31

≥ 0.
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