The NIEP: Some Results on Johnson's Conjecture

Andrew Fulcher
School of Mathematics and Statistics UCD

Summer, 2021

Overview

1. The Spectrum of a Nonnegative Matrix
2. Johnson's Conjecture

Some Terminology

1. A matrix $A=\left[a_{i j}\right]_{1 \leq i, j \leq n} \in M_{n}(\mathbb{R})$ is nonnegative if $a_{i j} \geq 0$ for each $i, j \in\{1, \ldots, n\}$. 2. The spectrum of $A, \sigma(A)$, is the list of roots (including repetitions) of the polynomial $p(x)=\operatorname{det}(x I-A)$ (characteristic polynomial), also known as the list of eigenvalues of A.
2. A list $\sigma=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of complex numbers is realisable if there exists a nonnegative matrix of which it is the spectrum.
3. For $\sigma=\left(\lambda_{1}, \ldots, \lambda_{n}\right), s_{k}=\lambda_{1}^{k}+\ldots+\lambda_{n}^{k}$ is the $k^{\text {th }}$ moment of σ,
4. When we say "moment" or "realisability" of a polynomial, we are using these terms as above, but using the roots of the polynomial as the list σ

Some Terminology

1. A matrix $A=\left[a_{i j}\right]_{1 \leq i, j \leq n} \in M_{n}(\mathbb{R})$ is nonnegative if $a_{i j} \geq 0$ for each $i, j \in\{1, \ldots, n\}$.
2. The spectrum of $A, \sigma(A)$, is the list of roots (including repetitions) of the polynomial $p(x)=\operatorname{det}(x I-A)$ (characteristic polynomial), also known as the list of eigenvalues of A.
3. A list $\sigma=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of complex numbers is realisable if there exists a nonnegative matrix of which it is the spectrum
4. When we say "moment" or "realisability" of a polynomial, we are using these terms as above, but using the roots of the polynomial as the list σ

Some Terminology

1. A matrix $A=\left[a_{i j}\right]_{1 \leq i, j \leq n} \in M_{n}(\mathbb{R})$ is nonnegative if $a_{i j} \geq 0$ for each $i, j \in\{1, \ldots, n\}$.
2. The spectrum of $A, \sigma(A)$, is the list of roots (including repetitions) of the polynomial $p(x)=\operatorname{det}(x I-A)$ (characteristic polynomial), also known as the list of eigenvalues of A.
3. A list $\sigma=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of complex numbers is realisable if there exists a nonnegative matrix of which it is the spectrum.
4. For $\sigma=\left(\lambda_{1}, \ldots, \lambda_{n}\right), s_{k}=\lambda_{1}^{k}+\ldots+\lambda_{n}^{k}$ is the $k^{\text {th }}$ moment of σ
5. When we say "moment" or "realisability" of a polynomial, we are using these terms as above, but using the roots of the polynomial as the list σ

Some Terminology

1. A matrix $A=\left[a_{i j}\right]_{1 \leq i, j \leq n} \in M_{n}(\mathbb{R})$ is nonnegative if $a_{i j} \geq 0$ for each $i, j \in\{1, \ldots, n\}$.
2. The spectrum of $A, \sigma(A)$, is the list of roots (including repetitions) of the polynomial $p(x)=\operatorname{det}(x I-A)$ (characteristic polynomial), also known as the list of eigenvalues of A.
3. A list $\sigma=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of complex numbers is realisable if there exists a nonnegative matrix of which it is the spectrum.
4. For $\sigma=\left(\lambda_{1}, \ldots, \lambda_{n}\right), s_{k}=\lambda_{1}^{k}+\ldots+\lambda_{n}^{k}$ is the $k^{\text {th }}$ moment of σ.
5. When we say "moment" or "realisability" of a polynomial, we are using these terms as above, but using the roots of the polynomial as the list σ

Some Terminology

1. A matrix $A=\left[a_{i j}\right]_{1 \leq i, j \leq n} \in M_{n}(\mathbb{R})$ is nonnegative if $a_{i j} \geq 0$ for each $i, j \in\{1, \ldots, n\}$.
2. The spectrum of $A, \sigma(A)$, is the list of roots (including repetitions) of the polynomial $p(x)=\operatorname{det}(x I-A)$ (characteristic polynomial), also known as the list of eigenvalues of A.
3. A list $\sigma=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of complex numbers is realisable if there exists a nonnegative matrix of which it is the spectrum.
4. For $\sigma=\left(\lambda_{1}, \ldots, \lambda_{n}\right), s_{k}=\lambda_{1}^{k}+\ldots+\lambda_{n}^{k}$ is the $k^{t h}$ moment of σ.
5. When we say "moment" or "realisability" of a polynomial, we are using these terms as above, but using the roots of the polynomial as the list σ.

Theorem 1 (Newton's Identities)

Let $\sigma=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a list of variables, and let e_{k} be its $k^{\text {th }}$ symmetric polynomial. Then the following holds:

$$
k e_{k}=\sum_{i=1}^{k}(-1)^{i-1} e_{k-i} s_{i}
$$

where s_{k} denotes the $k^{t h}$ moment of σ.

Example

- $e_{1}=s_{1}$
- $2 e_{2}=s_{1}^{2}-s_{2}$
- $3 e_{3}=\frac{1}{2} s_{1}^{3}-\frac{3}{2} s_{1} s_{2}+s_{3}$

Necessary and Sufficient Conditions

The NIEP specifically asks for necessary and sufficient conditions for the realisability of a finite list of complex numbers.

General Cases

The NIEP has only been fully solved for lists of length 4 and less.

Special Cases

Cases for longer lists which have certain specifications have been solved. An example of this is a list of length 5 that sums to zero, which was solved by Laffey and Meehan in 1999.

Necessary Conditions

Let $\sigma=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a list of n complex numbers. If σ is realisable, then the following properties hold.

1. $\lambda_{1}+\ldots+\lambda_{n} \geq 0$.
2. σ is closed under complex conjugation
3. For any $k, m \in \mathbb{N}, n^{m-1} s_{k m} \geq s_{k}^{m} \quad$ (the JLL inequalities, 1978-1981)
4. $n^{2} s_{3}+2 s_{1}^{3}-3 n s_{1} s_{2}+\frac{n-2}{\sqrt{n-1}}\left(n s_{2}-s_{1}^{2}\right)^{3 / 2} \geq 0 \quad$ (Cronin, 2012).

There are possibly many more necessary conditions for this which haven't been discovered yet.

Necessary Conditions

Let $\sigma=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a list of n complex numbers. If σ is realisable, then the following properties hold.

1. $\lambda_{1}+\ldots+\lambda_{n} \geq 0$.
2. σ is closed under complex conjugation.
3. For any $k, m \in \mathbb{N}, n^{m-1} s_{k m} \geq s_{k}^{m}$
(the JLL inequalities, 1978-1981)
4. $n^{2} s_{3}+2 s_{1}^{3}-3 n s_{1} s_{2}+\frac{n-2}{\sqrt{n-1}}\left(n s_{2}-s_{1}^{2}\right)^{3 / 2} \geq 0 \quad$ (Cronin, 2012)

There are possibly many more necessary conditions for this which haven't been discovered yet.

Necessary Conditions

Let $\sigma=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a list of n complex numbers. If σ is realisable, then the following properties hold.

1. $\lambda_{1}+\ldots+\lambda_{n} \geq 0$.
2. σ is closed under complex conjugation.
3. For any $k, m \in \mathbb{N}, n^{m-1} s_{k m} \geq s_{k}^{m}$
(the JLL inequalities, 1978-1981).
4. $n^{2} s_{3}+2 s_{1}^{3}-3 n s_{1} s_{2}+\frac{n-2}{\sqrt{n-1}}\left(n s_{2}-s_{1}^{2}\right)^{3 / 2} \geq 0 \quad$ (Cronin, 2012)

There are possibly many more necessary conditions for this which haven't been discovered yet.

Necessary Conditions

Let $\sigma=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a list of n complex numbers. If σ is realisable, then the following properties hold.

1. $\lambda_{1}+\ldots+\lambda_{n} \geq 0$.
2. σ is closed under complex conjugation.
3. For any $k, m \in \mathbb{N}, n^{m-1} s_{k m} \geq s_{k}^{m} \quad$ (the JLL inequalities, 1978-1981).
4. $n^{2} s_{3}+2 s_{1}^{3}-3 n s_{1} s_{2}+\frac{n-2}{\sqrt{n-1}}\left(n s_{2}-s_{1}^{2}\right)^{3 / 2} \geq 0 \quad$ (Cronin, 2012).

There are possibly many more necessary conditions for this which haven't been discovered yet.

Sufficient Conditions

Sufficient conditions are treated on a case by case basis, as they vary depending on the length of the list in question (for example, realisable lists of length 3 can contain non-real entries, while realisable lists of length 2 cannot).

Theorem 2 (Loewy and London, 1978)

For a list of complex numbers $\sigma=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right), \sigma$ is realisable if and only if:

- $\max \left\{\left|\lambda_{k}\right|: \lambda_{k} \in \sigma\right\} \in \sigma$.
- $\sigma=\bar{\sigma}$.
- $s_{1} \geq 0$.
- $3 s_{2} \geq s_{1}^{2}$.

Johnson's Conjecture

Given that a list $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of complex numbers is realisable, with characteristic polynomial $p(x)=\prod_{i=1}^{n}\left(x-\lambda_{i}\right)$, the polynomial $q(x)=\frac{p^{\prime}(x)}{n}$ is the characteristic polynomial of an $(n-1) \times(n-1)$ nonnegative matrix.

- For $n \leq 4$, Johnson's Conjecture has been proven in the affirmative by Cronin
- It has also been proven in the affirmative by Cronin for the $n=5,6$ with zero sum case
- It is not unanimously believed that Johnson's Conjecture holds for all n.

I will here present some work towards a proof of Johnson's Conjecture for $n=5$, for

 which some results by Torre-Mayo et al are needed
Johnson's Conjecture

Given that a list $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of complex numbers is realisable, with characteristic polynomial $p(x)=\prod_{i=1}^{n}\left(x-\lambda_{i}\right)$, the polynomial $q(x)=\frac{p^{\prime}(x)}{n}$ is the characteristic polynomial of an $(n-1) \times(n-1)$ nonnegative matrix.

- For $n \leq 4$, Johnson's Conjecture has been proven in the affirmative by Cronin.
- It has also been proven in the affirmative by Cronin for the $n=5,6$ with zero sum case
- It is not unanimously believed that Johnson's Conjecture holds for all n.

I will here present some work towards a proof of Johnson's Conjecture for $n=5$, for which some results by Torre-Mayo et al are needed.

Johnson's Conjecture

Given that a list $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of complex numbers is realisable, with characteristic polynomial $p(x)=\prod_{i=1}^{n}\left(x-\lambda_{i}\right)$, the polynomial $q(x)=\frac{p^{\prime}(x)}{n}$ is the characteristic polynomial of an $(n-1) \times(n-1)$ nonnegative matrix.

- For $n \leq 4$, Johnson's Conjecture has been proven in the affirmative by Cronin.
- It has also been proven in the affirmative by Cronin for the $n=5,6$ with zero sum case.
- It is not unanimously believed that Johnson's Conjecture holds for all n.

[^0]
Johnson's Conjecture

Given that a list $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of complex numbers is realisable, with characteristic polynomial $p(x)=\prod_{i=1}^{n}\left(x-\lambda_{i}\right)$, the polynomial $q(x)=\frac{p^{\prime}(x)}{n}$ is the characteristic polynomial of an $(n-1) \times(n-1)$ nonnegative matrix.

- For $n \leq 4$, Johnson's Conjecture has been proven in the affirmative by Cronin.
- It has also been proven in the affirmative by Cronin for the $n=5,6$ with zero sum case.
- It is not unanimously believed that Johnson's Conjecture holds for all n.

I will here present some work towards a proof of Johnson's Conjecture for $n=5$, for which some results by Torre-Mayo et al are needed.

Theorem 3 (Torre-Mayo et al., 2007)

Let $p(x)=x^{n}+k_{1} x^{n-1}+\ldots+k_{n}$ be the characteristic polynomial of a nonnegative matrix with $\operatorname{deg}(p(x)) \geq 3$. The following properties then hold:

- $k_{1} \leq 0$
- $k_{2} \leq \frac{n-1}{2 n} k_{1}^{2}$
- $k_{3} \leq\left\{\begin{array}{l}\frac{n-2}{n}\left(k_{1} k_{2}+\frac{n-1}{3 n}\left(\left(k_{1}^{2}-\frac{2 n k_{2}}{n-1}\right)^{3 / 2}-k_{1}^{3}\right)\right), \quad \text { if } \frac{(n-4)(n-1)}{2(n-2)^{2}} k_{1}^{2}<k_{2}\end{array}\right.$
otherwise.

Corollary 1 (Fulcher, 2021)
If $p(x)$ is a realisable polynomial of degree $n \geq 4$, then $q(x)=\frac{p^{\prime}(x)}{n}$ satisfies the conditions of Theorem (3).

EBL Matrices

An EBL matrix is a lower Hessenberg matrix with 1 for each of its superdiagonal positions, i.e. of the form

$$
\left(\begin{array}{ccccc}
a_{11} & 1 & 0 & \ldots & 0 \\
a_{21} & a_{22} & 1 & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & 0 \\
\vdots & \vdots & & \ddots & 1 \\
a_{n 1} & a_{n 2} & \ldots & \ldots & a_{n n}
\end{array}\right)
$$

Theorem 4 (Torre-Mayo et al., 2007)

Every realisable polynomial of degree 4 has an EBL realisation.

A Property of EBL Matrices

Let $A=\left(\begin{array}{cccc}a_{11} & 1 & 0 & 0 \\ a_{21} & a_{22} & 1 & 0 \\ a_{31} & a_{32} & a_{33} & 1 \\ a_{41} & a_{42} & a_{43} & a_{44}\end{array}\right)$, and let $p(x)=|x|-A \mid$, and let
$B=\left(\begin{array}{cccc}a_{11} & 1 & 0 & 0 \\ a_{21} & a_{22} & 1 & 0 \\ a_{31} & a_{32} & a_{33} & 1 \\ a_{41}+b & a_{42} & a_{43} & a_{44}\end{array}\right)$. Then $|x|-B \mid=p(x)-b$.

Let

$$
f(x):=x^{5}+p_{1} x^{4}+p_{2} x^{3}+p_{3} x^{2}+p_{4} x+p_{5}
$$

be a realisable polynomial, and

$$
g(x):=\frac{f^{\prime}(x)}{5}=x^{4}+k_{1} x^{3}+k_{2} x^{2}+k_{3} x+k_{4}
$$

Letting s_{k} denote the $k^{\text {th }}$ moment of $f(x)$, using Newton's Identities we have that

$$
\begin{aligned}
& k_{1}=\frac{4 p_{1}}{5}=-\frac{4 s_{1}}{5} \\
& k_{2}=\frac{3 p_{2}}{5}=\frac{3\left(s_{1}^{2}-s_{2}\right)}{10} \\
& k_{3}=\frac{2 p_{3}}{5}=\frac{3 s_{1} s_{2}-s_{1}^{3}-2 s_{3}}{15} \\
& k_{4}=\frac{p_{4}}{5}=\frac{s_{1}^{4}-6 s_{1}^{2} s_{2}+8 s_{1} s_{3}+3 s_{2}^{2}-6 s_{4}}{120}
\end{aligned}
$$

Theorem 5 (Torre-Mayo et al., 2007)

Let $g(x)=x^{4}+k_{1} x^{3}+k_{2} x^{2}+k_{3} x+k_{4}$ be a polynomial which satisfies the necessary conditions of Theorem (3). Then there is an EBL realisation of

$$
\begin{equation*}
x^{4}+k_{1} x^{3}+k_{2} x^{2}+k_{3} x+k_{4}^{\max } \tag{1}
\end{equation*}
$$

where $k_{4}^{\text {max }}$ is a function of k_{1}, k_{2}, k_{3}.

An EBL matricial realisation of (1) will, in general terms, be of the form

$$
\left(\begin{array}{cccc}
a_{11} & 1 & 0 & 0 \\
a_{21} & a_{22} & 1 & 0 \\
a_{31} & a_{32} & a_{33} & 1 \\
0 & a_{42} & a_{43} & a_{44}
\end{array}\right),
$$

and thus, if $k_{4}=\frac{p_{4}}{5}=\frac{s_{1}^{4}-6 s_{1}^{2} s_{2}+8 s_{1} s_{3}+3 s_{2}^{2}-6 s_{4}}{120} \leq k_{4}^{\max }=m\left(k_{1}, k_{2}, k_{3}\right)$ for some function m,
then $\left(\begin{array}{cccc}a_{11} & 1 & 0 & 0 \\ a_{21} & a_{22} & 1 & 0 \\ a_{31} & a_{32} & a_{33} & 1 \\ k_{4}^{\max }-k_{4} & a_{42} & a_{43} & a_{44}\end{array}\right)$ is a nonnegative matrix that realises $g(x)=\frac{f^{\prime}(x)}{5}$.

A Simplified Case (Fulcher, 2021)

Let $f(x)=x^{5}+p_{1} x^{4}+p_{2} x^{3}+p_{3} x^{2}+p_{4} x+p_{5}$ be a realisable polynomial. With the restriction $5 s_{2}=s_{1}^{2}$, we get a matricial realisation of $f(x)$ with the form

$$
A=\left(\begin{array}{ccccc}
h & m_{12} & m_{13} & m_{14} & m_{15} \\
m_{21} & h & m_{23} & m_{24} & m_{25} \\
m_{31} & m_{32} & h & m_{34} & m_{35} \\
m_{41} & m_{42} & m_{43} & h & m_{45} \\
m_{51} & m_{52} & m_{53} & m_{54} & h
\end{array}\right) .
$$

Note that if $A=D+C$ where $D, C \geq 0, D$ is a diagonal matrix, and $\operatorname{tr}(C)=0$, it can be shown that $\operatorname{tr}\left(C^{2}\right)=0$, meaning that $m_{i j} m_{j i}=0$ for $1 \leq i<j \leq 5$.

Simplified Case ctd.

Letting $g(x)=\frac{f^{\prime}(x)}{5}=x^{4}+k_{1} x^{3}+k_{2} x^{2}+k_{3} x+k_{4}$, we get the equalities:

$$
\begin{aligned}
& k_{1}=-4 h \\
& k_{2}=6 h^{2} \\
& k_{3}=-4 h^{3}-\frac{2}{5} \tau \\
& k_{4}=h^{4}+\frac{2}{5} h \tau-\frac{1}{5} \rho
\end{aligned}
$$

Since $g(x)$ satisfies the Torre-Mayo inequalities, we have that the polynomial $h(x)=x^{4}+k_{1} x^{3}+k_{2} x^{2}+k_{3} x+k_{4}^{\text {max }}$ has an EBL realisation where

$$
k_{4}^{\max }=\frac{k_{1} k_{3}}{4}-3\left(\frac{k_{1}}{4}\right)^{4}=h^{4}+\frac{2}{5} h \tau \geq k_{4}
$$

The Appeal of EBL

$$
E=\left(\begin{array}{cccc}
c_{1} & 1 & 0 & 0 \\
c_{12} & c_{2} & 1 & 0 \\
c_{123} & c_{23} & c_{3} & 1 \\
c_{1234} & c_{234} & c_{34} & c_{4}
\end{array}\right)
$$

with

$$
\begin{align*}
|x|-E \mid & =x^{4}+\left(-c_{1}-c_{2}-c_{3}-c_{4}\right) x^{3}+\left(c_{1} c_{2}+c_{1} c_{3}+c_{1} c_{4}+c_{2} c_{3}+c_{2} c_{4}+c_{3} c_{4}-c_{12}\right. \\
& \left.-c_{23}-c_{13}\right) x^{2}+\left(-c_{1} c_{2} c_{3}-c_{1} c_{2} c_{4}-c_{1} c_{3} c_{4}-c_{2} c_{3} c_{4}+c_{1} c_{23}+c_{1} c_{34}+c_{2} c_{34}\right. \\
& \left.+c_{3} c_{12}-c_{123}-c_{234}\right) x+c_{1} c_{2} c_{3} c_{4}-c_{1} c_{2} c_{34}-c_{1} c_{23} c_{4}-c_{12} c_{3} c_{4}+c_{1} c_{234} \\
& +c_{12} c_{34}+c_{123} c_{4}-c_{1234} . \tag{2}
\end{align*}
$$

Meehan's $\mathrm{n}=4$ NIEP Solution

Both Meehan and Torre-Mayo et al. (independently of each other) solved the $\mathrm{n}=4$ NIEP using EBL matrices. Corollary 1 can be leveraged to prove some subcases of Johnson's Conjecture for $n=5$ using Meehan's solution to the NIEP for $n=4$.

Example

If σ is a realisable 5 -list of complex numbers such that $\sigma^{\prime}=(r,-\lambda,-a+i b,-a-i b)$ is its critical points, where $\lambda, a \geq 0$, and $b>0$, then σ^{\prime} is realised by the nonnegative matrix

$$
\frac{S_{1}}{4} I+\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\frac{4 S_{2}-S_{1}^{2}}{16} & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\frac{16 S_{4}-4 S_{2}^{2}-S_{1}^{4}-16 S_{1} S_{3}+8 S_{1}^{2} S_{2}}{64} & \frac{8 S_{3}-6 S_{1} S_{2}+S_{1}^{3}}{24} & \frac{4 S_{2}-S_{1}^{2}}{16} & 0
\end{array}\right) .
$$

References

A. Cronin (2012)

Characterizing the Spectra of Nonnegative Matrices
國 J. Torre-Mayo et al. (2007)
The nonnegative inverse eigenvalue problem from the coefficients of the characteristic polynomial. EBL digraphs
T. Laffey, E. Meehan (1999)

A characterization of trace zero nonnegative 5×5 matrices

[^0]: I will here present some work towards a proof of Johnson's Conjecture for $n=5$, for which some results by Torre-Mayo et al are needed

