
ON A CONJECTURE OF KIMOTO AND WAKAYAMA

LING LONG, ROBERT OSBURN AND HOLLY SWISHER

Abstract. We prove a conjecture due to Kimoto and Wakayama from 2006 concerning Apéry-like
numbers associated to a special value of a spectral zeta function. Our proof uses hypergeometric
series and p-adic analysis.

1. Introduction

Let Q = Qα,β be the ordinary differential operator on L2(R)⊗ C2 defined by

Q :=

(
α 0
0 β

)(
−1

2

d2

dx2
+

1

2
x2

)
+

(
0 −1
1 0

)(
x
d

dx
+

1

2

)
where α, β are positive real numbers satisfying αβ > 1. The system defined by the operator Q is
called the non-commutative harmonic oscillator [8]. The operator Q is positive, self-adjoint and
unbounded with a discrete spectrum in which the multiplicities of the eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 . . . (→∞)

are uniformly bounded. Thus, one can define the spectral zeta function

ζQ(s) :=
∞∑
n=1

1

λsn
.

The series ζQ(s) is absolutely convergent, defines a holomorphic function in s for Re(s) > 1 and
can be meromorphically continued to C (for details, see [2], [3]). In [4], Kimoto and Wakayama
discuss the Apéry-like numbers

J̃2(n) :=
n∑
k=0

(−1)k
(
−1

2

k

)2(
n

k

)
which occur in a representation of the special value ζQ(2). Similar to the Apéry numbers for ζ(2)
and ζ(3), these numbers satisfy the recurrence relation (see Proposition 4.11 in [3])

4n2J̃2(n)− (8n2 − 8n+ 3)J̃2(n− 1) + 4(n− 1)2J̃2(n− 2) = 0,

with J̃2(0) = 1 and J̃2(1) = 3
4 , possess many interesting arithmetic properties such as

J̃2(mp
r) ≡ J̃2(mpr−1) (mod pr)

for integers m, r ≥ 1 and primes p ≥ 3 (see Theorem 6.2 of [4]) and have the modular parametriza-
tion (see Theorem 5.1 in [5] or #19 in Zagier’s list [11])

η(2z)22

η(z)12η(4z)8
=
∞∑
n=0

J̃2(n) tn
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where

t = t(z) = 16
η(z)8η(4z)16

η24(2z)

and η(z) is the Dedekind eta-function. Our interest concerns the following conjecture from [4].

Conjecture 1. (Kimoto-Wakayama) For primes p ≥ 3,

p−1∑
k=0

J̃2(k)2 ≡ (−1)
p−1
2 (mod p3).

In this paper, we prove two results, the second of which is equivalent to Conjecture 1. Recall
that for a nonnegative integer r and αi, βi ∈ C with βi 6∈ {. . . ,−3,−2,−1}, the (generalized)
hypergeometric series r+1Fr is defined by

r+1Fr

[
α1 α2 . . . αr+1

β1 . . . βr
; λ

]
:=

∞∑
k=0

(α1)k(α2)k . . . (αr+1)k
(β1)k . . . (βr)k

· λ
k

k!
,

where (a)0 := 1 and (a)k := a(a+ 1) · · · (a+ k − 1). This series converges for |λ| < 1. Hypergeo-
metric series are an important class of special functions which have been investigated by Gauss,
Euler, and Kummer and have numerous applications to the theory of differential equations, al-
gebraic varieties and physics. For a thorough treatment of hypergeometric series, the reader is
referred to [1]. Note that

J̃2(n) = 3F2

[1
2

1
2 −n
1 1

; 1

]
.

Theorem 2. For primes p > 3,

(1)

p−1∑
x=0

3F2

[
1−p
2

1+p
2 −x
1 1

; 1

]2
≡ (−1)

p−1
2 (mod p3)

and for primes p ≥ 3

(2)

p−1∑
x=0

3F2

[1
2

1
2 −x
1 1

; 1

]2
≡ (−1)

p−1
2 (mod p3).

The proof of Theorem 2 uses hypergeometric series and p-adic analysis. The paper is organized
as follows. In Section 2, we briefly recall the required background concerning hypergeometric series,
then prove Theorem 2. Finally, we have numerically observed the following generalization of (2):
for primes p ≥ 3 and integers r ≥ 1,

pr−1∑
x=0

3F2

[1
2

1
2 −x
1 1

; 1

]2
≡ (−1)

p−1
2

pr−1−1∑
x=0

3F2

[1
2

1
2 −x
1 1

; 1

]2
(mod p3r).

We leave this to the interested reader.

2. Proof of Theorem 2

The proof below is motivated by the approach of Rutkowski in [9]. We start with some prelimi-
naries.
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2.1. Preliminaries.

Lemma 3. Given integers j, k,m, with m ≥ 1, and j, k ≥ 0,

m−1∑
x=0

(x− j + 1)j+k =
(m− j)j+k+1

j + k + 1
.

Proof. First, we observe that the identity holds trivially when m ≤ j since both sides are 0. Thus
we assume m > j. Moreover, the identity holds when j = k = 0 as both sides are m. We note that
(x)n+1− (x− 1)n+1 = (n+ 1)(x)n holds for integers x ≥ 0, n ≥ 1. Then for any positive integer N ,

(N)n+1 =
N∑
x=0

((x)n+1 − (x− 1)n+1) = (n+ 1)
N∑
x=0

(x)n.

Letting N = m− j and n = j + k gives

m−j∑
x=0

(x)j+k =
(m− j)j+k+1

j + k + 1
,

which is equivalent to
m−1∑
x=j

(x− j + 1)j+k =
(m− j)j+k+1

j + k + 1
.

Since (x− j + 1)j+k = 0 for 0 ≤ x < j, this yields the lemma. �

We now fix some notation for the duration of the paper. Since one can verify (2) directly for

p = 3, we fix p > 3 prime and n = p−1
2 . Given a function g(x), we define (see [9])

I(g) =

p−1∑
x=0

g(x).

Let fn(x) be the degree n polynomial in Zp[x] defined by

(3) fn(x) =

n∑
j=0

(
n

j

)(
n+ j

j

)(
x

j

)
= 3F2

[
−n 1 + n −x

1 1
; 1

]
.

These are orthogonal polynomials satisfying the following recursion (see (4) of [10])

(n+ 1)2fn+1(x) = (2n+ 1)(2x+ 1)fn(x) + n2fn−1(x).

Furthermore, let g(x) be the degree p− 1 polynomial in Zp[x] defined by

(4) g(x) =

p−1∑
j=0

(−1)j
(
−1

2

j

)2(
x

j

)
= 3F2

[1
2

1
2 −x
1 1

; 1

]
p−1

where the subscript in (4) denotes the truncation of the sum at p− 1.

2.2. Relationship between (1) and (2). With our new notation, (1) is equivalent to

(5) I(fn(x)2) ≡ (−1)n (mod p3),

while (2) is equivalent to

I(g(x)2) ≡ (−1)n (mod p3).



4 LING LONG, ROBERT OSBURN AND HOLLY SWISHER

First, by (3) and (4), we observe that

g(x)− fn(x) =

n∑
k=1

(
(12)2k − (1−p2 )k(

1+p
2 )k

)
(−x)k

k!3
+

p−1∑
k= p+1

2

(12)2k(−x)k

k!3
.

Since (12)2k ≡ (1−p2 )k(
1+p
2 )k (mod p2), and (12)k ≡ 0 (mod p) for k ≥ p+1

2 , we see that g(x)−fn(x) ∈
p2xZp[x] of degree p− 1. Thus, g(x) = fn(x) + p2h(x), where h(x) ∈ xZp[x] has degree p− 1. This
yields that

I(g(x)2) ≡ I(fn(x)2) + 2p2I(fn(x)h(x)) (mod p3).

Note that if we prove

(6) I(fn(x)g(x)) ≡ I(fn(x)2) (mod p3),

then we can conclude I(fn(x)h(x)) ≡ 0 (mod p) and thus I(g(x)2) ≡ I(fn(x)2) (mod p3). Hence,
in order to prove Theorem 2, it suffices to prove (5) and (6).

2.3. Proof of Theorem 2. From (3) and (4), we have

I(fn(x)2) =

n∑
j=0

(
n

j

)(
n+ j

j

)
I

(
fn(x) ·

(
x

j

))
,(7)

I(fn(x)g(x)) =

p−1∑
j=0

(−1)j
(
−1

2

j

)2

I

(
fn(x) ·

(
x

j

))
.(8)

Note that
(
n
j

)
,
(
n+j
j

)
, and j! do not introduce any factors of p;

(− 1
2
j

)
has no factors of p when

0 ≤ j ≤ n, but does contain a copy of p when n < j ≤ p− 1. We also observe that

(9) (−1)j
(
−1

2

j

)2

≡
(
n

j

)(
n+ j

j

)
(mod p2),

so (6) is true modulo p2. For a finer analysis we study I
(
fn(x) ·

(
x
j

))
modulo p3.

Lemma 4. For any j ≥ 0, m ≥ 1,

I

(
fm(x) ·

(
x

j

))
= (−1)m

m∑
k=0

(
m

k

)(
m+ k

k

)
(−1)k(p− j)j+k+1

j!k!(j + k + 1)
.

Proof. We use the following identity (see page 142 of [1]). When m is a positive integer and both
sides converge,

(10) 3F2

[
−m a b

d e
; 1

]
=

(e− a)m
(e)m

3F2

[
−m a d− b

d a+ 1−m− e
; 1

]
.

Letting a = 1 +m, b = −x, d = e = 1 in (10) yields

fm(x) = (−1)m 3F2

[
−m 1 +m 1 + x

1 1
; 1

]
= (−1)m

m∑
k=0

(
m

k

)(
m+ k

k

)(
−1− x
k

)
,

and thus

I

(
fm(x) ·

(
x

j

))
= (−1)m

m∑
k=0

(
m

k

)(
m+ k

k

)
I

((
x

j

)(
−1− x
k

))
.

Since
(
x
j

)(−1−x
k

)
=

(−1)k(x−j+1)j+k

j!k! , Lemma 3 yields the result. �
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From Lemma 4, we are now able to analyze I
(
fn(x) ·

(
x
j

))
modulo p3. We will use the following

identities from Rutkowski [9]. For j = 0, 1 · · · , n− 1,

(11)

n∑
k=0

(−1)k

j + k + 1

(
n+ k

k

)(
n

k

)
= 0,

and for j = n

(12)

n∑
k=0

(−1)k

n+ k + 1

(
n+ k

k

)(
n

k

)
=

(−1)n

2n+ 1

(
2n

n

)−1
.

We note that these identities are direct consequences of the Pfaff-Saalschütz formula (Theorem
2.2.6 of [1]), which says that for n ∈ N,

(13) 3F2

[
−n a b

c 1 + a+ b− c− n
; 1

]
=

(c− a)n(c− b)n
(c)n(c− a− b)n

.

Letting a = n+ 1, b = j + 1, and c = 1 yields
n∑
k=0

(−1)k

j + k + 1

(
n+ k

k

)(
n

k

)
=

1

j + 1
· 3F2

[
−n n+ 1 j + 1

1 j + 2
; 1

]
=

1

j + 1
· (−n)n(−j)n

(1)n(−1− n− j)n
,

which gives (11) and (12).

Let Hk =
∑k

j=1
1
j denote the kth harmonic number where H0 := 0. Note that for 0 ≤ k < p,

Hk ∈ Zp. The following lemma is the key for proving Theorem 2.

Lemma 5. Let p > 3 be prime and n = p−1
2 . For integers 0 ≤ j ≤ p− 1,

(14)

I

(
fn(x) ·

(
x

j

))
≡ p(−1)n+j

n∑
k=0

(−1)k

j + k + 1

(
n

k

)(
n+ k

k

)

+ p2(−1)n+j
n∑
k=0

(
n

k

)(
n+ k

k

)
(−1)k[Hk −Hj ]

j + k + 1
(mod p2).

Moreover, when 0 ≤ j < n,

(15) I

(
fn(x) ·

(
x

j

))
≡ p2(−1)n+j

n∑
k=0

(
n
k

)(
n+k
k

)
(−1)k[Hk −Hj ]

j + k + 1
(mod p3),

and when j = n,

(16) I

(
fn(x) ·

(
x

n

))
≡ (−1)n

(
2n

n

)−1
+ p2

n∑
k=0

(
n
k

)(
n+k
k

)
(−1)k[Hk −Hn]

n+ k + 1
(mod p3).

Proof. We first observe that when 0 ≤ k ≤ n and 0 ≤ j ≤ p− 1, we have

(17)

(p− j)j+k+1

j!k!
=

(
p

j
− 1

)(
p

j − 1
− 1

)
· · ·
(p

1
− 1
)
p
(p

1
+ 1
)
· · ·
(p
k

+ 1
)

≡ p(−1)j(1 + p[Hk −Hj ]) (mod p3)

and thus (14) follows from Lemma 4 with m = n since j + k+ 1 introduces at most one factor of p
in the denominator. Now, if 0 ≤ j < n, then p - j + k + 1 and so Lemma 4, (11), and (17) imply
(15). We now note that letting j = k = n in (17) gives
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(18)
(p− n)2n+1

n!2
≡ p(−1)n (mod p3).

Thus, after taking m = n in Lemma 4, applying (18) to the k = n term, then applying (17) with
j = n to the 0 ≤ k < n terms and recombining, we have

I

(
fn(x) ·

(
x

n

))
≡ (−1)n

n−1∑
k=0

(
n

k

)(
n+ k

k

)
(−1)k(p− n)n+k+1

n!k!(n+ k + 1)
+ (−1)n

(
2n

n

)
(mod p3)

≡ p
n∑
k=0

(
n

k

)(
n+ k

k

)
(−1)k

n+ k + 1
+ p2

n∑
k=0

(
n
k

)(
n+k
k

)
(−1)k[Hk −Hn]

n+ k + 1
(mod p3).

Using (12), we arrive at (16). �

Finally, we need two additional lemmas. The first is from [7].

Lemma 6. Let p > 3 be prime and n = p−1
2 . We have(

−1
2

n

)2

≡ (−1)n
(

2n

n

)
(mod p3).

Lemma 7. Let p > 3 be prime and n = p−1
2 . We have

p

p−1∑
j=n+1

(
−1

2

j

)2 n∑
k=0

(−1)k

j + k + 1

(
n

k

)(
n+ k

k

)
≡ 0 (mod p3).

Proof. We note that if i is a fixed integer such that 1 ≤ i ≤ n, then since −n ≡ n+ 1 (mod p),

(19)
(n− i)!2 = (n− (n− 1))2 · · · (n− j)2 · · · (n− i)2

≡ (p− 1)2 · · · (n+ 1 + j)2 · · · (1 + n+ i)2 (mod p).

Thus (n− i)!2(n+ i)!2 ≡ 1 (mod p) by Wilson’s theorem. Also(
1

2

)
n+i

=

(
1

2

)
n

(p
2

)(p
2

+ 1
)
· · ·
(p

2
+ i− 1

)
≡ p

2

(
1

2

)
n

(i− 1)! (mod p2),

and thus

(20)

(
1

2

)2

n+i

≡ p2

4

(
1

2

)2

n

(i− 1)!2 (mod p3).

Similarly,

(21)

(
1

2

)2

n

=

(
1

2

)2

n−i

(p
2
− 1
)2
· · ·
(p

2
− i
)2
≡ i!2

(
1

2

)2

n−i
(mod p).

By (9), it suffices to prove

p

p−1∑
j=n+1

n∑
k=0

(12)2j
j!2

(12)2k
k!2
· 1

j + k + 1
≡ 0 (mod p3).

Since j ≥ n+ 1, we have p2 | (12)2j and thus the summand is 0 modulo p3 when j+k+ 1 6= p. Using

(19)–(21), and the fact (see [6]) that
∑n

i=1
1
i2
≡ 0 (mod p), we have
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p

p−1∑
j=n+1

n∑
k=0

(12)2j
j!2

(12)2k
k!2
· 1

j + k + 1
≡

p−1∑
j=n+1

(12)2j
j!2

(12)2p−1−j
(p− 1− j)!2

(mod p3)

=

n∑
i=1

(12)2n+i(
1
2)2n−i

(n+ i)!2(n− i)!2

≡ p2

4

(
1

2

)4

n

n∑
i=1

1

i2
(mod p3)

≡ 0 (mod p3).

�

We now have the tools to prove Theorem 2.

Proof of Theorem 2. We first split (7) into the cases j < n and j = n, and apply (15) and (16) to
obtain

(22) I(fn(x)2) ≡ (−1)n + p2 · (−1)n
n∑

j,k=0

(
n
j

)(
n+j
j

)(
n
k

)(
n+k
k

)
(−1)k+j [Hk −Hj ]

j + k + 1
(mod p3).

As the sum on the right-hand side of (22) is symmetric in j and k, it equals 0 and thus (5) follows.
We now split (8) into the cases when j < n, j = n, and j > n to obtain I(fn(x)g(x)) = A+B +C
where

A =

n−1∑
j=0

(−1)j
(
−1

2

j

)2

I

(
fn(x) ·

(
x

j

))
,

B = (−1)n
(
−1

2

n

)
I

(
fn(x) ·

(
x

n

))
and

C =

p−1∑
j=n+1

(−1)j
(
−1

2

j

)2

I

(
fn(x) ·

(
x

j

))
.

When 0 ≤ j < n, we see from (15) that I
(
fn(x) ·

(
x
j

))
≡ 0 (mod p). Thus by (9) and Lemma 6

we have that

A+B ≡ I(fn(x)2) (mod p3).

Since p2 divides
(− 1

2
j

)2
when j > n, applying (14) to C yields

C ≡ p · (−1)n
p−1∑

j=n+1

(
−1

2

j

)2 n∑
k=0

(
n

k

)(
n+ k

k

)
(−1)k

j + k + 1

+ p2 · (−1)n
p−1∑

j=n+1

(
−1

2

j

)2 n∑
k=0

(
n

k

)(
n+ k

k

)
(−1)k[Hk −Hj ]

j + k + 1
(mod p4).

We observe that the first summand vanishes modulo p3 by Lemma 7 and the second summand
vanishes modulo p3 since j + k + 1 introduces at most one factor of p in the denominator. This
proves (6). �
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