
Absolute and Convective Instabilities in Parallel
Flows

Lecture 1

Dr Lennon Ó Náraigh

1 Overview and Workplan

The idea of these four lectures is to study the asymptotic (t → ∞) properties of the
following equation from the linear theory of parallel flow instability:

∂

∂t
∇2ϕ+ U0(z)∇2∂ϕ

∂x
− U ′′

0 (z)
∂ϕ

∂x
=

1

Re
∇4ϕ, (1a)

with boundary conditions

ϕ = ϕz = 0, at z = 0, 1, (1b)

and
lim

|x|→∞
ϕ = lim

|x|→∞
ϕx = 0, (1c)

subject to an initial impulsive disturbance

ϕ(x, z, t = 0) = δ(x− x0)δ(z − z0). (1d)

Physically, ϕ(x, z, t) is the streamfunction of a small flow perturbation that is applied
and superimposed on the base flow U0(z). The base flow is directed in the x-direction
but varies in the normal (z-direction). For that reason, it is called parallel (Figure 1). It

Figure 1: Schematic description of the base parallel flow U0(z).
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is of interest to know whether this perturbation will grow over time or decay. The flow
is called convectively unstable if

lim
t→∞

|ϕ(x, z, t)| = ∞,

for some x. The flow is called absolutely unstable if

lim
t→∞

|ϕ(x0, z0, t)| = ∞.

That is, convectively unstable disturbances grow as they are convected downstream by
the base flow U0(z), while absolutely unstable disturbances grow at the disturbance
source.

The problem is first of all approached by studying the theory of Laplace transforms.
In the first two lectures, this will be our exclusive focus.

2 Laplace transforms

In this section, let

F : [0,∞) → C,
t 7→ F (t) (2)

be a complex-valued function of a real variable.

Definition 2.1 Let The function F (t) is at most exponentially diverging if there
exist real numbers (λ0,M > 0) such that

|e−λ0tF (t)| ≤ M, as t → ∞;

we call λ0 the divergence parameter.

Definition 2.2 Let F (t) be at most exponentially diverging, with divergence parameter
λ0. Laplace-transform of F (t) is defined as follows:

F̂λ ≡ L(F ) :=

∫ ∞

0

e−λtF (t)dt, ℜ(λ) > λ0.

Theorem 2.1 The Laplace transform is linear, in the sense that

L(αF (t) + βG(t)) = αL(F ) + βL(G),

where α and β are complex conostants and the functions F and G are functions of
type (2) whose Laplace transforms exist.
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Examples

1. Let F (t) = ekt, with k > 0 real. We have

F̂λ =

∫ ∞

0

e(k−λ)tdt,

= lim
L→∞

[
1

k − λ

(
e(k−λ)L − 1

)]
. (3)

Obviously, we need ℜ(λ) > k for this integral to exist, hence

F̂λ =
1

λ− k
, ℜ(λ) > k.

The transform has a simple pole at λ = k, which is connected to the failure of
the integral (3) to exist for ℜ(λ) sufficiently small. See Figure 2 for a sketch of
the λ-domain where L(ekt) is well-defined.

Figure 2: Domain of existence of the complex Laplace transform of ekt.

2. Let F (t) = sinh kt, with k > 0 real. We compute

L(ekt) =

∫ ∞

0

e(k−λ)t,

=
1

λ− k
, ℜ(λ) > k.

Also,

L(e−kt) =

∫ ∞

0

e(−k−λ)t,

=
1

λ+ k
, ℜ(λ) > −k.

By linearity,

L(sinh kt) = 1
2

(
1

λ− k
− 1

λ+ k

)
, ℜ(λ) > k,
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where the first inequality trumps the second one. Finally,

L(sinh kt) = k

λ2 − k2
, ℜ(λ) > k.

3. Let F (t) = δ(t− t0), with t0 > 0. We have

F̂λ =

∫ ∞

0

eλtδ(t− t0) = eλt0 .

We take t0 ↓ 0 and define
L(δ(t)) = 1.

3 Inverting Laplace transforms

Let

F : [0,∞) → C,
t 7→ F (t)

be a complex-valued function of a real variable, and moreover, let F (t) be at worst
exponentially diverging, with exponential parameter λ0. We re-write F (t) as

F (t) = eγtG(t),

where limt→∞ G(t) = 0. Such a G-function exists; we take

G(t) = F (t)e−(λ0+ϵ)t,

for ϵ arbitrary and positive (hence, γ = λ0 + ϵ). We have

|G(t)| = |F (t)|e−λ0t−ϵt,

≤ Meλ0te−λ0t−ϵt, as t → ∞,

≤ Me−ϵt,

→ 0, as t → ∞.

Also, define G(t) = 0 for t < 0. It follows that G is L2 square integrable. Subject to the
usual further conditions on G (i.e. piecewise differentiable for t ∈ R), G can be written
in Fourier transform notation:

G(t) =

∫ ∞

−∞

dω

2π
eiωtĜω,

=

∫ ∞

−∞

dω

2π
eiωt

[∫ ∞

−∞
ds e−iωsG(s)

]
Multiply across by eγt:

eγtG(t) =
eγt

2π

∫ ∞

−∞
dω eiωt

[∫ ∞

−∞
ds e−iωsG(s)

]
,

F (t) =
eγt

2π

∫ ∞

−∞
dω eiωt

[∫ ∞

0

ds e−iωsF (s)e−γs

]
,

=
eγt

2π

∫ ∞

−∞
dω eiωt

[∫ ∞

0

ds e−λsF (s)

]
︸ ︷︷ ︸

=F̂λ

.
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Let λ = γ + iω, hence ω = (λ− γ)/i.

F (t) =
eγt

2π

∫ ∞

−∞

(
dω eiωt

)
ω=λ−γ

i

F̂λ.

Effecting the change of variables, this is

F (t) =
1

2π

∫ ∞

−∞

(
dω e(γ+iω)t

)
ω=λ−γ

i

F̂λ,

=
1

2πi

∫ γ+i∞

γ−i∞
dλ eλtF̂λ.

The contour
B = {z ∈ C|z = γ + iy, y ∈ R}

is called the Bromwich contour. It is sketched in Figure 3.

Figure 3: Definition sketch – the Bromwich contour

Suppose now that
lim
λ→∞

|eλtF̂λ| = 0, t > 0

and consider the contour C + B in Figure 4. For now, we consider the case where the
singularities of eλtF̂λ are poles; branch-cut singularities are considered on a case-by-
case basis in the examples to follow. Also, we use the notation C to denote the limiting
countour associated with a semi-circle of radius R centred at (γ, 0), with R → ∞. In this

limit, the semi-circle encloses all of the singularities (poles) of F̂λ. Also,
∫
C e

λtF̂λdλ = 0.
Hence,

1

2πi

∫
C+B

eλtF̂λ =
∑

enclosed residues,

=
1

2πi

(∫
C
dλ+

∫
B
dλ

)
eλtF̂λ,

=
1

2πi

(
0 +

∫
B
dλ

)
eλtF̂λ.

Hence,
F (t) =

∑
enclosed residues, (4)

where ‘residues’ refers to the residues of eλtF̂λ in the half-plane to the left of the line
ℜ(λ) = γ.
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Figure 4: Integration along the Bromwich contour using the Residue Theorem

Example

Let f(λ) = k/(λ2 − k2), with k > 0 real. If f(λ) is a Laplace transform, compute the
generating function of the transofrm.

We compute

F (t) =
1

2πi

∫
B

keλt

λ2 − k2
dλ,

where B is the Bromiwch contours: it is a straight line parallel to the imaginary axis to
the right of the singularities of the integrand

keλt

λ2 − k2
. (5)

Since the singularites of Equation (5) are λ = ±k, the Bromwich contour is

B = {z ∈ C|z = (k + ϵ) + iy, y ∈ R, ϵ > 0}.

Using the residue theorem, we have

F (t) = Res

(
keλt

λ2 − k2
, k

)
+Res

(
keλt

λ2 − k2
,−k

)
= lim

λ→k

[
(λ− k)

keλt

λ2 − k2

]
+ lim

λ→−k

[
(λ+ k)

keλt

λ2 − k2

]
= 1

2

(
ekt − e−kt

)
= sinh(kt),

in agreement with Example 2 in Section 2.

6



Absolute and Convective Instabilities in Parallel Flows Lecture 1

4 Laplace transforms – properties

Throughout this section, let (F (t), F̂λ) be a valid Laplace-transform pair:

F̂λ =

∫ ∞

0

F (t)e−λtdt, F (t) =
1

2πi

∫
B
F̂λe

λt,

where B is the Bromwich contour.

Theorem 4.1 (Substitution) Let a ∈ C, and let f(λ) := F̂λ denote the Laplace
tranform of the functioni F . Then

f(λ− a) = L
(
eatF (t)

)
.

Proof: By direct calculation we have

f(λ− a) = F̂λ−a,

=

∫ ∞

0

e−(λ−a)tF (t)dt,

=

∫ ∞

0

e−λt
[
eatF (t)

]
dt,

= L
(
eatF (t)

)
.

Theorem 4.2 (Translation) Let a be a real positive number and let f(λ) := F̂λ. Then

e−bλf(λ) =

∫ ∞

0

e−λtF (t− b)H(t− b)dt,

where H(·) is the unit step function,

H(x) =

{
1, x > 0,

0, x < 0.

Proof: We have

e−bλf(λ) =

∫ ∞

0

e−bλe−λtF (t) dt,

=

∫ ∞

0

e−(b+t)λF (t) dt.

Let τ = b+ t, with τlw = b and τup = ∞. Hence,

e−bλf(λ) =

∫ ∞

b

e−λτF (τ − b) dτ.

However, consider

F (τ − b)H(τ − b) =

{
F (τ − b), τ > b

0, τ < b.
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Hence,

e−bλf(λ) = 0×
∫ b

0

e−λτF (τ − b) dτ + 1×
∫ ∞

b

e−λτF (τ − b) dτ

=

∫ ∞

0

e−λτF (τ − b)H(τ − b) dτ.

Theorem 4.3 (Differentiation in real space) F (t) be a C1 function of t, with F

and its derivative at worst exponentially diverging. Then ̂(dF/dt)λ exists and(̂
dF

dt

)
λ

=

∫ ∞

0

λe−λtF (t)dt− F (0).

Proof: By assumption, dF/dt is at worst exponentially diverging, and its Laplace
transform exists, at least for appropriate λ-values. Also by definition,(̂

dF

dt

)
λ

=

∫ ∞

0

e−λtdF

dt
dt,

=

∫ ∞

0

[
d

dt

(
e−λtF

)
+ λe−λtF

]
dt,

= lim
L→∞

e−λLF (L)− F (0) +

∫ ∞

0

λe−λtF (t)dt.

For ℜ(λ) sufficiently large and positive, the limiting boundary term vanishes, and(̂
dF

dt

)
λ

∫ ∞

0

λe−λtF (t)dt− F (0),

as required.

Theorem 4.4 (Differentiation in transform space) F (t) be piecewise differentiable

with respect to t. Then f(λ) := F̂λ is differentiable with respect to λ and, moreover,

f ′(λ) = L (−tF (t)) .

Proof: For suitable λ, the integral

f(λ) =

∫ ∞

0

e−λtF (t)dt

is well-defined and is uniformly convergent and may be differentiated under the integral
sign with respect to λ. We compute:

f ′(λ) =
d

dλ

∫ ∞

0

e−λtF (t)dt,

=

∫ ∞

0

[
∂

∂λ
e−λt

]
F (t)dλ,

=

∫ ∞

0

e−λt [−tF (t)] dt,

= L (−tF (t)) .
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Definition 4.1 (Convolution) Let F (t) and G(t) be at-worst exponentially diverging.
The convolution of F and G is defined as

(F ∗G)(t) =

∫ t

0

F1(t− τ)F2(τ)dτ.

Theorem 4.5 (by Faltung) Let F (t) and G(t) be at-worst exponentially diverging,

with Laplace transforms F̂λ and Ĝλ respectively. Then

F̂λĜλ = L [(F ∗G)(t)]

Proof: Given in Lecture 2.
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Lecture 2

Dr Lennon Ó Náraigh

1 Laplace transforms, examples

In this section, let

F : [0,∞) → C,
t 7→ F (t) (1)

be a complex-valued function of a real variable, such that

|e−λ0tF (t)| ≤ M, as t → ∞;

The Laplace tranform of F (t) is defined as follows:

F̂λ ≡ L(F ) :=

∫ ∞

0

e−λtF (t)dt, ℜ(λ) > λ0.

Given that f(λ) = λ−1/2 is the Laplace transform of a function, find the generating
function.

We must ascribe an unambiguous meaning to f(z) = z1/2. We have two possibilities:

f(z) = |z|1/2
{
cos(θ/2) + i sin(θ/2),

cos(π + θ/2) + i sin(π + θ/2),

where θ = arg(z). The standard choice is to take f(z) = |z|1/2 [cos(θ/2) + i sin(θ/2)].
This introduces a discontinuity in f(z) across the half-line x > 0, since f(x, 0+ϵ) =

√
x,

while f(x, 2π − ϵ) =
√
x cos(π), and

f(x, 0 + ϵ)− f(x, 2π − ϵ) = 2
√
x, x > 0.

However, we are interested in a situation where the discontinuity should occur across
the half-line x < 0. We therefore unambiguously define

f(z) = |z|1/2
{
cos(θ/2) + i sin(θ/2), 0 ≤ θ < π,

cos(π + θ/2) + i sin(π + θ/2), π < θ ≤ 2π
:= |z|1/2Θ(θ).

1
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Figure 1: Real and imaginary parts of the complex function Θ(θ) showing the jump /
cusp at θ = π.

The result is plotted in Figure 1. There is a jump / cusp at θ = π, meaning that the
function f(z) so defined has a branch cut along the half-line

{z = x+ 0iy|x ≤ 0}.

Consider now the closed contour C shown in Figure 2. Since C encloses no singular-
ities, we have ∫

C

eλt

λ1/2
dλ = 0.

Moreover, the contour C can be regarded as being made up of many parts:

• The Bromwich contour;

• A small semi-circle of radius ϵ centred at zero.

• The lines surrounding the branch cut.

• Semi-circular parts (centred at zero) of radius R, with R → ∞.

• Small linear parts with z = x± iR, and x ∈ [0, 2ϵ] (say).

We consider these parts separately now, starting with the semi-circle of radius ϵ. This
evaluates to ∫ π/2

−π/2

(ϵ i dθ)
eϵt cos θ+iϵt sin θ

ϵ1/2Θ(θ)
,

which vanishes as ϵ1/2 as ϵ → 0. Also, the semi-circular parts of radius R contain
contributions such as ∫

(R i dθ)
eRt cos θ+iRt sin θ

R1/2Θ(θ)
.

The limits of integration are unspecified; however, they are in the second and third
quadrants where cos θ < 0. Thus, these contributions vanish as

R1/2e−Rα, α ∈ R+,

2
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Figure 2: Integration along the Bromwich contour for a function with branch cut along
the negative real axis

as R → ∞ (we take t > 0). The linear parts vanish similarly. It follows then that

F (t) =
1

2πi

∫
B

eλt

λ1/2
dλ = − 1

2πi

(∫
L1

dλ+

∫
L2

dλ

)
eλt

λ1/2
, (2)

where L1 and L2 are the contributions from the linear contours surrounding the branch
cut.

Consider the integral along L1. With λ = x+ iϵ, we have∫
L1

eλt

λ1/2
dλ =

∫ 0

−∞

e(x+iϵ)t

(x+ iϵ)1/2
dx.

Calling z = x+ iϵ, we have tan θ = ϵ/x, hence

sin θ =
ϵ

x2 + ϵ2
→ 0 as ϵ → 0,

cos θ =
x

x2 + ϵ2
→ −1 as ϵ → 0,

since x < 0. Hence,
sin(θ/2) → 1, cos(θ/2) → 0,

as ϵ → 0. Since L1 is in the upper-half-plane θ < π, we take λ1/2 = |λ|1/2Θ(θ), with
Θ(θ) = cos(θ/2) + i sin(θ/2). Hence,

(x+ iϵ)1/2 = |x+ iϵ|1/2 [cos(θ/2) + i sin(θ/2)] → i|x|1/2,

3
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as ϵ ↓ 0. Thus, we have the following string of relations:∫
L1

eλt

λ1/2
dλ =

∫ 0

−∞

e(x+iϵ)t

(x+ iϵ)1/2
dx,

ϵ↓0
=

∫ 0

−∞

ext

i|x|1/2
dx,

=

∫ 0

−∞

ext

i(−x)1/2
dx,

y=−x
=

1

i

∫ ∞

0

e−yt

y1/2
dy,

X=(ty)1/2

=
2

i

∫ ∞

0

e−X2

dX,

=
2

i

(
1
2

√
π/t

)
,

=
1

i

√
π/t.

We make similar arguments for the second linear contouor. We write λ = x − iϵ,
such that ∫

L2

eλt

λ1/2
dλ = −

∫ 0

−∞

e(x−iϵ)t

(x− iϵ)1/2
dx.

Calling z = x− iϵ, we have tan θ = ϵ/x, hence

sin θ =
ϵ√

x2 + ϵ2
→ 0 as ϵ → 0,

cos θ =
x√

x2 + ϵ2
→ −1 as ϵ → 0,

since x < 0. Since L2 is in the lower-half-plane θ < π, we take Θ(θ) = cos(π + θ/2) +
i sin(π + θ/2), hence

sin(π + θ/2) → −1, cos(π + θ/2) → 0,

as ϵ → 0. Again taking Θ(θ) = cos(π + θ/2) + i sin(π + θ/2), we have

(x− iϵ)1/2 = |x− iϵ|1/2 [cos(π + θ/2) + i sin(π + θ/2)] → −i|x|1/2,
as ϵ ↓ 0. Then, as before, we consider the following string of relations:∫

L2

eλt

λ1/2
dλ = −

∫ 0

−∞

e(x−iϵ)t

(x− iϵ)1/2
dx,

ϵ↓0
= −

∫ 0

−∞

ext

−i|x|1/2
dx,

= +

∫ 0

−∞

ext

|x|1/2
dx,

=
1

i

√
π/t.

From Equation (2), we have

F (t) = − 1

2πi

(∫
L1

dλ+

∫
L2

dλ

)
eλt

λ1/2
= − 1

2πi

(
2

i

√
π/t

)
=

1√
πt

.
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2 Laplace transforms – properties

Definition 2.1 (Convolution) Let F (t) and G(t) be at-worst exponentially diverging.
The convolution of F and G is defined as

(F ∗G)(t) =

∫ t

0

F1(t− τ)F2(τ)dτ.

Theorem 2.1 (by Faltung) Let F (t) and G(t) be at-worst exponentially diverging,

with Laplace transforms F̂λ and Ĝλ respectively. Then

F̂λĜλ = L [(F ∗G)(t)]

Proof: By direct computation, we have

F̂λĜλ =

∫ ∞

0

e−λtF (t) dt

∫ ∞

0

e−λsG(s) ds.

We first of all re-write the integral as follows:

F̂λĜλ = lim
L→∞

∫ L

0

e−λtF (t)dt

∫ L

0

e−λsG(s) ds.

The trick is to re-write this further as

F̂λĜλ = lim
L→∞

∫ L

0

e−λtF (t) dt

∫ L−t

0

e−λsG(s) ds.

In fact, we have changed the region of integration from an L×L square to a triangle with
vertices at (0, 0), (0, L), and (L, 0). However, leaving out half the domain of integration
does not matter, as the omitted region is ‘filled in’ as L → ∞ (e.g. Figure 3). Now,

Figure 3: Sketch for the change-of-variables in the Convolution Theorem

we proceed by direct calculation. We want only one free variable in the exponential
argument. We do not modify the variable s; instead we define

t+ s = τ =⇒ t = s− τ

Again referring to Figure 3, we have

5
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• Line Segment 1 (s = 0) is mapped to s = 0;

• Line Segment 2 (s = L− t) implies that τ = t + (L− t) = L (constant); hence
line-segment 2 is mapped to a vertical line segment passing through τ = L.

• The condition on Line Segment 3 (t = 0) implies s = τ , hence line segment 3 is
mapped to the straight line of slope 45o passing through the origin.

Also, consider the transformation, expressed correctly here as

τ = t+ s,

s′ = s,

with inverse

t = τ − s′,

s = s′.

We have

dt ds =

∣∣∣∣ ∂t
∂τ

∂t
∂s′

∂s
∂τ

∂s′

∂s

∣∣∣∣︸ ︷︷ ︸
=J

dτ ds′.

J =

∣∣∣∣ 1 −1
0 1

∣∣∣∣ = 1,

hence
dt ds = dτ ds′.

Putting it all together, we have

F̂λĜλ = lim
L→∞

∫ L

0

e−λtF (t) dt

∫ L−t

0

e−λsG(s) ds,

= lim
L→∞

∫ L

0

dt

∫ L−t

0

ds e−λtF (t)e−λsG(s),

= lim
L→∞

∫ L

0

dτ

∫ τ

0

ds F (τ − s)e−λ(τ−s)G(s)e−λs,

= lim
L→∞

∫ L

0

dτ e−λτ

∫ τ

0

ds F (τ − s)G(s),

=

∫ ∞

0

dτ e−λτ

[∫ τ

0

ds F (τ − s)G(s)

]
,

=

∫ ∞

0

dτ e−λτ (F ∗G)(τ),

= L[(F ∗G)(τ)].

6
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Example

Compute the inverse transform of

f(λ) =
1− e−aλ

λ
, a ∈ R+.

We break it up into two parts. Consider

I1 =
1

2πi

∫
B

eλt

λ
dλ.

The Bromwich contour is a straight line parallel to the imaginary axis passing through
z = 0 + iϵ, with ϵ ↓ 0. The integrand has a single simple pole at λ = 0, with

Res

(
eλt

λ
, 0

)
= 1.

Hence,
I1 = 1, t > 0.

On the other hand, if t < 0, to get a convergent integral we would have to close the
contour by forming a semi-circle on the right of the Bromwich line. However, such a
contour encloses no singularities, hence

I1 = 0, t < 0.

We do the second integral by considering

I2 =
1

2πi

∫
B

e(t−a)λ

λ
dλ.

The integrand is
eλr(t−a)eλi(t−a)

λ

The Bromwich contour is the same as before. For the B-contour given there are two
possibilities:

1. t− a > 0 – chose λr < 0 – close the contour on the left. Thus, a contribution to
the integral is picked up from the pole at λ = 0.

2. t − a < 0 – chose λr > 0 – close the contour on the right. Thus, there are no
pole-contributions to the integral and the integal vanishes.

In other words,

I2 =

{
1, if t > a,

0, if t < 1.

Finally, the answer is
F (t) = H(t)−H(t− a).

7
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However, from a sketch, this can be seen to be a top-hat function:

F (t) =


0, if t < 0,

1, if 0 < t < a,

0, if t > a.

There is another way of getting at the second integral I2. From the translation theorem,
we have

e−aλϕ̂λ =

∫ ∞

0

e−λtϕ(t)H(t− a)dt,

Taking ϕ(t) = H(t), with ϕ̂λ = 1/λ, we have

e−aλ

λ
=

∫ ∞

0

e−λtH(t)H(t− a)dt,

=

∫ ∞

0

e−λtH(t− a)dt.

Hence, the Laplace transform of H(t− a) is e−aλ/λ, hence

1

2πi

∫
B

(
e−aλ

λ

)
eλtdλ = H(t− a),

as computed already, using a direect approach.
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Absolute and Convective Instabilities in Parallel
Flows

Tutorial 1

Dr Lennon Ó Náraigh

1 Bateman Equations

Solve

dN1

dt
= −λ1N1,

dN2

dt
= −λ2N2 + λ1N1,

dN3

dt
= λ2N2,

subject to N1(0) = n1 > 0, N2(0) = n2 ≥ 0, and N3(0) = n3 ≥ 0, where (λ1, λ2, λ3)
are positive constants.

2 Poles other than simple poles

Solve
d2x

dt2
− 2

dx

dt
+ x = 0,

subject to x(t = 0) = x0 and (̇t = 0) = v0.

1
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Lecture 3

Dr Lennon Ó Náraigh

1 Background

We are interested in the following Cauchy problem:

∂

∂t
∇2ϕ+ U0(z)∇2∂ϕ

∂x
− U ′′

0 (z)
∂ϕ

∂x
=

1

Re
∇4ϕ, (1a)

with boundary conditions

ϕ = ϕz = 0, at z = 0, 1, (1b)

and
lim

|x|→∞
ϕ = lim

|x|→∞
ϕx = 0, (1c)

subject to an initial impulsive disturbance

ϕ(x, z, t = 0) = δ(x− x0)δ(z − z0). (1d)

2 The solution

Equation (1a) is rewritten in Orr–Sommerfeld operator form as follows:

∂

∂t
MOS[∂x, ∂z]ψ(x, z, t) = LOS[∂x, ∂z]ψ(x, z, t) + F (x, z, t), ψ(x, z, t = 0) = 0.

(2)
Here, F (x, z, t) represents the momentum source; this can either be continuous-in-time,
or be an initial impulse imposed on the system. In the impulsive case, S(x, z, t) =
δ(t)F (x, z), with Laplace transform S(x, z, λ) = F (x, z). The solution can be written
in terms of Fourier transforms as follows:

ψ(x, z, t) =

∫ ∞

−∞

dα

2π
eiαxψ̃α(z, t),

where the Fourier coefficients ψ̃α(z, t) satisfy

∂

∂t
MOS[iα, ∂z]ψ̃α(z, t) = LOS[iα, ∂z]ψ̃α(z, t) + δ(t)F̃α(z, t).

1
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Each Fourier component ψ̃α(z, t) can be decomposed further via an inverse Laplace
tranform:

ψ̃α(z, t) =

∫
B

dλ eλtψ̃αλ(z),

where B is the Bromwich contour. The components ψ̃αλ(z) of the inverse Laplace
tranform in turn satisfy

λMOS(iα, z)ψ̃αλ(z) = LOS(iα, ∂z)ψ̃αλ(z) + F̃α(z, λ), (3)

where the Laplace transform of the force function S has been taken with respect to time.
This is the Orr–Sommerfeld eigenvalue problem.

The (formal) solution to Equation (3) reads

ψ̃αλ(z) = [LOS − λMOS]
−1 F̃α(z, λ)

This purely formal solution is understood as follows. We write the solution of Equa-
tion (3) as ψ̃αλ(z) =

∑
n anϕαn(z). Here, the ϕαn’s are the eigenfunctions of the

Orr–Sommerfeld equation at wavenumber α. Equation (3) is therefore re-written as

λ
∑
n

anMOSϕαn(z) =
∑
n

anLOSϕαn(z) + F̃α(z, λ). (4)

The eigenfunctions ϕ+
αm(z) of the adjoint OS problem satisfy∫

dz
[
ϕ+
αm(z)

]∗MOSϕαn(z) = δnm.

We multiply both sides of Equation (3) by [ϕ+
m(z)]

∗ and integrate with respect to z; the
result is

am =
1

λ− λm

∫
dz

[
ϕ+
αm(z)

]∗
F̃α(z, λ),

and

ψαλ(z) = [LOS − λMOS]
−1 F̃α(z, λ) =∑
n

ϕαn(z)

λ− λn

∫
dz

[
ϕ+
αn(z)

]∗
F̃α(z, λ) :=

∑
n

ϕαn(z)Fαn(λ)

λ− λn
.

Thus, the solution to the Cauchy problem (2) becomes

ψ(x, z, t) =

∫ ∞

−∞

dα

2π
eiαx

∫
B

dλ eλt
∑
n

ϕαn(z)Fαn(λ)

λ− λn
, (5)

where the Bromwich contour C is a straight line parallel to the imaginary axis, to the
right of all the eigenvalues {λn} of the Orr–Sommerfeld equation. A key property of
Equation (5) is the absence of any contributions from a continuous spectrum: for a
bounded domain z ∈ [0, 1], the spectrum of the Orr–Sommerfeld equation is entirely
discrete.

To make progress, we make a simplifying assumption, without any loss of generality:

2
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Assumption 2.1 The spectrum of the OS operator is non-degenerate:

λm = λn =⇒ m = n.

Then, each pole in the the innermost integral in Equation (5) is first-order. Using the
theory of residues, one obtains for the innermost integral

ψ(x, z, t) =
∑
n

∫ ∞

−∞

dα

2π
eiαx+λntFαn(λn)ϕαn(z). (6)

The outermost (α-) integral can be computed in certain special cases. This is discussed
in the next two sections.

3 Explicit asymptotic solutions

3.1 Monochromatic forcing

For monochromatic, impulsive forcing, F (x, z, t) = eiα0xδ(t)f(z), F̃ (z, λ) = 2πf(z)δ(α−
α0), and

Fαn(λ) = δ(α− α0)

∫
dz

[
ϕ+
α0n

(z)
]∗
f(z) := δ(α− α0)fα0n.

From Equation (6),

ψ(x, z, t) =
∑
n

eiα0x+λn(α0)tfα0nϕα0n(z). (7)

Thus,
lim
t→∞

ψ(x, z, t) =
[
fα0nmaxe

iα0x+λnmax (α0)
]
ϕα0nmax(z),

where nmax is that eigenvalue whose real part is maximal over the entire spectrum
{λn(α0)}. Note also,

lim
t→∞

∥ψ∥2(t) = ∥ϕα0nmax∥2 |fα0nmax | eℜ[λnmax (α0)]t,

where ∥ · ∥2(t) is the transient L2 norm; for a function Φ(x, z, t),

∥Φ∥2(t) :=
(x

dxdz|Φ(x, z, t)|2
)1/2

.

Thus, as t→ ∞, the disturbance grows exponentially fast, at a rate

ℜ[λnmax(α0)].

This is called the most-dangerous mode. Obviously, if ℜ[λnmax(α0)] > 0 the system
is (convectively) unstable. The system is completely linearly stable if ℜ[λnmax(α0)] < 0.

3
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3.2 Localized impulsive forcing

For localized impulsive forcing, F (x, z, t) = δ(x)δ(z−z0)δ(t), with F̃α(z, λ) = δ(z−z0),
and

Fαn(λ) = [ϕ+
αn(z0)]

∗

Thus,

ψ(x, z, t) =
∑
n

∫ ∞

−∞

dα

2π
eiαx+λnt[ϕ+

αn(z0)]
∗ϕαn(z). (8)

This integral can be regarded as being in the form

ψ(x, z, t) =
1

2π

∑
n

∫ ∞

−∞
dαFn(α)e

λn(α)t,

where
Fn(α) = eiαx[ϕ+

αn(z0)]
∗ϕαn(z)

This integral is now in a form where the saddle-point method can be applied. We need
the following additional assumptions:

Assumption 3.1

1. The phase function λn(α) has a single dominant saddle point;

2. The saddle point is not degenerate.

3. If the phase functions or the Fn(α)’s do have singularities, they are located
‘far away’ from the saddle point, in the sense that they do not prevent us from
deflecting the contour α ∈ (−∞,∞) to pass through the dominant saddle
point.

For the dominant saddle point, we compute

1. Saddle-point location: α0, such that (dλn/dα)α0 = 0.

2. The value λn(α0),

3. The derivative λ′′n(α0)

4. The phase φn = 1
2
π − 1

2
arg(λ′′n(α0))

5. Fn(α0).

Applying the saddle-point method to the integral (8), we get

ψ(x, z, t) ∼ 1

2π

∑
n

√
2πeiα0x[ϕ+

α0n
(z0)]

∗ϕα0n(z)e
−λn(α0)teiφn

|tλ′′n(α0)|1/2
(9)

4
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We assume a dominant saddle point, taken over the full OS spectrum. We therefore
take α0,nmax to be the mode corresponding to

sup
n

ℜ [λ(α0,n)]

Then, the limit (9) simplifies further:

lim
t→∞

ψ(x, z, t) =
eiφnmax

√
2π

[ϕ+
α0nmax

(z0)]
∗ϕα0nmax(z)∣∣∣td2λnmax

dα2

∣∣
α0

∣∣∣1/2 eiα0x+λnmax (α0)t. (10)

Absolute instability

From Equation (10), we see that the instability grows (asymptotically) at the source
x = 0 if ℜ [λnmax(α0)] > 0. This is the notion of linear absolute instability. Of course,
the simplification that leads from Equation (8) to Equation (10) is possible only when
the phase function possesses no singularities close to the saddle point, and when the
saddle point is non-degenerate.

The pinching criterion

Recall the formal solution to Cauchy problem (2) (Equation (5)):

ψ(x, z, t) =

∫ ∞

−∞

dα

2π
eiαx

∫
B

dλ eλt
∑
n

ϕαn(z)Fαn(λ)

λ− λn
, (11)

where the λ-integration is done first. To get a self-consistent answer, it should be
possible to reverse the order of integration, doing the α-integral first, to arrive at a
result identical to Equation (10). However, only so-called pinching saddles satisfy this
self-consistency property. A pinching saddle is one where the α-curves of constant ω
(in particular, curves of constant ω, with ωi = ωi(α0)) ramify into different half-planes.
See Huerre and Monkewitz [1990].
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Lecture 4

Dr Lennon Ó Náraigh

1 Background

We are interested in the following Cauchy problem:

∂

∂t
∇2ϕ+ U0(z)∇2∂ϕ

∂x
− U ′′

0 (z)
∂ϕ

∂x
=

1

Re
∇4ϕ, (1a)

with boundary conditions

ϕ = ϕz = 0, at z = −H,H, (1b)

and
lim

|x|→∞
ϕ = lim

|x|→∞
ϕx = 0, (1c)

subject to an initial impulsive disturbance

ϕ(x, z, t = 0) = δ(x− x0)δ(z − z0). (1d)

Under a Fourier–Laplace transform, the relevant equation (1a) reduces to the more
familiar Orr–Sommerfeld eigenvalue equation:

iα (U0(z)− c)
(
∂2
z − α2

)
ϕα(z)− iαU ′′

0 (z)ϕα(z) =
1

Re

(
∂2
z − α2

)2
ϕα, (2)

or in operator form,

λMOS(iα, z)ϕα(z) = LOS(iα, ∂z)ϕα(z), (3)

where λ = −iαc. We study the model (dimensionless) velocity field

U0(z) = 1− Λ + 2Λ
{
1 + sinh2N

[
z sinh−1(1)

] }−1
, Λ < 0, (4)

where Λ and N are dimensionless parameters. In this model flow, the z-parameter takes
values in the range −∞ < z < ∞. However, we introduce artificail confinement, such
that z takes values in the range [−H,H], where H is chosen to be large in an appropriate
numerical sense.

Equation (4) models the steady wake profile generated by flow past a bluff body.
The quantity Λ = (Uc − Umax)/(Uc + Umax) is the velocity ratio, where Uc is the wake

1
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centreline velocity and Umax is the maximum velocity. Furthermore, N is the shape
parameter, which controls the ratio between the mixing-layer thickness and the width
of the wake. It ranges from N = 1 (the ‘sech2 wake’) to N = ∞, a ‘top-hat wake’
bounded by two vortex sheets [Monkewitz, 1988]. The base state (4) is known to be
absolutely unstable [Monkewitz, 1988]. The aim of this practical session is to confirm
this absolute instability using the saddle-point method.

2 Numerical solution

We consider a standard Chebyshev collocation method using Chebyshev polynomials as
the basis functions, wherein confinement is introduced at z = ±H, such that ϕα(±H) =
ϕ′
α(±H) = 0. A trial solution involving the Chebyshev polynomials Tj(·) is proposed:

ϕα(z) ≈
M∑
j=0

ajTj(x), x =
z

H
, x ∈ [−1, 1] (5)

this reduces the differential equations (2) to a finite-dimensional eigenvalue problem. The
variable x is a simple linear transformation of the z-coordinate, whose range is confined
to [−1, 1]. The trial solution for ϕα(z) is substituted into the differential equation (2) and
evaluated at M −3 interior points. This gives M −3 equations in M +1 unknowns; the
system is closed by evaluating the trial functions at the boundaries z = ±H (4 further
equations). In this way, a finite-dimensional analogue of Equation (3) is obtained:

Av = λBv, (6)

where A and B are (M + 1)× (M + 1) complex matrices, and

v = (a0, · · · , aM)T

is a complex column-valued column vector. The eigenvalue λ is obtained using a standard
eigenvalue solver.

3 Exercise

Download the Orr–Sommerfeld code from the website and run it over a range of complex
wavenumbers, picking out the saddle point(s) and thereby determining whether the flow
is stable, convectively unstable, or absolutely unstable. Consider the following relevant
paramter groups:

(Re,Λ, N) = (100,−1.1, 5),

and
(Re,Λ, N) = (100,−1.1, 2),

Also, take H = 8.
The code is in a tar file which has been encrypted. You must first of all decrypt the

tar file, using the command

gpg --output myfolder.tar --decrypt matlab_code.tar.gpg

I can give you the password. Then, extract the folder:

tar -xvf tar -xvf myfolder.tar
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