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Context

Two-phase stratified flow is ubiquitous in nature and industry.

(a) Kelvin-
Helmholtz instabil-
ity

(b) Stratified flow
in pipelines

(c) Slug flow (d) Falling-film re-
actors

Mathematically, and computationally, a tough problem –
turbulence, extreme nonlinearity, topological change in
interfaces, a range of instabilities that need to be captured.
Even the laminar regime is tough - current focus of the
research.



The numerical challenge

Flows involving many length- and time-scales
Flows with sharp changes in interfacial topologies
Transient three-dimensional simulations required over long
periods of time, requiring scalable codes run at very high
resolutions.



TPLS

Numerical solution of two-phase Navier–Stokes equations with inter-
face capturing:
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Problem geometry and configuration

Simple channel geometry: periodic OR inlet/outlet conditions at
x = 0, x = Lx ; walls (no slip) at z = 0, z = Lz .
Basic version involves hydrodynamics only. TPLS with physics
available, e.g. evaporating droplets, contact-line dynamics, mass
transfer.



Where do 3D waves in parallel flows come from?



We want to keep an open mind and examine all
possibilities.

Direct route for supercritical cases – wherein linear stability
analysis predicts 2D and 3D waves are present in
more-or-less equal strengths. This is found to play an
important role across a variety of density ratios and
parameter values.

Subcritical transition to 3D state – weakly nonlinear
mechanisms excite 3D waves even though linear
theory says they shouldn’t be there.
Also, investigate possibility of secondary instability.
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The direct route – linear stability analysis

The direct route is most important at high density ratios

r =
ρB

ρT
,

with r > 1 for a gas-liquid flow.



Weakly nonlinear route below ‘criticality’

Most relevant for liquid-liquid flows. Periodic boundary condi-
tions, (Re,m, r ,S) = (300,30,1,0.3).



More exotic possibilities for gas-liquid flows

Evidence of Gortler vortices forming as a secondary instability.



Conclusions

A variety of routes to 3D waves in strongly 2D systems - direct
route, weakly nonlinear route, and secondary instability.
Direct route is a strong source of 3D waves
Weakly nonlinear route – most important for liquid-liquid flows
Other interesting routes – via secondary instability – for gas-liquid
flows.

TPLS is open-source – new collaborations / applications always wel-
come!


