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Context

Two-phase stratified flow is ubiquitous in nature and industry.
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@ Mathematically, and computationally, a tough problem —
turbulence, extreme nonlinearity, topological change in
interfaces, a range of instabilities that need to be captured.

@ Even the laminar regime is tough - current focus of the
research.



The numerical challenge

@ Flows involving many length- and time-scales

@ Flows with sharp changes in interfacial topologies

@ Transient three-dimensional simulations required over long
periods of time, requiring scalable codes run at very high
resolutions.




TPLS

Numerical solution of two-phase Navier—Stokes equations with inter-
face capturing:

p(6) (?}7 +u- Vu) - _vp+Riev. {M(d)) (Vu+ VUT)} +(9)+p(0)g,

where V - u = 0 and ¢ is the interface-capturing field:
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Problem geometry and configuration

@ Simple channel geometry: periodic OR inlet/outlet conditions at
x =0, x = Ly;walls (noslip)atz=0, z= L,.

@ Basic version involves hydrodynamics only. TPLS with physics
available, e.g. evaporating droplets, contact-line dynamics, mass
transfer.

Foreinglotation



Where do 3D waves in parallel flows come from?
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Linear instability of 2D parallel flow is dominated by 2D waves. S Ly
So how do 3D structures form?




We want to keep an open mind and examine all
possibilities.

@ Direct route for supercritical cases — wherein linear stability
analysis predicts 2D and 3D waves are present in
more-or-less equal strengths. This is found to play an
important role across a variety of density ratios and
parameter values.
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@ Also, investigate possibility of secondary instability.



The direct route — linear stability analysis
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(a) r =100, =0.1  (b) r =1000,8 =0.1

Eigenvalue analysis of the two-phase Orr-Sommerfeld-Squire equations for
Re = 100, m = 30, hp = 0.3, and S = 0.1, and G = 0.1.
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The direct route is most important at high density ratios

P

pT

with r > 1 for a gas-liquid flow.



Weakly nonlinear route below ‘criticality’

Streamwise waves — Large temporal growth, Spanwise waves — No temporal growth rate
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Most relevant for liquid-liquid flows. Periodic boundary condi-
tions, (Re,m,r,S) = (300, 30,1,0.3).



More exotic possibilities for gas-liquid flows
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Evidence of Gortler vortices forming as a secondary instability.



Conclusions

@ A variety of routes to 3D waves in strongly 2D systems - direct
route, weakly nonlinear route, and secondary instability.

@ Direct route is a strong source of 3D waves

@ Weakly nonlinear route — most important for liquid-liquid flows

@ Other interesting routes — via secondary instability — for gas-liquid

flows.
TPLS is open-source — new collaborations / applications always wel-

come!
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