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Introduction

I will look at droplet impact on a smooth surface.

Impact, Spread, Retraction
In the land of splashes, what the scientist knows as Inertia and Surface
Tension are the sculptors in liquids, and fashion from them delicate shapes
none the less beautiful because they are too ephemeral for any eye but
that of the high-speed camera [Yarin, Annu. Rev. Fluid Mech. (2006)]

Highlights the importance of parameters in such studies; key parameters are
the Weber number, We = Inertia/Surface Tension, and the Reynolds
number – sculptor has two tools.
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Motivation for studying droplet impact
Wordcloud, weighted by Google Scholar hits on 22/09/2025:

Important to emphasize that scientific curiosity is a main motivation here.
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Splash Threshold

Droplet spreading below splash
threshold (no splash), K > 3, 000,
where K = We

√
Re

At low We, droplet spreads out into a
pancake structure – rim and lamella.

Of interest is the maximum spreading
radius Rmax and its dependence on We
and Re.

E.g. Roisman’s correlation 1:

Rmax

R0
= 1.0Re1/5

−0.37Re2/5We−1/2,

for Re and We based on droplet radius.

Droplet impact study. Left: high-

speed camera. Right: OpenFOAM

simulations. Credit: Conor Quigley.

Parameters: Re = 1700 and

We = 20.

1Roisman, I.V., 2009. Inertia dominated drop collisions. II. An analytical solution of the
Navier–Stokes equations for a spreading viscous film. Physics of Fluids, 21(5).
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Point of Departure: 2D Droplet Impact

We look at 2D droplet (cylindrical) droplet impact.

Can’t be realised experimentally (?)
because of Rayleigh–Plateau
instability.

But some experiments come close.

Opportunity to look at the RL model
in a simplified geometry.

Theory running a little ahead of the
experiments but interesting all the
same.

Also an interesting test case in DNS
– reported on extensively in literature
(2D Cartesian versus 3D axisymmet-
ric).
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Experiments / DNS that come close...

Néel et al.1

1Néel, B., Lhuissier, H. and Villermaux, E.,
2020. ‘Fines’ from the collision of liquid rims.
Journal of Fluid Mechanics, 893, p.A16.

Tang et al.2

2Tang, K., Adcock, T.A.A. and Mostert,
W., 2024. Fragmentation of colliding liquid
rims. Journal of Fluid Mechanics, 987, p.A18.
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Methodology: 2D Rim-Lamella Model

Break up impacting 2D droplet into rim and lamella.

Hyperbolic flow in lamella, with u = x/(t+ t0) and w = −z/(t+ t0).

Kinematic condition gives lamella height, ht + uhx = w at z = h.

Mass and momentum transfer between the rim and the lamella.
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2D Rim-Lamella Model – Inviscid

In the inviscid case, mass and momentum balance yield the following set of
equations:

dV

dt
= 2 (u0 − U)h,

dR

dt
= U,

V
dU

dt
= 2 (u0 − U)

2
h− 2γ

ρ
(1− cosϑa) .

V is the area of the 2D rim.

u0 = R/(t+ t0).

h ≡ h(R, t) = [(τ + t0)/(t+ t0)]hinit, h(R, t) ∼ (t+ t0)
−1.

Key observation: The corresponding rim-lamella model in the 3D
axisymmetric case has a geometric factor of 2πR on the right-hand side. The
fact that this factor does not occur in 2D rim-lamella model is important.
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2D Rim-Lamella Model – Exact Solution

Velocity defect ∆ = u0 − U . Equation for V∆:

d

dt
(V∆) +

V∆

t+ t0
= 2hc2 = 2(γ/ρ)(1− cosϑa).

Exact solution for V∆.

Substitute back into ∆ = [R/(t+ t0)]− (dR/dt) and solve for R.

Result is complicated but it is in closed form.

Crucially, we calculate:

Rmax

R0
≈ 1

27

V 2
tot

hinitU2
0 (τ + t0)2R0

(
Vtot

2hinitR0

)
We

1− cosϑa
, We ≫ 1.

Rmax/R0 ∼ We is an intrinsically 2D scaling behaviour and was observed by
Néel et al. in their work on the colliding liquid cylinders.
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2D Rim-Lamella Model – Viscous

We proceed by analogy to the 3D axisymmetric case3 and reason out the
rim-lamella model for the 2D Cartesian (viscous) case:

dV

dt
= 2 (u− U)h,

dR

dt
= U,

V
dU

dt
= 2

[
(u− U)

2 − c2
]
h,

where

u =
R

t+ t0

(
1− hbl

h

)
,

and
hbl(t) = α

√
ν (t+ t1), ν = Kinematic viscosity,

and where α and t1 are free parameters.

3Bustamante, M.D. and Ó Náraigh, L., 2025. Bounds on the spreading radius in droplet
impact: the viscous case. In Proceedings A (Vol. 481, No. 2313, p. 20240791). The Royal
Society.
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2D Rim-Lamella Model – Bounds in the Viscous Case

2D viscous model contains a boundary-layer correction, which means it is no
longer exactly solvable. E.g. ∆ equation becomes:

d∆

dt
+

∆

t+ t0

(
1− hbl

h

)
= −2(∆2 − c2)(h/V )− u0

t+ t0

hbl

h

[
1− hbl

h
+ 1

2

t+ t0
t+ t1

]
︸ ︷︷ ︸

≥0

.

Provided the ‘hard terms’ have a definite sign, we can ignore them

Pay a price: the = is replaced with an inequality.

Using comparison theorems, we can place bounds on the maximum spreading
radius.

k1Re
1/3 − k2(1− cosϑa)

1/2(Re/We)1/2 ≤ Rmax/R0 ≤ k1Re
1/3.

Importance of dimensionality: Rmax/R0 ∼ k1Re
1/3 in 2D, as opposed to Re1/5.
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2D Rim-Lamella Model – Viscous – Compare with DNS

Motivated by the bounds, we propose a correlation

Rmax/R0 = k1Re
1/3 − k0(1− cosϑa)

1/2(Re/We)1/2.

Validate correlation over
repeated campaigns of
simulations, varying Re, We,
and ϑa systematically.

Results using interFoam and a
constant contact-angle model.

A further campaign using a
Diffuse Interface Method.

Results of prior simulations
(different authors) also
considered.
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Conclusions and keynote

Investigated Rim-Lamella models in 2D Cartesian geometry.
▶ Equivalent to cylindrical droplets, which are inherently unstable.
▶ But close surrogates exist in the experimental literature.
▶ Obtained exact solution of the rim-lamella model in the inviscid case.
▶ Again obtained bounds in the viscous case.
▶ Good agreement between theory, numerical simulation, and experiments.

Keynote: Theory of a priori bounds has proved very fruitful – could find
wider use in Fluid Mechanics: turbulence, mixing, spreading, ....
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